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Abstract. We describe an interface between version 6 of the Maple computer al-
gebra system with the PVS automated theorem prover. The interface is designed
to allow Maple users access to the robust and checkable proof environment of
PVS. We also extend this environment by the provision of a library of proof strate-
gies for use in real analysis. We demonstrate examples using the interface and the
real analysis library. These examples provide proofs which are both illustrative
and applicable to genuine symbolic computation problems.

1 Introduction

In this paper we describe an interface between version 6 of the Maple computer al-
gebra system, henceforth CAS, and the PVS automated theorem prover, ATP. CAS
like Maple (which has 1 million users, mostly in the educational sector) incorporate a
wide variety of symbolic techniques, for example for factoring polynomials or com-
puting Gröbner bases, and increasingly some numerical elements also. They provide a
mathematical programming environment and facilities such as graphics and document
generation. They have enjoyed some outstanding successes: for example ’t Hooft and
Veltman received the 1999 Nobel Prize in Physics, Veltman for using computer alge-
bra to verify ’t Hooft’s results on quantum field theory. The advantages of combining
symbolic/numeric computation with logical reasoning are evident: improved inference
capability and increased expressivity. A human performing symbolic mathematics by
hand will make automatic use of the logical framework upon which the mathemat-
ics is based. A human performing similar calculations using a CAS has to supply the
same logical framework; there is, in general, no sound reasoning system built in to the
CAS. Our objective is to provide the CAS user with an interface to an ATP, so that cer-
tain side conditions which are implicit in many analytic symbolic computations can be
highlighted, checked, and either verified or flagged as an error. The user interacts with
the CAS, making calls to the ATP system which acts as a black box for the provision of
formal proofs.

While there have been many projects aimed at combining the calculation power of
CAS with the logical power of ATP systems, the basic approach is always from the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144787646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

point of view of a user interested in completely correct developments. That is, the point
of view of a theorem proving user who wishes to have powerful calculation available
to generate existential witnesses or factorisations. Our approach takes the view point of
a user of a CAS who simply wishes it to be more robust. Current users of CAS, while
not pleased when incorrect results are generated, are nevertheless willing to accept a
certain level of deficiency as a trade-off for the utility of the system. We aim to improve
the existing support for users of CAS by adding to the correctness in an incremental
way, with a black box ATP system supporting better computer algebra calculation. The
work described in this paper is another step toward this goal, though much remains to
be done, both in terms of developing the formalisations needed in ATP systems and in
re-engineering the algorithms implemented in CAS to take advantage of the black box
without losing the speed and power of existing CAS implementations.

The aims of this paper are (i) to describe the design and implementation of the
interface (Section 3), and (ii) to illustrate its power by describing the automated verifi-
cation of properties needed to ensure correctness of routines for differential equations
in Maple (Section 4). The remainder of this introduction provides motivating exam-
ples, and briefly describe the systems involved and the background to the project. In
Section 2 we discuss the extension to PVS which allows automated proofs of side con-
ditions, continuity and convergence for elementary functions with parameters. One use
of the interface is the checking of the validity of input to certain Maple procedures. For
example, when solving a differential equation, one must ensure that the input function
���� �� is continuous (and thus defined) on the required region. This is not done by
Maple, and so Maple might return an answer that looks like a plausible solution even
if the input is not of the right form. However, using the interface one can verify the
continuity of ���� ��. Although our current PVS implementation of continuity check-
ing relies on a fairly simple method for verifying continuity, it does handle a large class
of functions well.

1.1 Motivating Examples

In this section we show that CAS output can be misleading or incorrect. A typical CAS
will have no general mechanism for checking that results are mathematically correct.
Hence errors can arise in the determination of equality of two expressions, or in the de-
finedness of expressions with respect to symbolic parameters. By not formally checking
each result, CAS output can propagate errors throughout a complicated symbolic cal-
culation, and hence produce invalid results. The following examples illustrate typical
problems which can occur.

