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Abstract

Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high

biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at

14 °C. However, in temperate climates, temperatures below 14 °C are common and our aim was to elucidate
cold tolerances of different miscanthus genotypes and compare with a C3 perennial grass – festulolium. Eleven

genotypes of M. sacchariflorus, M. sinensis, M. tinctorius, M. 9 giganteus as well as festulolium were grown under

warm (24/20 °C, day/night) and three under cold (14/10 °C, 10/8 °C and 6/4 °C) conditions in a controlled

environment. Measurements of photosynthetic light response curves, operating quantum yield of photosystem II

(ΦPSII), net photosynthetic rate at a PAR of 1000 lmol m�2 s�1 (A1000) and dark-adapted chlorophyll fluores-

cence (Fv/Fm) were made at each temperature. In addition, temperature response curves were measured after

the plants had been grown at 6/4 °C. The results showed that two tetraploid M. sacchariflorus and the standard

triploid M. 9 giganteus cv. Hornum retained a significantly higher photosynthetic capacity than other miscant-
hus genotypes at each temperature level and still maintained photosynthesis after growing for a longer period

at 6/4 °C. Only two of five measured miscanthus genotypes increased photosynthesis immediately after the

temperature was raised again. The photosynthetic capacity of festulolium was significantly higher at 10/8 °C
and 6/4 °C than of miscanthus genotypes. This indicates that festulolium may be more productive than the cur-

rently investigated miscanthus genotypes in cool, maritime climates. Within miscanthus, only one M. sacchari-
florus genotype exhibited the same photosynthetic capacity as Hornum at both cold conditions and when the

temperature was raised again. Therefore, this genotype could be useful for breeding new varieties with an

improved cold tolerance vis-a-vis Hornum, and be valuable in broadening the genetic diversity of miscanthus
for more widespread cultivation in temperate climates.
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Introduction

Bioenergy crops are a potential replacement source for

fossil fuels. To make this option economically competi-

tive and sustainable, major research issues include iden-

tifying crops that have a maximum biomass production

and at the same time a minimum environmental impact

when grown on marginal land under various abiotic

stress conditions (Gabrielle et al., 2014). Even though

the yield of crops depends on light interception, conver-

sion and partitioning efficiencies, an extension of the

growing season has a significant positive impact on

biomass production (Zhu et al., 2010). To provide

sustainable biomasses/feedstocks in temperate climates,

the ideal bioenergy crop should be perennial and have

a high cold-tolerance to support a long growing season

in which photosynthesis can take place, thereby promot-

ing high annual yields and low losses to the environ-

ment (Karp & Shield, 2008).

An important basic physiological trait influencing

cold sensitivity and productivity in crops is the differ-

ence between C3 and C4 photosynthesis. Photosynthetic

activity in C3 and C4 species differs under cold condi-

tions. For C3 plants, the Rubisco capacity has been

regarded as the predominant constraint to photosynthe-

sis under a wide range of temperatures at CO2 levels

below the current ambient concentration (Farquhar

et al., 1980; Sage & Kubien, 2007). The C4 photosynthesis

is usually advantageous at low CO2 concentrations and
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high temperatures, and thus its distribution is usually

limited at daily mean minimum temperatures of 8 to

10 °C or below during the period of active growth

(Teeri & Stowe, 1976; Long, 1983). However, it has been

found that the C4 Miscanthus 9 giganteus is capable of

reaching high photosynthetic efficiency even in October

with an average temperature of 10 °C in southern

England (Beale et al., 1996), and it is hypothesized that

the C4 sensitivity to low temperatures may not be a

generic and unbreakable trait (Long & Spence, 2013).

The perennial grass crop, miscanthus, has therefore

been regarded as one of the most ideal energy crops due

to its high biomass potential and low fertilizer require-

ments (Lewandowski et al., 2000) and because it can be

harvested yearly with high average yields ranging from

13.1 to 14.4 Mg ha�1 for a period of more than 15 years

even in the cold temperate maritime climate of Denmark

(Larsen et al., 2014). Another productive perennial grass

under temperate conditions, but with the C3 photosyn-

thetic pathway, is festulolium, which has been found

useful for extending the autumn grazing season in conti-

nental conditions (Skladanka et al., 2010). Festulolium is

a cross between species from the genus Festuca, with a

high level of general stress tolerance towards e.g.

drought and heavy grazing, and species from the genus

Lolium, which is the predominant forage grass in Europe

(Wilkins & Humphreys, 2003). Several festulolium culti-

vars, in which the good forage quality of ryegrass spe-

cies has been combined with the high persistency and

stress tolerance of fescues, have been bred recently

(Østrem & Larsen, 2008; Halling, 2012). The cultivar fes-

tulolium cv. Hykor has been shown to have a high yield

potential of around 18 Mg ha�1 and high persistency

throughout the season (www.DLF.com). Thus, festu-

lolium may be ideal as a sustainable feedstock for biore-

fineries (e.g. protein feed and bioenergy) in temperate

climates (Parajuli et al., 2015).

In previous studies, 14 °C has been chosen as an

important temperature level for examining the cold tol-

erance of plants with C4 photosynthesis (Haldimann,

1996; Farage et al., 2006). We screened a range of mis-

canthus genotypes for their tolerance to a 14/10 °C
growing environment to find improved genotypes com-

pared with M. 9 giganteus, but found only a few with

slightly improved characteristics (Jiao et al., 2016). How-

ever, plants in northern Europe are frequently exposed

to much lower temperatures, especially in the autumn

and spring seasons. Therefore screening of the photo-

synthetic response to temperatures below 14 °C may be

helpful to identify genotypes with a high tolerance to

low temperatures, which are critical for growth in the

spring and autumn in continental climates and through-

out the growing season in cool temperate maritime

climates.

In a side-by-side trial in Illinois, Dohleman & Long

(2009) found that M. 9 giganteus was 59% more produc-

tive than maize (Zea mays) due to its larger leaf area and

its longer growing season that was facilitated by supe-

rior cold tolerance. Photosynthesis in M. 9 giganteus has

been found to still occur at 10 °C, although at a lower

rate than in plants grown at 14 °C (Farage et al., 2006).

