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Introduction

» Magnetic reconnection is the breaking and rejoining of
magnetic field lines in a highly conducting plasma
» The classical Sweet-Parker model predicts that the
reconnection rate scales as S~1/2 (where S ~ %)
» Too slow to explain solar flares and fast reconnection elsewhere
> In recent years, it has been discovered that high aspect ratio

current sheets are susceptible to the formation of plasmoids
(Loureiro et al. 2007; Huang et al. 2011)

> Breaks up the current sheet into a chain of X-lines and islands
» The reconnection rate asymptotes at ~0.01 for large S
» The role of this instability may be to bring structure down to

small enough scales that collisionless effects become
important (Shepherd & Cassak 2010)



» Most simulations of the plasmoid instability assume
reconnection with symmetric upstream fields

» Simplifies computing and analysis
» Plasmoids and outflows interact in one dimension
» Asymmetry affects the scaling and dynamics of the plasmoid
instability
» In 3D, flux ropes twist and writhe and sometimes bounce off
each other instead of merging

» Asymmetric inflow reconnection simulations offer clues to 3D
dynamics



Asymmetric Magnetic Reconnection

» Asymmetric inflow reconnection occurs when the upstream
magnetic fields and/or plasma parameters differ

Dayside magnetopause

Tearing in tokamaks, RFPs, and other confined plasmas

Merging of unequal flux ropes

‘Pull’ reconnection in MRX
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» Asymmetric outflow reconnection occurs, for example, when
outflow in one direction is impeded

Flare/CME current sheets

> Planetary magnetotails

» Spheromak merging

» ‘Push’ reconnection in MRX
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» Asymmetric inflow reconnection often occurs at the
boundaries between different plasmas

» Asymmetric outflow reconnection often occurs during
explosive events



NIMROD solves the equations of extended MHD using a

finite element formulation (Sovinec et al. 2004, 2010)

» In dimensionless form, the resistive MHD equations used for
these simulations are
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» Divergence cleaning is used to prevent the accumulation of
divergence error



NIMROD simulations of asymmetric plasmoid instability

» Reconnecting magnetic fields are asymmetric:

B, (x) = 1i°b tanh ((;; - b> (7)

A small number of localized initial magnetic perturbations
placed asymmetrically along z = 0 near center of domain
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Symmetric case:

» {By, By} = {1.00,1.00}; Sap ~ 1 x 10% Va, = 1.0
Asymmetric case:

> {Bi1, B} ={1.00,0.25}; Sap ~ 5x10% Vap =05

Uniform initial density

v

Bo = 1 in higher magnetic field upstream region
Domain: —150 < x <150, -16 <z <16

Boundary conditions: periodic along outflow direction and
conducting wall along inflow direction
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Numerical considerations

» Mesh packing needed over longer portion of inflow direction

» X-lines drift toward strong magnetic field upstream region
» Somewhat less resolution required along outflow direction than
in symmetric case

» Higher resolution required in weak B upstream region than in
strong B upstream region
» Preliminary simulations showed sloshing/oscillatory behavior

» Symmetric perturbations led to asymmetric magnetic pressure
imbalance

» Resolved by using weak, localized perturbations and increasing
the size of the domain along the inflow direction



Plasmoid instability: symmetric inflow

Magnetic Flux

Current density, J, (range: —3.36 10 7.31)
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Plasmoid instability: asymmetric inflow

Magnetic Flux

Current density, J, (range: —1.61 to 1.85)

Outflow velocity, V, (range: +0.32)
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Key features of symmetric inflow simulation

» X-points and O-points all located along z =0
» Makes it easy to find nulls

» X-lines often located near one exit of each current sheet
» Characteristic single-wedge shape
» There is net plasma flow across X-lines
» Flow stagnation points not co-located with X-line
» The velocity of each X-line differs from the plasma flow
velocity at each X-line (see Murphy 2010)
» Outflow jets impact islands directly
> No net vorticity in islands and downstream regions
» Less noticeable turbulence in downstream regions
» Outflow velocity ~5/6 of Alfvén speed



Key features of asymmetric inflow simulation

Maximum outflow velocity is ~2/3 of V4,
Current sheets thicker than symmetric case
X-lines vary in position along inflow direction

Islands develop preferentially into weak B upstream region
Outflow jets impact islands obliquely

> Islands advected outward less efficiently
> Net vorticity develops in each magnetic islands
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» Downstream region is turbulent

» Plasmoids impacting and merging with downstream island
» Several X-points and O-points

» Very little happening in strong B upstream region
> Less resolution needed than in weak B upstream region

» Secondary reconnection events (when islands merge) have
asymmetric inflow and outflow



The asymmetric case shows little enhancement in the

reconnection rate from the predicted value

Normalized Peak Resistive Electric Field
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» Use formulae from Cassak & Shay (2007); Birn et al. (2011):

Vv L
Epredict = d LAh B Br tan = Var L =100

» Note: Sap is lower by a factor of two for the asymmetric case



What insights do these simulations provide for the 3D

plasmoid instability?

» Daughton et al. (2011): plasmoids in 3D will be complicated
flux rope structures

» Outflow jets will generally impact flux ropes obliquely

» Momentum transport from outflow jets to flux ropes may be

less efficient

» Merging between colliding flux ropes may be incomplete
» |Important questions:

» How does the plasmoid instability behave in 3D?

» What is the reconnection rate? Is it 0.01 or 0.17

» How do reconnection sites interact in 3D?
» What mistakes are we making by using 2D simulations to
interpret fundamentally 3D behavior?



On the motion of 3D nulls (with C. Parnell & A. Haynes)

» Murphy (2010) derived an exact expression for the rate of
X-line retreat when it is restricted to 1D
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» The 3D equivalent for the motion of isolated magnetic nulls is

ddxt" = (VB) 'V xE=V(x,)— [n(VB)'V?B| (9
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» This provides insight into how nulls form, move, and
disappear
» Plasma flow across nulls allowed by resistive diffusion
» When the Jacobian matrix VB is singular, nulls are either
appearing or disappearing
> Newly formed null-null pairs initially move apart very quickly

» Allows convenient tracking of nulls in 2D and 3D simulations



Conclusions

» We compare two simulations of the plasmoid instability with
symmetric and asymmetric upstream magnetic fields
» Features of the asymmetric simulation include:
» X-line positions not all at same location along inflow direction

> Islands develop into the weak B upstream region
» Outflow jets impact islands obliquely

> Less efficient outward advection of islands
» Circulation within each island
» Turbulence in the downstream region
Broader current sheets than the symmetric case
> The reconnection rate is not greatly enhanced above the
predicted value for asymmetric reconnection without plasmoids

» We have derived an exact expression describing the motion of
magnetic nulls in 3D



» Scaling study of asymmetric inflow plasmoid instability
» How does asymmetry affect the onset criterion?
» Is it a function of Sa, = L‘ZIJ?

> Is the reconnection rate significantly enhanced above the
Cassak-Shay prediction as in the symmetric case?
» 3D simulations of >2 competing reconnection sites

» Asymptotic matching analysis to determine the onset criterion
and properties of the linear asymmetric plasmoid instability

» Anybody interested?

» Investigate the role of additional terms in the generalized
Ohm'’s law on the 3D motion of nulls