Simplification The expression
�
�� will not automatically simplify to � in a CAS,

since this is incorrect for negative �. Maple provides a mechanism for assuming that
variables (and functions) have properties such as negativity (or differentiability), but
the system can still fail to simplify expressions containing square roots correctly. To see
this, consider the expressions � � ��� �� and � � ����

�
���������, where � and

� are positive reals. Suppose a Maple user wishes to verify that � � �. The commands
available are
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� a := abs(x-y);

� �� ��� ��
� b := abs(sqrt(x)+sqrt(y))*abs(sqrt(x)-sqrt(y));

� ��
�����

�
�
�� ������

�
��

� assume(x > 0): assume(y > 0):

� verify(a,b);

�����

� verify(a,b,equal);

	
��

Note that issuing a command assume (y > 0) binds all future occurrences in this
Maple session of the parameter y to be positive unless a new assumption about y is
issued. However, not all algorithms will check the assumption database for information
about the parameters included in their arguments. It is evident that there is a problem
with the robustness of the Maple verify command: verify(a,b) returns false
for this example; the heuristic simplification techniques used to reduce �� � to zero are
inadequate. verify(a,b,equal) uses a more sophisticated set of heuristic tech-
niques, but still fails to provide the expected result, namely true. Hence, for this ex-
ample, the output from Maple is either an admission of failure or misleading to the
user.

Definedness and Parameters Consider the definite integral

� �

�

�

�� �
� (1)

where � and � are positive real parameters. Maple returns the solution ����� � �� �
������� ��, which, when � � � and � � 	, reduces to��� which is a complex number,
and hence incorrect. Maple does not check that the function is defined everywhere in
the interval of integration; in this case that � is not in �
� ��.

Continuity Checking Maple has an inbuilt procedure for checking properties of func-
tions and expressions. This procedure does not always return correct results:

� is(x -> (1/x)+1-(1/x),continuous);

�����

Even the assumption of positive arguments does not solve the problem:
� assume(y > 0):

� is(y -> (1/y)+1-(1/y),continuous);

�����

The Maple/PVS interface described in this paper is designed to address the problem
of the lack of verification of CAS results. The Maple user works in the usual Maple
environment, and has access to a formal, checkable proof mechanism which has been
extended to deal with properties of real valued expressions involving parameters, such
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as those given in the above examples. In Section 4.1 we use the Maple/PVS interface to
prove that

��� �� � ����
�
�������

�� ��� �� � � 
 (2)

and that
� � � � 
 �� �� � �
� �� ��� ���� � �� � � ��� � (3)

These proofs allow the user to correct, modify or disregard the incorrect results from
Maple.

1.2 Background

Previous approaches to the combination of CAS and ATP are discussed and classified
in [8]. We mention selected examples which are direct or indirect predecessors to this
work. All approaches share the common problem of communicating mathematical in-
formation between the CAS and ATP systems. One solution is to define a standard for
mathematical information that can, in principle, be understood by any mathematical
computation system. Examples of this common knowledge approach include the Open-
Math project [1, 11], and protocols for the exchange of information between generic
CAS and ATP systems [5, 15]. Another solution is the sub-package approach, in which
communication issues are side-stepped by building an ATP within a CAS. Examples in-
clude Analytica [4], REDLOG [12], the Theorema project [6, 7], and a logical extension
to the type system of the AXIOM CAS [19, 26]. The third common approach involves
the choice of preferred CAS and ATP environments, and the construction of a spe-
cific interface for communication between them. Examples include Maple-HOL [17],
Maple-Isabelle [3], and Weyl-NuPrl [18].

The common-knowledge approach depends on wholesale acceptance of the pro-
tocols by both the CAS and ATP communities. Since this has not yet happened, we
concentrate on the remaining two approaches. The sub-package approach has the ad-
vantage that communication is easy, and the disadvantage that implementation of an
ATP in a language designed for symbolic/numeric computation can be hard. In partic-
ular, there may be problems with misleading or incorrect output from CAS routines,
which adversely affect the soundness of the proof system. For example, the simplifica-
tion error described in Section 1.1 could lead to an undetected division by zero, which
could propagate logical errors.