Photosynthetic CO2 uptake of M. 9 giganteus and maize

measured during short-term exposure to 5 °C after

having been grown at 24 °C and 14 °C showed that M.

9 giganteus kept a photosynthetic level of around 4 to

5 lmol m�2 s�1, which was significantly higher than the

1 to 2 lmol m�2 s�1 of maize grown at 14 °C (Naidu

et al., 2003). However, it is unclear whether the photo-

synthetic apparatus in the miscanthus was damaged or

not and whether the photosynthetic capacity would

continue to function after long-term exposure to temper-

atures below 10 °C. The C3 photosynthesis of festu-

lolium is expected to be tolerant to low temperatures,

but an exposure to 2 °C resulted in a dramatic decline

in maximum quantum yield of PSII (Fv/Fm), in

increased nonphotochemical quenching (NPQ) and in

reduced efficiency of energy conversion in the photo-

chemical processes (qP) (Pociecha et al., 2010).

Previous studies on high-yielding and cold-tolerant

miscanthus have focused mainly on M. 9 giganteus cv.

Hornum (Larsen et al., 2014), although this genotype is

impossible to further improve by breeding since it is a

sterile triploid hybrid of a tetraploid M. sacchariflorus

and diploid M. sinensis (Greef & Deuter, 1993) with little

genetic diversity (Hodkinson et al., 2002; Clark et al.,

2014). However, M. sinensis and M. sacchariflous could

be used to breed new M. 9 giganteus cultivars for

broadening the genetic base which would be useful in

the breeding of high-yielding genotypes with improved

cold-tolerance or for growing on a wider scale (Clifton-

Brown & Lewandowski, 2002; Jorgensen, 2011). Other

miscanthus species may also contribute cold tolerance

to breeding, one possibility being M. tinctorius, which

often grows at high altitudes or latitudes.

Exploring the background for high cold-tolerance in

plants with C4 photosynthesis may be helpful before

introducing them in cool regions and broadening their

planting area. An earlier study has found that low-tem-

perature photoinhibition associated with the xantho-

phyll cycle (zeaxanthin accumulated from violaxanthin

under high light conditions) is reversible and is a strat-

egy for C4 species to tolerate cool climates, even though

it was more detrimental to carbon gain in the C4 grass

Muhlenbergia glomerata than in the C3 species Calam-

ogrostis canadensis grown at 14/10 °C (Kubien & Sage,

2004a). Photo damage is characterized by a reduced

photosynthetic capacity, which cannot be redeemed by

a rising temperature. For example, low temperatures
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affect both the light-harvesting apparatus and the

CO2-fixing enzymes of maize (Baker et al., 1983). A pre-

vious study has reported that the ability to sustain the

photosynthetic rate at a relatively high level at 14 °C in

some genotypes might be dependent on maintenance

and increase of Rubisco (Spence, 2012) and PPDK con-

centrations in leaves (Wang et al., 2008a,b).

C3 plants usually have a lower optimal temperature

and lower maximum photosynthetic rates, but have the

advantage of higher photosynthesis at low temperatures

than C4 plants (Pearcy et al., 1981; Yamori et al., 2014).

Still, it is unclear at which temperature level miscanthus

can compete with C3 species in cool climates, and to

what degree there is genetic variation within the genus

that may help improve the competitiveness of miscant-

hus. Increased knowledge of this will also be helpful for

guiding site selection and adapting the cultivation

practices for these two types of crop in cool climates.

The aim of this work was to examine the cold toler-

ance of different C4 miscanthus genotypes through

studies of net photosynthetic rate (An), PSII operating

efficiency (ΦPSII), maximum quantum yield (Fv/Fm)

and light response under various growth temperatures

down to 6 °C. Furthermore, the cold tolerance of C4

miscanthus was compared with one well-known,

highly-productive festulolium cultivar. Our hypothesis

was that we would be able to identify genotypes with a

higher photosynthetic performance under cold condi-

tions than the M. 9 giganteus cv. Hornum and that these

genotypes may even compete with a C3 grass under the

variable, temperate, maritime conditions of northwest-

ern Europe.

Materials and methods

Plant material

One C3 species, the grass festulolium (cultivar Hykor), which is

a hybrid of Lolium multiflorum and Festuca arundinacea (Cernoch

et al., 2004; Zwierzykowski, 2004; Kopecky et al., 2008), and 11

genotypes of the C4 genus Miscanthus representing four

different species (M. sinensis, M. sacchariflorus, M. tinctorius and

M. 9 giganteus) were selected for climate chamber experiments

(Table 1).

Table 1 Genotypes measured in the climate chamber experiments. The genotypes numbers 1 to 14 are from a previous climate

chamber experiment (Jiao et al., 2016); genotypes 15 to 19 are new material for this study

Identification

Identification in

previous publication Species Origin Altitude (m) Latitude (°N) Ploidy

Tin-1 133/1* M. tinctorius Ainukura, Honshu† 350 36 2x¶¶

Sin-3 56/1* M. sinensis Kamiyoshino (5 km SE

of Kanazawa), Honshu†

280 36 2x¶¶

Sac-10 M. sacchariflorus Hakusan National park, Honshu† 900 36 4x¶¶

Sac-11 M. sacchariflorus South of Shirakawa, Honshu† 600 36 4x¶¶

Sac-12 EMI-5‡ M. sacchariflorus Japan 4x¶¶

Gig-13 EMI-1‡ M. 9 giganteus cv Hornum§, Larsen, Denmark 3x‡

Gig-14 M114¶ M. 9 giganteus Tinplant, GmbH, Klein

Wanzleben, Germany**

2x

Sin-15 M. sinensis South of Shirakawa, Honshu† 600 36

Sac-16 M. sacchariflorus Japan† 4x

Sac-17 M. sacchariflorus Near highway M58, outside

of Birobidzhan turnoff, Russia

67 49 2x¶¶

Sac-18 M. sacchariflorus Near M60 North of Lermontavka 86 47 2x¶¶

Fest-19 Hykor†† L. multiflorum 9

F. arundinacea

Bred in Czech Rep.‡‡ 6x§§

*Identification used in Glowacka et al. (2015b).

