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ABSTRACT 
Variational principles appear in a vast number of scientific 
disciplines.  They often provide a ‘view from above’ which 
permits to better comprehend and analyse problems. In this paper 
we show how variational techniques can be used to modelise 
perceptual color correction of digital images.  We will show that 
the basic human visual phenomenology defines a unique class of 
functionals whose minimization gives rise to color enhancement. 
This framework provides a unified home for noticeable models of 
perceptual color correction, as e.g. Retinex. 
 

Categories  and Subject Descriptors 
I.4.3 [Image  Processing and  computer  vision]:  Enhancement, 
Filtering; I.4.8 [Scene  Analysis]: Color 
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1.   INTRODUCTION 
Human vision is a process of great complexity: it begins with the 
photochemical transitions that occurs when light is captured by 

the three di erent types of cone pigments inside the retina, then 

an electric impulse passes through the nervous system and reaches 
the brain, where it is analyzed and interpreted.  However, retina 
photochemistry, nervous impulse propagation and brain 
interpretation  are not fully understood,  hence a deterministic 
characterization of the visual process is unavailable. For this 
reason, the majority of color perception models follow a descriptive 
approach, trying to simulate macroscopic features of color vision, 
rather than reproduce neurophysiological activity. 
 
Here we will show that a set of basic phenomenological characteristics 
can be translated into mathematical axioms to be fulfilled by a 
variational energy functional defined on the space of image 
functions. Remarkably, there is only one class of energy 
functionals able to comply with all the axioms at once.  Once 
such a perceptual energy is fixed, the Euler-Lagrange equations 
corresponding to its minimization give rise to a computational 
algorithm that can be used to perform perceptual color correction 
of digital images.  The advantage of this point of view relies in the 
intertwining between the algorithm equation and the 
corresponding vari- ational energy, which permits to better 
understand the al- gorithm behavior in terms of important  image 
features as tone dispersion or contrast. 
 
 
 
 
 
 
 
 
 
 

 

Furthermore, by comparing di erent energy functionals, one can 

discover interrelations between models that can be very di cult 

to be found without a variational formulation. Before providing 
the basic details, let us fix the notation. Given a discrete RGB 

image, we denote by  its 

spatial domain, W, H  ≥ 1 being integers; x = (x1 , x2 ) and y = 

(y1 , y2 ) denote the coordinates of two arbitrary pixels in I.  Let 
us consider a normalized dynamic range in [0, 1], and denote a 
color image function by 

, where Ic (x) is 

the intensity level of the pixel x ∈  I in the chromatic channel c ∈  
{R, G, B}.  All computations will be performed on the scalar 
components of the image, thus treating independently each 
channel, written, for simplicity, as I (x). 
 
 

2. GENERAL FUNCTIONAL ENERGY FOR 
PERCEPTUAL COLOR CORRECTION 
We detail here the general functional energy that corresponds to a 
perceptually-inspired color correction algorithm. In order to 
understand its meaning, let us remember that human color 
perception is characterized by both local and global features:  contrast  
enhancement has a local nature, i.e. spatially variant, while visual 
adaptation is global. 
 
These basic considerations imply that a perceptually inspired 
energy functional should be composed by two terms: one 
spatially-dependent contrast term Cw (I ), whose minimization 

must leads to a local contrast enhancement coherent with Weber-
Fechner’s law of contrast perception, and one global dispersion 
term D(I ), whose minimization  must lead to a control of the 
departure from both original point- wise values and the middle 
gray, which, in our normalized dynamic range, is 1/2. 
 
It can be proven that the most general energy functional 

 is composed by these terms  
 
 

 
 

the functional parameter φ being a strictly increasing positive 
function, and 
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Let us discuss the meaning of Cwφ (I ) and Dα,β (I), starting 
with the contrast term. Notice that the ratio defined by min(I(x), 
I(y))/ max(I(x), I(y)) is minimized when the minimum decreases 
and the maximum increases, which of course corresponds to a 
contrast stretching. Thus, minimizing an increasing function of 
that ratio will produce a contrast enhancement. Moreover, 
recalling that a global illuminant change can be represented as the 

transformation , the contrast enhancement 
term will be unaffected by such a change, coherently with the 
color constancy property. Finally, it can be proven that this 
definition of contrast is coherent with Weber-Fechner’s law. 
 
The dispersion term is based on the relative entropy distance [1] 
between I and 1/2 (first term) and between I0 and I (second 
term). Given the statistical interpretation of entropy, we can say 

that minimizing Dα,β(I) amounts to minimizing the disorder of intensity levels 

around 1/2 and around the original data I0(x). Thus, Dα,β(I) 
accomplishes the required tasks of a dispersion term. 
 

By minimizing the energy E w,α,β, e.g. through a gradient  descent 
technique, we have the explicit algorithm implementation of this 
model: 
 
 

 
 
 
 

t being the evolution parameter and δ the first variation of E. For 
practical implementations this scheme must be discretized: 
choosing a finite evolution step ∆t > 0 and setting 

 with I0(x) being the original image, we 
have 
 
 
 

 
 
 
 

As can be seen, α and β represent the strength of the attachment 

to ½ and to I0, respectively, while Rφ
 w,Ik represents the contrast 

enhancement. 
 
 

3. INTERRELATIONS BETWEEN 
PERCEPTUAL COLOR CORRECTION 
MODELS 
By selecting particular functional forms for the function φ, we can 
embed in the previous framework two well known perceptually-

inspired color correction algorithms, more precisely if we set: φ ≡ 
id, i.e. the identity function, then the previous model coincides 
with a symmetrized version of the Retinex algorithm [2, 4, 5]. 

If φ is chosen to be the natural logarithm: φ ≡ log, then the 
previous model coincides with that presented in [3]. 
This shows that the difference between the model presented in [3] 

and the symmetric version of the original Retinex algorithm relies 

only in the shape of the function φ applied to the contrast 
variable. Such a result was not at all obvious without a variational 
formulation. 
 
Finally, it was proven in [6] that histogram equalization can be 
seen as the minimization of a functional composed by a global 
contrast term and a quadratic dispersion term, so our model can 
be seen as an improvement of histogram equalization, where 
contrast is modified locally and with a more sound perceptual 
basis and dispersion is controlled with an entropic function 
instead of a quadratic one. This last property is important when 
dealing with dark image areas, where the entropic dispersion is 
much stronger than the quadratic one, thus providing a better 
noise control in the enhancement process. To show this effect let 

us consider in Figure 1 a result of our model (with φ ≡ id) 
compared with that obtained by histogram equalization. 
 
 

 
 
Figure 1:  Left:  Original image.  Middle: Image filtered with 

the proposed model. Right:  Image after histogram 
equalization. 

 
 

4.   CONCLUSION 
We have discussed a variational framework in which color 
correction is realized through the minimization of energy 
functionals suitably designed in order to comply with a set of 
phenomenological properties of the human visual system. This 
framework embeds several known color perception models and 
permits to devise new ones by changing a functional parameter. 
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