The specific interface approach has the advantage that the target CAS and ATP are
implemented and developed by experts in the respective technologies, and the disadvan-
tage that communication problems remain. Another issue is the relationship between the
systems. In the examples mentioned above, the primary system in use was the ATP, and
the CAS was used as an oracle to provide calculation steps. By contrast the motivation
for our work is to support the users of computer algebra systems in their work by giving
them the opportunity to use the rigour of theorem prover when they wish, completely
automatically in some cases. This has the advantage that users can use all the facilities
of the CAS, but the theorem prover implementation can be restricted. Since Maple is
a programming language calls to a prover can be embedded in procedures and made
invisible to the user.
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The objective of this project is to develop a specific interface which links the ma-
jor commercial CAS Maple [20] to the widely used ATP PVS [22] in a way which
minimises the inherent problems of linking two unrelated systems. We also utilise re-
cent extensions to PVS [14, 2] which allow reasoning in the theory of real analysis, so
that properties of symbolic expressions can be described and checked. The project is
in approach similar to the PROSPER toolkit [10], which allows systems designers us-
ing CAD and CASE tools access to mechanised verification. The PROSPER paradigm
involves the CAD/CASE system as the master, with a slave proof engine running in
the background. We have also adopted the PROSPER architectural format: a core proof
engine which is integrated with a non-formal system via a script interface. Our target,
however, is the engineering/scientific/mathematical community of CAS users.

1.3 Maple

Maple [9] is a commercial CAS, consisting of a kernel library of numeric, symbolic and
graphics routines, together with packages aimed at specific areas such as linear algebra
and differential equations.

The key feature of version 6 of Maple is that it was designed to run a subset of
the NAG numerics library. We utilise this ability to extend Maple by running PVS as a
subprocess.

1.4 PVS

PVS [24] supports formal specification and verification and consists of a specification
language, various predefined theories and a theorem prover which supports a high level
of automation. The specification language is based on classical, typed higher-order logic
and supports predicate and dependent sub-typing.

PVS is normally run using Gnu or X emacs for its interface, but can also be run
in batch mode or from a terminal interface. However, running PVS via emacs provides
many useful features such as abbreviations for prover commands and graphical repre-
sentations of proofs and library structures. The core of PVS is implemented in Allegro
Common Lisp.

1.5 Design Issues

The overall view of our system is one in which the user interacts with the CAS, posing
questions and performing computations. Some of these computations may require ATP
technology, either to obtain a solution or to validate answers obtained by existing com-
puter algebra algorithms. In such cases the CAS will present the theorem prover with
a number of lemmas and request it to make some proof attempts. The results of these
attempts, whether successful or otherwise, will guide the rest of the computation within
the CAS: the theorem prover acts as a slave to the CAS.

The system has a tightly coupled architecture. In such a system, the theorem prover
shares the same resources as the computer algebra system and is directly controlled by
it.
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Fig. 1. Tightly Coupled System

2 The PVS Real Analysis Library

Our goal is to provide automatic support for reasoning about real valued CAS expres-
sions. The basic PVS libraries are insufficient for proving properties such as continuity
or convergence of functions. It was therefore necessary to extend PVS with (i) libraries
of real analysis definitions and lemmas, and (ii) specialist proof strategies.

A description of a PVS library of transcendental functions was provided in [14].
The library can be used to check continuity of functions such as

��
������� � (4)

The library is based on Dutertre’s real analysis library [13] and contains a development
of power series, which is used to describe and reason about functions such as ���, ���,
��� and ��� and their inverses. The library also contains a large set of lemmas about
properties of these functions as provided by mathematics textbooks.

A particular focus of this library is supporting automation. There are two ways of
automating proofs in theorem provers: writing purpose-built strategies; or using pre-
defined widely applicable strategies. The latter method (such as blast-tac in Is-
abelle [25] or grind in PVS ) is the one we have primarily used, although we have also
written some special purpose strategies. Application of the PVS generic tactic grind
can be quite difficult. In order to improve the performance of grind (both in terms of
speed of proof and in the number of conjectures it will prove automatically) we have
introduced various type judgements [23] into our development. These judgements allow
grind to apply generic theorems to our specific tasks, effectively by giving hints to the
matching algorithm searching for appropriate theorems in the development.