†Seed plants collected in Japan 1995 and grown in Denmark since 1996 (Kjeldsen et al., 1999).

‡Clones from ‘European Miscanthus Improvement’ project (Clifton-Brown et al., 2001).

§EMI-1 was equivalent to Hornum, due to extreme high genetic similarity (Glowacka et al., 2015a).

¶(Carrie et al., 2012).

**(Kim et al., 2012).

††Identification used in Cernoch et al. (2004); Østrem & Larsen (2008); Ambye-Jensen et al. (2013); Ostrem et al. (2013).

‡‡Acquired by DLF-Trifolium, Denmark (Zwierzykowski, 2004; Kopecky et al., 2008).

§§(Cernoch et al., 2004).

¶¶Ploidy levels were determined by flow cytometry described in Jiao et al. (2016).
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The miscanthus genotypes Tin-1, Sin-3, Sac-10, Sac-11, Sac-

12, Gig-13 and Gig-14 were selected for this study because they

showed the most interesting results for growth under cold con-

ditions in a previous climate chamber experiment (Jiao et al.,

2016). These were supplemented with two genotypes selected

from the 166 genotypes that were previously evaluated in field

experiments by Jiao et al. (2016): Sin-15 was selected because it

had a late blossom and senescence in the autumn, and Sac-16

was chosen because it had a high photosynthetic rate in field

experiments (data not shown). Two final M. sacchariflorus geno-

types (Sac-17 and Sac-18) were selected from 222 accessions

collected during a 2012 joint USDA-Vavilov Institute expedi-

tion in Eastern Russia led by Erik J. Sacks (L V. Clark, D. Elena,

D. Nikolay et al, unpublished data). They grew at high latitude

(Table 1) and had tall and relatively thick stems compared with

the other collected genotypes (Erik Sacks, personal communica-

tion). In contrast with Japanese M. sacchariflorus, which is tetra-

ploid, these Russian M. sacchariflorus are diploid. The Russian

genotypes were planted in pots in the greenhouse in Denmark

between 8 and 16 October 2012.

Plant cultivation

All miscanthus rhizomes, except Sac-17 and Sac-18, were dug

up from the field on 15 November 2013 before onset of frost.

They were stored at 2 �C until five days before planting and

then at approx. 15 �C for acclimatization until planting out.

The rhizomes were planted on 18 February 2014 in pots mea-

suring 25 9 15 9 30 cm (length, width, height) and each filled

with 2.2 kg peat (Pindstrup Substrate no. 4, 10–30 mm, pH 6.0,

containing NPK fertilizer 1.0 g l�1 and micro fertilizer 0.05 g

l�1). The rhizomes were planted in six replicates of each geno-

type. The Russian Sac-17 and Sac-18 were planted on 25 Febru-

ary using rhizomes from the plants grown in the greenhouse.

Whole plants of Hykor were dug up from a field experiment

established in 2012 (Manevski et al., 2015) on 7 November 2013.

They were irrigated immediately and kept outside the green-

house during the winter next to the wall to protect them from

severe frost. They were moved to the greenhouse and cut down

to 6–8 cm height on 12 March 2014. All plants were cultivated

in the greenhouse for 7 weeks. The temperature in the green-

house was kept at approx. 15/10 �C day/night (d/n). Artificial

light was turned on between 06:00 and 18:00 if the solar

radiation during that time was below 670 lmol m�2 s�1. The

intensity of the artificial light was about 350 lmol m�2 s�1 pro-

vided by 400 W metal-halide lamps (Osram Powerstar HQI-BT

Daylight).

Irrigation and fertilization

The plants in the greenhouse were irrigated every two or three

days to field capacity. After one month’s growth in the green-

house, 1% inorganic fertilizer (Prima Væksthusgødning, NPK

3-1-4) was added to the irrigation water every second or third

day (in 0.3 l water to each pot). During the period of measure-

ments in the climate chamber all the plants were irrigated

every evening and fertilizer was added every second or third

day.

Gas exchange measurements

On 15 April, all plants except Sac-18 were moved from the

greenhouse into two climate chambers with same controlled

environmental conditions. The genotype Sac-18 was moved

from the greenhouse into the climate chamber on 5 May 2014

just after the temperature had been decreased to 14 °C.

Three replicates of each genotype were cultivated in each of

the two chambers. The plants were randomly arranged on

trolleys. They were grown in a constant temperature of 24/

20 °C d/n for the warm conditions and 14/10 h d/n under a

PAR of 670 lmol m�2 s�1. The relative humidity for warm

conditions was set to 85/85% d/n and the CO2 concentration

was set to 400 ppm. After 12 days of growth in the warm con-

ditions, light response curve measurements were performed

(see details below) on four selected genotypes of miscanthus

and festulolium, i.e. Tin-1, Sin-15, Sac-12, Gig-13 and Fest-19.

The photosynthetic rate at a photosynthetic active radiation

(PAR) of 1000 lmol m�2 s�1 (A1000) and chlorophyll fluores-

cence were measured on all the plants on 30 April as

described below.

After 20 days in the warm conditions, the temperature in

the chamber was reduced to 14/10 °C d/n with the same

day/night cycle as for the warm conditions. The relative

humidity was set to 75/85% d/n, while all other conditions

were set as described above for 24/20 °C. Nine days later,

the temperature in the chamber was reduced to 10/8 °C d/n

and the relative humidity was set to 85%/90% d/n, while

other conditions were left unchanged. After nine days at 10/

8 °C, the temperature in the chamber was reduced to 6/4 °C

d/n cycle and the relative humidity was set to 85%/95% d/

n. Other conditions were left unchanged. After 5 days’

growth at each temperature level, light response curve mea-

surements were performed on the five miscanthus and festu-

lolium genotypes. In addition, A1000 as well as chlorophyll

fluorescence were measured on all the plants at the end of

each cold temperature level.