The method used for continuity checking is what one might call the High School
method. It is based on the theorems that the constant functions and the identity function
are continuous everywhere, and that well-founded combinations using the following
operators are also continuous: addition, subtraction, multiplication, division, absolute
value and function composition. Also, the functions ���, ���, ��� and ��� are continu-
ous everywhere in their domains,1 which means that we can prove that functions such
as (4) are continuous on the whole of their domain. The continuity checker is invoked
by using the strategy cts, which performs all the necessary theory instantiations.

Since [14] some changes have been made to the basic analysis library as some
definitions were discovered to be unsuitable. This particularly concerns the definition

1 Note that the domain of tan excludes all points with value of the form ���� ����� and that it
is continuous everywhere else.
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of convergence of functions. Dutertre’s definition of convergence was unusual in that it
coincided with the definition of continuity. This is seen by the ”theorem” in Dutetre’s
development:

continuity def2 : THEOREM
continuous(f, x0) IFF convergent(f, x0) .

We changed the definition of convergence of functions to the more usual one, so that
the above is no longer a theorem, and also made other necessary changes to the rest of
the theory.

As well as changes to the underlying theories we have extended the implementation
of the continuity checker. In particular, it is now possible to check functions such as
��������� � 	� for continuity. This has been implemented using judgements to assert
that ��� and ��� are always within ���� �� and that adding (or subtracting) something
strictly greater that 1 will return a non-zero real value.

As well as a continuity checker we now have a convergence checker; this will check
if a certain function has a limit at some point (or indeed everywhere in its domain). We
can prove, for example, that the function

�� � � � � 	 ��������� (5)

has a limit at the point

��������� ����
� � �

�
�� � (6)

The convergence checker is implemented in the strategy conv-check, and it works in
the same syntax directed way as the continuity checker, and so has similar capabilities
and limitations.

3 Implementation

In this section we describe the work undertaken to develop our Maple/PVS system. We
have created a tightly coupled system under UNIX with PVS being controlled by Maple
as if it was a “normal” user. That is, PVS believes that it is interacting with someone
entering commands from a terminal rather than, for example, a pipe to another program.

3.1 Extending Maple

Although Maple provides its own programming language, it was necessary to make use
of the Maple interface to external functions written in C. By writing a small amount
of “glue” in C to handle the creation and management of new processes, low-level
PVS interactions and other support facilities, we are able to present a simplified PVS
interface to users of the Maple language.

An example of the Maple code that we use to import C functions is:
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PvsSend:= define external(
’pvsSend’,

handle :: integer[4],
message :: string[],
RETURN :: boolean[4],
LIB = "maple_pvslib.so"

);

Here the C function long pvsSend(long handle, char *message) is
imported into Maple as an external procedure called PvsSend. The compiled C for
pvsSend is stored in the shared object called maple pvslib.so.

Only seven of our C functions are imported into Maple in this way and provide a
basic low-level interface to PVS. Built on top of these are a number of higher-level
functions written in the Maple language. For example, the Maple function used to start
a PVS session with a particular context is:

PvsStart := proc(dir::string)
# Start PVS using imported C function
pvs := PvsBegin();

# Send data to PVS via imported C function
PvsSend("(change-context \"" || dir || "\")");

# Wait for prompt using another imported C function
PvsWaitForPrompt(pvs);

pvs;
end proc

These Maple procedures are supplied as a module, which allows users to import
them as a library package. The library must be added to Maple by each user before the
interface can be used. The library can then be accessed at each session by the command:

� with(PVS);

������	�
�	� � ������	��	�� � �������� � �������	� � ���������	�� �

�����	��	���� � ������ �
which loads the listed commands from the Maple module PVS.