Gas exchange measurements were performed on the young-

est fully developed leaf (ligule present) of six replicates of each

genotype from 8:30 to 15:00 hours using an open-flow gas

exchange system, CIRAS-2 (PP Systems, Amesbury, MA, USA).

The conditions inside the cuvette were set to reflect controlled

environmental conditions (i.e. the CO2 concentration was set to

400 lmol mol�1 and the mean leaf temperature was main-

tained at the same level as the growth temperature). The vapor

pressure deficit (VPD) in the leaf cuvette was 1.0 kPa (24 °C),

0.6 kPa (14 °C and 10 °C) and 0.5 kPa (6 °C) and the airflow

through the chamber was 250 ml min�1; PAR was set to

1000 lmol m�2 s�1.

For the light-response curve measurements, the leaves were

acclimatized to a PAR of 1500 lmol m�2 s�1 (24 °C, 14 °C and

10 °C) and 1000 lmol m�2 s�1 (6 °C) until the photosynthetic

rate was stabilized (Wang et al., 2012). The PAR was then

decreased from 1500 to 20 lmol m�2 s�1 in twelve steps (1500,

1200, 1000, 800, 500, 300, 200, 150, 100, 80, 50 and 20). For 6 °C,

there were only 10 steps as the steps at 1500 and 1200 lmol

m�2 s�1 were skipped. The measurements were logged after

the photosynthetic rates had stabilized, which was usually after

two minutes.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12342
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Temperature response curves

The temperature response of photosynthesis was measured

after seven days of growth at 6 °C in the climate chamber. The

temperature in the leaf cuvette was set at five steps: 5 °C,

10 °C, 15 °C, 20 °C and 25 °C. It was measured on three to four

replicates on the youngest fully developed leaf with each leaf

measured at all temperatures, and the CO2 concentration was

controlled at 400 ppm. For each temperature measurement,

leaves were light and temperature-acclimated until steady state

had been achieved in the gas exchange cuvette at a PAR of

1000 lmol m�2 s�1. Attempts were made to keep a similar leaf-

to-air vapor pressure deficit at all temperatures by modifying

the relative humidity in the leaf cuvette. Still, an increase in

VPD could not be avoided with increasing temperatures.

Chlorophyll fluorescence measurements

Chlorophyll fluorescence was determined on Day 6 of each

temperature settlement under the cold conditions using a Mini-

PAM fluorometer (Walz, Germany). The leaves were dark-

adapted with Dark Leaf Clips for 30 min before the measure-

ments were performed (Bolhar-Nordenkampf et al., 1989). The

minimal fluorescence (F0) was determined at very low PPFD,

where the PSII reaction centers are in the ‘open’ state. The max-

imal fluorescence (Fm) was measured by applying a 0.8 s pulse

at a high light level of approx. 4000 lmol m�2 s�1, which forces

the closure of the reaction centers (Krause & Somersalo, 1989).

The maximum quantum yield of PSII (Fv/Fm) was calculated

from F0 and Fm, as Fv/Fm = (Fm�F0)/Fm. All measurements

were repeated on the six replicates of each genotype.

When an actinic light is applied on the leaf, maximum fluo-

rescence in the light (Fm
0) can be measured with a saturating

flash, and steady-state fluorescence (Fs) can also be recorded

just prior to the flash. The operating quantum yield of photo-

system II (ΦPSII), calculated as (Fm
0�Fs)/Fm

0 (Genty et al.,

1989) was measured immediately after the A1000 had reached

steady state using the chlorophyll fluorescence module (CFM)

in CIRAS-2 on the ninth day after the growth temperature was

decreased. It was always measured between 8:30 and 15:00.

The instantaneous quantum cost of assimilation can be

approximated by the ratio of ΦPSII to quantum yield of CO2

assimilation (ΦCO2) (Oberhuber & Edwards, 1993). The ΦCO2

parameter is the efficiency of CO2 assimilation, which is calcu-

lated as A /(PAR*a). Leaf absorptance (a) was assumed to be

0.85 for all the genotypes in this study for the four temperature

treatments, since generally 85% of incident light can be

absorbed by leaves (Singsaas et al., 2001) and also

because apparently no dramatic changes in leaf absorptance

(approximately 0.85) take place between 450 and 700 nm for M.

9 giganteus grown at 10, 14 and 25 °C (Farage et al., 2006).

Photosynthetic response curves and calculation

Data from the light response experiment were fitted to a non-

rectangular hyperbola model (Marshall & Biscoe, 1980) by

means of the nonlinear least squares curve-fitting procedure of

R for Windows (Team RC, 2015).

The AQY values were obtained from linear regression of the

relationship between net CO2 assimilation and PAR across five

points at incident light intensities from 20 to 150 lmol m�2 s�1

(Long et al., 1996). A1500 was the rate of photosynthesis at a

PAR of 1500 lmol m�2 s�1 (A1500).

Statistical analysis

Data for each temperature treatment were analysed separately

using Analysis of Variance. If a significant effect was observed,

multiple comparisons were performed using Tukey’s HSD test.

The difference in ФPSII/ФCO2 ratio between temperature treat-

ments for each genotype was analysed using the same methods

as mentioned above. All the analyses and tests were done in R

version 3.1.2 (Team RC, 2015). The R package ‘lsmeans’ (Lenth

& Herv�e, 2005) was used for multiple comparisons.

Results

Photosynthetic performance and operating quantum yield
of PSII

The A1000 of Sac-12 grown at 24/20 °C was 25.7 lmol

m�2 s�1, which was significantly higher than other geno-

types except Sac-16, Sac-11 and Gig-13 (Fig. 1a). The low-

est values of 18.0 and 9.8 lmol m�2 s�1 were measured

in Sin-15 and Tin-1, respectively, and this was signifi-

cantly lower than for Sac-11, Sac-12, Gig-13, Sac-16 and

Fest-19. Concerning ΦPSII, Fest-19 and Sac-12 had signif-

icantly higher values (0.379 and 0.366, respectively) than

Sac-10, Sin-15, Gig-14 and Tin-1 (Fig. 1b).