3.2 Maple/PVS Communication

Maple/PVS communication has been implemented in two parts. Firstly, a simple lexical
analyser (pvs-filter) recognises PVS output and translates it into a format that is easier
to parse by other tools (such as the Maple interface). Secondly, a small Tcl/Tk applica-
tion (pvs-ctl) acts as a broker between Maple, PVS and the Maple/PVS user. This bro-
ker application is launched from Maple as the child process instead of the PVS-Allegro
LISP image and uses pvs-filter to simplify the processing of PVS-Allegro output:

Under normal use, Maple sends PVS commands to pvs-ctl which passes them di-
rectly to PVS-Allegro. Responses are translated by pvs-filter and examined by pvs-ctl.
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Fig. 2. Maple/PVS System

Anything that needs the user’s attention is handled interactively by pvs-ctl allowing the
user to respond directly to PVS-Allegro without Maple being aware of it. Status mes-
sages from PVS-Allegro are displayed graphically by pvs-ctl along with other output
describing how proof attempts are progressing. Again, none of this reaches Maple—
only the information that Maple actually needs. At present, Maple only needs to know
about PVS prompts (so that it can send the next command), and Q.E.D. messages indi-
cating that a proof attempt was successful.

The benefits of this system are significant: for the Maple programmer PVS appears
as a black-box which is controlled via a trivial protocol. Maple sends a command to the
black-box and reads response lines until a prompt is found. If any of these lines contains
a Q.E.D. line then the command was successful, otherwise it was not. Simplicity is
important because Maple is designed for solving computer algebra problems, and not
for text processing.

For the Maple/PVS user the pvs-ctl application provides a graphical display of the
current state of the system. Not only can progress be monitored, but interaction with
PVS-Allegro is available when needed. If PVS stops in the middle of a proof attempt
and asks for a new rule to apply, the novice user can respond with (quit) while the
expert user might be able to guide the proof further.

3.3 Simple Examples

We now provide straightforward examples of the use of the interface. Neither of the
examples involves our PVS real analysis library; they demonstrate only the mechanics
of the interface, and illustrate the master/slave relationship between Maple and PVS.

We assume that the Maple user has installed locally the C code, shell scripts and
Maple library described in Section 3, and PVS. The first task is to initialise the interface,
and check that we can prove that 	 � 	 � �:

� pvs := PvsStart("../pvslib"):

The PvsStart command launches a Tcl/Tk window and opens communications with
a PVS session using libraries found in the given directory.

� ex1 := PvsProve(pvs, "g: FORMULA 2 + 2 = 4", "", ""):
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The PvsProve command (i) takes a PVS session identifier, (ii) a formula in PVS
syntax, (iii) a PVS library - the default is the prelude, and (iv) a PVS proof command -
the default is ASSERT. The result of this command is shown in Figure 3.

Fig. 3. Tcl/Tk window for the Maple/PVS interface

We confirm in Maple that the proof was successful using the PvsQEDfind command:

� PvsQEDfind(ex1);
���

The second elementary example is a proof that the definite integral given in Sec-
tion 1.1 is undefined for certain values of its parameters. We prove property (3) via the
command:

� PvsProve(pvs, "def: LEMMA FORALL (a,b:posreal) :
� b > a IMPLIES EXISTS (x:real) : 0 <= x AND x <= b AND
� not(member[real](x,(�z:real|z /=a�)))",
� "", "then (skosimp*)(then (inst 1 \"a!1\")(grind))");

For this example the proof argument to PvsProve is rather more complicated, and
represents a single statement of the sequential PVS proof by repeated Skolemisation
and flattening, explicit instantiation, and use of the grind tactic.

The above examples show that the Maple user controls the interface using Maple
commands in a Maple session. The user can check that proof attempts have succeeded
without needing to interact with (or even view) the Tcl/Tk window. This is present only
as a gateway to PVS, used when proof attempts fail, or when a record of the logical
steps used in a proof is needed.
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4 Applications

In this section we demonstrate the use of the Maple/PVS interface to obtain proofs
which use lemmas from the real analysis library discussed in Section 2. We motivate
the use of the proof strategies contained in the library by first proving results without
them.