For all genotypes, A1000 was reduced when the tem-

perature was decreased, albeit to different extents

(Fig. 1a). At the 14/10 °C temperature, Fest-19 showed

the highest A1000 at 15.2 lmol m�2 s�1. This C3 species

as well as Sac-12 and Sac-11 had significantly higher

A1000 values than M. tinctorius, the two M. sinensis geno-

types, Sac-17 (the Russian genotype) and Sac-16

(Fig. 1a). Fest-19 also had the highest ΦPSII at 14/10 °C.
Sin-3 and Gig-14 had significantly lower ΦPSII values

than Sac-11, Sac-12, Gig-13 and Fest-19.

When the temperature was reduced to 10/8 °C,
Fest-19 showed significantly higher A1000 (14.3 lmol

m�2 s�1) values than all the miscanthus genotypes of

which Sac-11, Sac-12 and Gig-13 had significantly

higher values (9.8, 8.0 and 8.9 lmol m�2 s�1, respec-

tively) than all the other miscanthus genotypes

(Fig. 1a). A similar trend was observed at the 6/4 °C
conditions, where A1000 in Fest-19 was 7.5 lmol m�2

s�1 but 3.8 and 3.2 lmol m�2 s�1 in Sac-11 and Gig-

13, respectively, which is significantly higher than for

the other miscanthus genotypes except for Sac-12 and

Sin-15. The highest ΦPSII value was observed in Fest-

19 at both 10/8 °C and 6/4 °C (Fig. 1b). Within the

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12342
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miscanthus genotypes, Sac-11, Sac-12 and Gig-13

showed significantly higher ΦPSII values (0.191, 0.157

and 0.195, respectively) than other genotypes at 10/

8 °C. There was no significant difference in ΦPSII
values between the miscanthus genotypes at 6/4 °C
(Fig. 1b).

The ΦPSII/ΦCO2 ratio

The ratio ΦPSII/ΦCO2 increased after temperature

reduction for the miscanthus genotypes. However, there

was no significant change in Fest-19 when the tempera-

ture was decreased to 14/10 °C, 10/8 °C and even

Fig. 1 (a) Net photosynthetic rate at 1000 lmol m�2 s�1 (A1000), (b) Quantum yield of photosystem II (ΦPSII) at 1000 lmol m�2 s�1,

(c) The ratio of operating efficiency of PSII to apparent quantum yield of CO2 assimilation (ΦPSII/CO2) under warm day/night

(24/20 °C) and three cold (14/10 °C, 10/8 °C and 6/4 °C) growing conditions. Error bars represent SE (n = 6). Values without letters

in common are significantly different at the P = 0.05 level within each temperature treatment.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12342
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6/4 °C. The ΦPSII/ΦCO2 ratio for Tin-1 and Fest-19

was significantly higher than for the other miscanthus

genotypes at 24/20 °C (Fig. 1c). At 14/10 °C, Sac-12,

Sac-11 and Gig-13 had the lowest values compared to

the other genotypes, but they were not significantly dif-

ferent from other genotypes except Tin-1. When the

temperature decreased from 14/10 °C to 10/8 °C a sig-

nificant increase was found in Sac-11, Sac-12, Gig-13,

Gig-14 and Sac-17. At 10/8 °C, Sin-3, Gig-13, Sac-11and

Sac-12 had significantly lower values than all other

genotypes except Sin-15 and Sac-17 (Fig. 1c). The

ΦPSII/ΦCO2 ratio in Sin-3, Sac-11 and Sin-15 increased

significantly from 10/8 °C to 6/4 °C, whereas for Sac-18

it decreased (not significantly). At 6/4 °C, the ratio was

significantly higher in Sin-3, Tin-1 and Sac-16 than in

Sac-12, Gig-13, Sac-18 and Fest-19.

Chlorophyll fluorescence

The C3 crop Fest-19 had an Fv/Fm value of 0.82 when it

was grown at 24/20 °C, while in the miscanthus geno-

types values were between 0.73 and 0.80 (Fig. 2). Three

genotypes, Sac-10, Sac-11 and Sac-16, had significantly

higher Fv/Fm values of 0.80, 0.79, and 0.80, respectively,

than the 0.74 and 0.73, respectively, of Gig-14 and Tin-1

at 24/20 °C.
A reduction in Fv/Fm was observed in all miscanthus

genotypes during the temperature decrease, but was

less clear for Fest-19 (Fig. 2). Tin-1 and Gig-14 had

significantly lower values than other genotypes at 14/

10 °C. When the temperature was further decreased to

10/8 °C, there was a slight decrease in Fest-19, but it

was much greater in miscanthus. The Fv/Fm values of

0.68, 0.65 and 0.67, respectively, for Gig-13, Sac-11 and

Sac-12 were significantly higher than the 0.43, 0.44, 0.51,

0.48 and 0.51 for Sin-3, Tin-1, Sac-16, Gig-14 and Sac-18.

At 6/4 °C, the Fv/Fm value in Fest-19 Fv/Fm was 0.71.

This was significantly higher than all the miscanthus

genotypes. At this temperature there was no significant

difference between Gig-13, Sac-11, Sac-12 and Sin-15,

but they had significantly higher values than Sin-3, Sac-

10, Sac-16 and Gig-14 (Fig. 2). For both Fest-19 and the

miscanthus genotypes, the largest reduction was

observed when the temperature dropped from 10/8 °C
to 6/4 °C.