4.1 Continuity of
�
� for � � �

Consider the following proof that
�
� can be shown to be continuous for � � 
 by

choosing Æ � �
�
�� in the definition of continuity:

Æ � �
�
�� ��

Æ 
 ��
�
��

�
��� ��

�����
��� � Æ�

��
�
��

�� �����
��� � � ��

����
�
����

�
���

��� � Æ �� �����
��� � � ��

��� ��� � Æ �� �����
��� � �

(7)

The equality used is the example given in Section 1.1. The proof using the Maple/PVS
interface is obtained with the command:

� ex3 := PvsProve(pvs, "sqrt_eq: LEMMA FORALL (x,y:posreal)
:
� abs(root(x,2)-root(y,2))*abs(root(x,2)+root(y,2)) =
� abs(x-y)", "roots", "then (skolem!)(then (use
� \"sqrt_difference\")(then (use \"abs_mult\")(assert)))");

Here we are using the PVS roots theory. We use this theory again to prove that

����
�
����

�
���

��� � �
��Æ �� �����

��� � � (8)

� ex4 := PvsProve(pvs, "sqroot_ineq: LEMMA
� FORALL (eps,x,y:posreal) :
� abs(root(x,2)-root(y,2))*abs(root(x,2)+root(y,2))
� < eps*root(y,2) IMPLIES abs(root(x,2)-root(y,2)) < eps",
� "roots", "then (skosimp)(then (lemma
� \"both_sides_times_pos_lt1\" (\"x\"
� \"abs(root(x!1,2)-root(y!1,2))\"
� \"pz\" \"abs(root(x!1,2)+root(y!1,2))\" \"y\"
� \"eps!1\"))(grind))");

This example demonstrates the greater proof power of the interface. Maple alone fails
to obtain the identities needed in the above proof. Unfortunately, we need several ex-
plicit commands to guide PVS in each proof. The next stage of the development of the
interface is the provision of a suite of strategies for performing analysis proofs with
much less user guidance.
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4.2 Using the Real Analysis Library

The previous example involved the sequential proof of properties of a standard �-Æ real
analysis definition. By using the real analysis library described in Section 2, we can
prove continuity and convergence directly for a wide range of functions. To illustrate
this we use the PvsProve command with top analysis as the library, and with
either cts or conv-check as the proof strategy. For example, consider the initial
value problem (IVP)

����� � ���� ��� ���� � � (9)

where �� denotes denotes the derivative of ���� with respect to �. Let � denote the
region � 
 � 
 � and �� � � � �. Then Equation 9 has a unique differentiable
solution, ����, if ���� �� is defined and continuous for all ��� �� � �, and there exists
a positive constant � such that

����� ���� ���� ���� 
 ���� � ��� (10)

holds for every ��� ��� and ��� ��� � �.
Our intention is to use the interface and the real analysis library to verify conditions

on the input function,���� ��, and the Maple solution, ����, of the IVP. For example,
we prove that

���� �� �
�

������������
(11)

is defined and continuous on the real number line using the cts strategy:
� ex5 := PvsProve(pvs, "g: LEMMA FORALL (y:real) :
� continuous(lambda (x:real) : 1/exp(pi - abs(6*cos(x))),y)",
� "top_analysis", "cts");

For an example of the verification of properties of a Maple solution, we consider
the IVP

����� � ���������� � ������������ ��
� � � � (12)

We can obtain a closed form solution using a Maple procedure:

���� �
�� ���	
�������

��� � � � ���	
�������
(13)

Since the IVP is of generalised Riccati type [21], we can check that the solution has
only removable poles, i.e. that the solution has a limit at those points at which it is
undefined. In other words, we prove that

���������� � � � � (14)

is convergent (i.e. has a limit) at

� � �������� � ����
� � �

�
�� (15)

via the conv-check strategy:
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� ex6 := PvsProve(pvs, "g: LEMMA convergent(LAMBDA (x:real)
:
� -pi-1+pi*exp(1-cos(x)),acs(1+ln((1+pi)/pi)))",
� "top_analysis", "conv-check");

We can also verify the the solution in (13) can never be zero, using the grind strategy:

� ex1 := PvsProve(pvs, "g: FORMULA FORALL (x:real) :
� -pi*exp(-cos(x)+1)/= 0", "top_analysis", "grind :defs
NIL");

These examples demonstrate the inference capability and expressivity of the inter-
face augmented with a library of analytic proof strategies. The results can not be proved
within Maple, and are not easy to prove by hand.