Light response curves at different temperature levels

The responses of CO2 assimilation to light showed sig-

nificant effects of temperature on genotypes at each

measured light level (Fig. 3). Sac-12 and Fest-19 showed

significantly higher AQY (0.043 and 0.041) than other

measured genotypes at 24/20 °C (Fig. 4). A significant

reduction of AQY was observed in the measured geno-

types when the temperature was decreased from 24/

20 °C to 14/10 °C. However, there was no significant

reduction of AQY for Sac-11, Sac-12, Gig-13 and Fest-19

when the temperature was further decreased from 14/

10 °C to 10/8 °C, while Tin-1 and Sin-15 had a decrease

of 38% and 52%, respectively. No significant difference

in AQY was observed between Sac-11, Sac-12, Gig-13

and Fest-19 grown at 14/10 °C and 10/8 °C. At 6/4 °C,
Fest-19 maintained the same AQY level as when it was

grown under 14/10 °C, while the miscanthus genotypes

Fig. 2 Maximum quantum yield of PSII (Fv/Fm) measured under warm day/night (24/20 °C) and three cold (14/10 °C, 10/8 °C

and 6/4 °C) growing conditions. Error bars represent SE (n = 6). Values without letters in common are significantly different at the

P = 0.05 level within each temperature treatment.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12342
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experienced a significant reduction when the tempera-

ture fell from 10/8 °C to 6/4 °C.
Sac-12 had the highest A1500 value of 30.6 lmol m�2

s�1 at 24/20 °C (Fig. 4b). This was significantly higher

than for Fest-19 (25.1 lmol m�2 s�1) and the other geno-

types, except Gig-13 (27.9 lmol m�2 s�1). However, Fest-

19 maintained the highest A1500 compared to the mis-

canthus genotypes at the three cold temperatures. Of the

miscanthus genotypes at 14/10 °C, Sac-11 had a signifi-

cantly higher A1500 (14.8 lmol m�2 s�1) than Sin-15 and

Tin-1 (11.1 and 6.1 lmol m�2 s�1, respectively). When

the temperature was reduced to 10/8 °C, Sac-11 as well

as Sac-12 and Gig-13 had significantly higher A1500

values than Sin-15 and Tin-1. Furthermore, Sac-11 was

significantly higher than Sin-15 and Tin-1 at 6/4 °C.

Short-term temperature response curves at 6/4 °C
growing temperature

Gig-13 and Sac-11 showed a significant increase in A1000

when the temperature was increased from 5 °C to

25 °C, while Sac-12 only increased when the tempera-

ture rose from 5 °C to 10 °C and remained steady dur-

ing further temperature increases (Fig. 5). However, the

A1000 of Fest-19, which showed the highest level at 5 °C,
decreased significantly when the temperature was

increased to 15 °C, as the leaf-to-air vapor pressure defi-

cit increased during the temperature increase (from 0.4

to 2.5 kPa), inducing stomatal closure (Fig. S1, A).

Discussion

Photosynthetic performance at 14 °C

The constraint to C4 photosynthesis in miscanthus in

cold conditions might differ depending on the tempera-

ture. We observed a decrease in A1000 and ΦPSII in all

the miscanthus genotypes and in festulolium for each

temperature reduction. However, M. 9 giganteus has

reportedly markedly higher photosynthetic rates at

14 °C compared to other C4 species like maize (Naidu

& Long, 2004; Wang et al., 2008b) and Cyperus longus L.

(Farage et al., 2006). In the present study, Sac-11, Sac-12

and Gig-13 maintained similar photosynthetic rates to

the C3 grass Fest-19 at 14 °C (Fig. 1a). This indicates

that some genotypes of miscanthus might be useful for

cultivation in maritime temperate conditions. Our previ-

ous study suggests that a reduced photosynthetic activ-

ity in miscanthus due to a temperature decrease to

14 °C could be reversed in these cold-tolerant genotypes

once the temperature is increased again (Jiao et al.,

2016). Another study shows that the effect of a low

growth temperature (14 °C) on photosynthesis in the C4

grass M. glomerata could be reversed by a 24-h exposure

to higher temperatures (Kubien & Sage, 2004a). This

suggests that such a reversible photoinhibition at 14 °C
is lacking in maize (Naidu et al., 2003), but is a strategy

for some C4 species to tolerate cool climates (Kubien &

Sage, 2004a).

Fig. 3 Light response curves (net photosynthesis, An, vs. photosynthetic active radiation, PAR) of selected miscanthus genotypes

and festulolium under warm day/night (24/20 °C) and three cold (14/10 °C, 10/8 °C and 6/4 °C) growing conditions. Each point is

the fitted mean value from a nonrectangular hyperbolic model of six measurements. Tin-1 was not included in 6/4 °C.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12342
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Generally, C4 plants show their photosynthetic advan-

tage over C3 plants at temperatures above 20 °C
(Yamori et al., 2014). However, here we find that some

miscanthus genotypes can compete with C3 festulolium

at a temperature of 14 °C.
For C4 plants there is linear relationship between

ΦPSII and ΦCO2 under nonstressed conditions over a

range of light intensities (Genty et al., 1989; Krall &

Edwards, 1990). No significant increase in ΦPSII/ΦCO2

was found for any of the genotypes in this study when

the temperature was lowered from 24/20 °C to14/10 °C
(Fig. 1c). This is consistent with previous findings that

no significant changes happen to the ΦPSII/ΦCO2 ratio

in M. 9 giganteus or Z. mays leaves when the tempera-

ture falls from 25/20 °C to 14/11 °C (Naidu &

Long, 2004). This indicates that the electron transport

through PSII is just sufficient for the CO2 assimilation

requirement, and that no alternative electron sinks exist

at 14 °C for any of the miscanthus genotypes tested in

this study.

Another interesting parameter is the ratio of Fv/Fm,

which gives a relative measure of the maximum quan-

tum efficiency of PSII photochemistry (Genty et al.,

1989). Decreases in Fv/Fm can be due to the develop-

ment of nonphotochemical quenching processes or

photo damage to PSII reaction centers (Baker & Rosen-

qvist, 2004). We observed no decrease in Fv/Fm for

Fest-19 at 14 °C, but a slight decrease (within 10%) com-

pared with the values measured at 24 °C was detected

in Sac-11, Sac-12 and Gig-13 (Fig. 2). This suggests that

a temperature of 14 °C had no damaging effect on the

photosynthetic apparatus in the C3 grass, but that a

minor low-temperature-induced photo inhibition

occurred in the three genotypes of miscanthus, even

though the A1000 values for the other tested genotypes,

except Sac-10, were significantly lower than the three

apparently cold-tolerant genotypes (Fig. 1a). Interest-

ingly, these other genotypes also had a significantly

lower ΦPSII (Fig. 1b), which means that markedly

less light absorbed by PSII antennae is used for photo-

chemistry. Reduced A1000 could be the direct result of

reduced PSII efficiency due to PSII photo inhibition.