4.3 A Generic Application to IVPs

We now describe a methodology for validating and improving Maple procedures for
solving IVPs of the form

����� � ���� � ��������� ���� � �� � � ��� �� (16)

We can use the interface to check the following requirements on inputs (bearing in mind
that each input can be a complicated symbolic expression involving parameters):

1. ���� and ���� are continuous over ��� ��;

2. ���� � �������� is continuous, Lipschitz, and/or differentiable over ��� ��.

Answers to these questions provide a formal check on the existence and uniqueness of
solutions for the given finite range. For example, we proved the continuity of

�
� for

all positive � in Section 4.1. We can prove that
�
� is not Lipschitz for � � �
� �� us-

ing the interface. Information regarding existence and uniqueness can be used to fine
tune the procedure used to obtain a solution, by using relevant assumes clauses in
Maple (e.g. assume(r(x) - q(x)y(x), continuous) so that specialised so-
lution techniques can be safely used.

Once a solution, ����, has been obtained, we can use the interface to check proper-
ties such as

1. ����� � ���� �� � 
;

2. ���� � �;

3. ���� has removable poles, non-removable branch points and/or is itself continuous.

The following prototype Maple procedure takes ����, ����, �, � and �, and supplies
answers to some of the above questions using the inbuilt Maple dsolve procedure for
obtaining ����.
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������ �� proc��� �� �� �� ��
local ��� � �� � �	 � �
 � �� � �� � � � ��� � ������ �
��� �� �	
����� “../pvslib”� �

�� �� �	
���	����� �

“g: FORMULA FORALL (v:I[a,b]) : continuous(lambda (x:I[a,b]) : r(x), v)”�

“top analysis”� “cts”��

�	 �� �	
���	����� �

“g: FORMULA FORALL (v:I[a,b]) : continuous(lambda (x:I[a,b]) : q(x), v)”�

“top analysis”� “cts”��

if not ��	
��������� � and �	
��������	 �� then�������������� ����� ��

else
��� �� �
��	���������	�� 	� � ��	�� ��	���	�� ���� � ��� ��	�� �

������ �� ������� � 	� �

�� �� �	
���	����� �

“g: FORMULA FORALL (v:I[a,b]) : diffsol(v) = r(v) - q(v)*sol(v)”�

“top analysis”� “grind”��
�� ��

�	
���	����� � “g: FORMULA sol(a) = eta”� “top analysis”� “grind”��

�	 �� �	
���	����� �

“g: FORMULA FORALL (v:I[a,b]) : continuous(lambda (x:I[a,b]) : sol(x),v)”�

“top analysis”� “cts”�

fi�
if not ��	
��������� � and �	
��������� � and �	
�������� �� then

�������������� ����������

else ���
fi
end

Maple does have built in procedures for answering many of these questions, but, as
shown in Section 1.1, can fail to detect the equality of two straightforward expressions
and the continuity of a simple function. Using the interface helps the user to validate
both the input and output of problems, and hence leads to improved use and understand-
ing of the CAS.

5 Conclusions

We have presented an interface between Maple and PVS. The interface gives Maple
users access to the proof capabilities of PVS, thus providing a means to gain more
formal knowledge of Maple results.

We have created a tightly coupled interface between Maple and PVS, under which
PVS is controlled by Maple. A small Tcl/Tk application sits between Maple and PVS,
so that PVS looks like a black box to the Maple user. However, it also allows a more
experienced user to interact directly with PVS.

In Section 1.1 we saw that Maple can fail to recognise a seemingly obvious equality,
which could lead to an undetected division by zero, and also that Maple might apply
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standard procedures without checking validity of the input. In Section 4 we showed
how the interface can be used to correct these errors.

Our aim is to extend the applicability of the interface in two ways. Firstly the ex-
tension of the real analysis library discussed in Section 2 by adding new strategies,
and secondly by providing Maple procedures which automate the checking of validity
of input and output, as described in Section 4.3. These extensions will require an im-
provement in the communication between the two systems, both in terms of syntax of
expressions, and in decision procedures based on failed proof attempts.
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