The largest decrease in A1000 when the temperature

was lowered from 24/20 °C to 14/10 °C occurred in

Sac-16. The plants of this genotype turned reddish violet

when they were transferred from 15 °C in the green-

house to the 24/20 °C climate chamber conditions. This

could be due to anthocyanin synthesis during tempera-

ture changes (Pietrini & Massacci, 1998). Like Sin-3 and

Sin-15, the Sac-17 genotype suffered a large reduction in

A1000 after the temperature decrease to 14/10 °C and

Fig. 4 (a) Apparent quantum yield of CO2 uptake (AQY), and

(b) Net photosynthetic rate at a PAR of 1500 lmol m�2 s�1

(A1500). The parameters are measured on five miscanthus

genotypes and festulolium under warm day/night (24/20 °C)

and three cold growing conditions (14/10 °C, 10/8 °C and 6/

4 °C). Error bars represent SE (n = 6). Values without letters in

common are significantly different at the P = 0.05 level within

each temperature treatment.

Fig. 5 Net photosynthetic CO2 uptake at a PAR of

1000 lmol m�2 s�1 vs. temperature for Sac-11, Sac-12, Gig-13

and Fest-19 grown at 6/4 °C (day/night) for 7 days, and the

change of leaf-to-air vapor pressure deficit with temperature.

Error bars represent SE (n = 3 or 4).

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12342
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turned yellow after the repositioning from the green-

house to the climate chamber, i.e. there was a visible

chlorophyll reduction. These two genotypes thus

seemed to be stressed both by the warm temperatures

and by subsequent cold conditions.

Photosynthetic performance at 10 and 6 °C

When the temperature was lowered to 10/8 °C, further
decreases in A1000 and Fv/Fm values were found in

miscanthus but not in festulolium (Fig. 2), which indi-

cates that additional increases in nonphotochemical

quenching and/or photo damage of the PS II reaction

center occurred in miscanthus. One of the major

mechanisms for miscanthus to get rid of excess

energy absorbed by the leaves is heat dissipation. For

M. 9 giganteus grown at 10 °C high levels of nonphoto-

chemical quenching of excitation energy has been asso-

ciated with a 20-fold increase in zeaxanthin content in

dark-adapted leaves, as a photo-protective mechanism

(Farage et al., 2006). Sac-11, Sac-12 and Gig-13 showed

the same AQY values at 10/8 °C as at 14/10 °C
(Fig. 4a), which further indicates that no photo damage

happened to these three genotypes when the tempera-

ture was decreased from 14/10 °C to 10/8 °C. The sig-

nificantly higher AQY values and A1500 in the three

genotypes obviously would make them more suitable

for cold climates than Tin-1 and Sin-15 at 10/8 °C
(Fig. 4), due to their significantly higher CO2 uptake

under both light-limited and light-saturated conditions.

No significant decrease was observed in A1000 in Fest-19

during the temperature reduction from 14/10 °C to 10/

8 °C; the relatively high ΦPSII and Fv/Fm in Fest-19

might have played a major role but it was not the only

possible reason for maintaining the high photosynthetic

rate. An alternative explanation might be the Rubisco

content since C3 species generally have three to six

times as much Rubisco as C4 species (Ku et al., 1979).

Interestingly, all the miscanthus genotypes continued

to display photosynthetic activity at 6/4 °C, though

A1000 was quite low for several of them (Fig. 1a). The

values of A1000 in Gig-13 grown for 6 days at, respec-

tively, 10/8 °C and 6/4 °C were 8.9 and 3.2 lmol m�2

s�1, which is similar to previously reported values for

M. 9 giganteus where the photosynthetic rate was mea-

sured during short-term exposure to low temperatures.

Measured values in that study were approximately

9 lmol m�2 s�1 at 10 °C and 4 lmol m�2 s�1 at 5 °C for

plants that had previously been grown at 14/11 °C and

25/14 °C, respectively (Naidu et al., 2003). Thus, long-

term exposure to cold temperatures down to 6 °C in M.

9 giganteus did not have a detrimental effect on the

photosynthetic apparatus. This suggests that the

decrease in photosynthetic capacity in Gig-13 and

Sac-11 at low temperatures (above 5 °C) could be

reversed if the temperature was raised again, and our

result of the temperature response curve also supported

this (Fig. 5). This could be one of the reasons for the

remarkable capacity of M. 9 giganteus to grow in cool

climates and produce a much higher yield compared

with another C4 plant, Spartina cynosuroides, in the

United Kingdom (Beale & Long, 1995). An earlier mis-

canthus growth model, MISCANMOD, uses a base tem-

perature of 10 °C, which was considered as the starting

temperature for leaf growth (Hastings et al., 2009). Our

results suggest that the base temperature for miscanthus

could be lower than 6 °C.
The reduction in AQY in Sac-11, Sac-12 and Gig-13

from 10/8 °C to 6/4 °C might be because of a further

accumulation of zeaxanthin even at the low light inten-

sities, which reduce the light-harvesting efficiency

under light-limiting conditions (Long et al., 1994; Fryer

et al., 1995). However, this phenomenon was not

observed in Fest-19, which showed no significant

changes in AQY from 14/10 °C to 6/4 °C (Fig. 4a). This

significantly higher tolerance to the cold in Fest-19 was

also observed at 2 °C. A1000 for Fest-19 grown at 6/4 °C
and measured at 2 °C was 5.72 lmol m�2 s�1 (data not

shown), which was similar to data measured for Lolium

perenne L. grown and measured at 2 °C (Hoglind et al.,

2011).

The significantly higher AQY and A1500 in Fest-19

than in the miscanthus genotypes even at 6/4 °C
(Fig. 4a) and high A1000 at 2 °C can support the early

emergence and longer growing season of Fest-19. The

daily mean temperature in Denmark in 2013 and 2014

was around 8.7 °C, ranging from -8.6 to 23 °C, and

there were about 200 days each year with a mean tem-

perature below 10 °C (data collected from climate sta-

tion in Foulumgaard, Denmark, 56°300N, 9°350E). Thus,
the significantly higher photosynthesis in Fest-19 in the

2–10 °C temperature range can be the reason for its high

biomass production when grown in temperate

conditions. Yields in Denmark of more than 20 T DM

ha�1 for this cultivar have been recorded (Manevski

et al., 2015).

However, we observed a tendency of an increasing

ΦPSII/ΦCO2 ratio when lowering the temperature from

14/10 °C to 6/4 °C for all the miscanthus genotypes,

but not for Fest-19. This indicates that the quantum effi-

ciency of the electron flux through PSII relative to the

quantum efficiency of CO2 assimilation in miscanthus

increased as the temperature decreased, due to addi-

tional electron sinks. It has been suggested that elevated

ΦPSII/ΦCO2 ratio in mature maize leaves under cold

conditions is due to O2 being used as an alternative

electron accepter (Fryer et al., 1998), which is also

a mechanism for preventing photo damage to the

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12342
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photosynthetic apparatus (Farage et al., 2006). A previ-

ous study also found an increased ФPSII/ФCO2 ratio

for M. 9 giganteus grown at 10 °C compared with 24 °C
and 14 °C (Farage et al., 2006). Photoinhibitory damage

has been found to be a major challenge for C4 plants

grown at cold temperatures, for example, maize grown

at 17 °C or below (Long et al., 1983). It seems that M. 9

giganteus has the ability to minimize this damage by a

massive increase in zeaxanthin content to facilitate heat

dissipation in conjunction with induction of electron

transport to an acceptor other than CO2 (Farage et al.,

2006).

However, CO2 leakiness from the bundle sheath cells

back to mesophyll is an alternative energy expenditure

in the C4 photosynthetic pathway under high light con-

ditions. Especially at low temperatures, where the

Rubisco capacity is an important limitation for sustain-

ing C4 photosynthesis (Sage, 2002; Kubien et al., 2003),

the ΦPSII/ΦCO2 ratio will increase (Von Caemmerer,

2000). Increased values of ΦPSII /ΦCO2 at cool tempera-

tures have also been observed in Muhlenbergia glomerata

measured at 10 and 5 °C by Kubien & Sage (2004b),

who concluded that leaking of CO2 through the bundle

sheaths was increased due to limited Rubisco capacity

(Rubisco content) at low temperatures. The significantly

higher ΦPSII /ΦCO2 ratio at 6/4 °C in our study might

indicate that Rubisco posed a major limitation to photo-

synthesis in all the miscanthus genotypes but not in

Fest-19. However, the underlying reasons for the

increase of ΦPSII /ΦCO2 were not determined in this

study.

Gig-13 and Sac-11 grown at 6/4 °C in the present

study showed much higher rates of photosynthesis at

all measured temperatures from 5 to 25 °C than maize

grown at 14/11 °C of 2–5 lmol m�2 s�1 (Naidu et al.,

2003) (Fig. 5). Even though the photosynthetic rate mea-

sured at temperatures from 10 to 25 °C in Gig-13 and

Sac-11 grown at 6/4 °C was much lower than that for

M. 9 giganteus grown at 14/11 °C (8–25 lmol m�2 s�1,

(Naidu et al., 2003)), this could to some extent be caused

by the increased VPD (Fig. 5), which significantly

decreased stomatal conductance (Fig. S1, A) in combina-

tion with limited Rubisco content as mentioned above.

The increase in VPD resulting in higher stomatal closure

was probably the major reason for the low A in Fest-19

during the short-term temperature increase.

Typically, the ratio between intercellular CO2 concen-

trations and ambient CO2 concentrations (ci/ca) is about

0.7 in C3 plants (Drake et al., 1997) and 0.3–0.4 in C4

plants (Jones, 1983). The ci/ca in Fest-19 decreased to

0.50 � 0.01 at 25 °C, which is significantly lower than

the typical value. With similar levels of ci/ca in Fest-19

and miscanthus genotypes at 15 °C, the C4 pathway

was more efficient in carbon fixation. The miscanthus

genotypes Gig-13 and Sac-11 had ci/ca values that were

in the 0.3–0.4 range even at 25 °C (Fig. S1, B), while the

ci/ca of Sac-12 decreased to almost 0.23 � 0.08 at 25 °C,
indicating that stomatal closure was limiting A in this

genotype (Fig. S1, A).

Conclusions

We found that miscanthus maintains photosynthetic

activity after growing for a longer period at 6/4 °C, and
that several genotypes increased their photosynthesis

immediately when the temperature was increased. As

expected, the photosynthetic apparatus of C3 Fest-19

was clearly more tolerant at 10/8 °C and 6/4 °C than

the C4 genotypes tested. However, also at 24/20 °C
Fest-19 was as efficient as most of the miscanthus geno-

types and only Sac-12 had a significantly higher A1000

(Fig. 1a). Fest-19 may thus overall be more productive

than current miscanthus genotypes in maritime, cool,

temperate climates even though not only leaf photosyn-

thesis but a number of other physiological factors such

as respiration and partitioning to roots are decisive for

productivity as well. We are currently growing Fest-19

and Gig-13 in side-by-side replicated field trials at two

Danish locations to obtain data on seasonal PAR inter-

ception in green leaves as well as yield data over sev-

eral years. Also, we will use the leaf photosynthesis

data as well as data on portioning between plant organs

to model seasonal productivity against the harvested

yield data.

Of the miscanthus genotypes, only Sac-11 seemed to

have photosynthetic capacity at a similar high level as

Gig-13 (Hornum) in cold conditions and to recover

quickly at enhanced temperatures. Thus, Sac-11 will be

a good parent for breeding new varieties with an even

better cold tolerance than Gig-13 (Hornum) and for

broadening the genetic diversity of miscanthus if more

widespread production in cool climates is to take place.

Tin-1 did not have a high tolerance to cold conditions,

as also previously found by Jiao et al. (2016).
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