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Abstract
One of the most debated subjects in Astronomy since the discovery of exoplanets is how can we distinguish the most massive
of such objects from very-low mass stars like Brown Dwarfs (BDs)? We have been looking for evidences of a di�erence in
physical characteristics that could be related to di�erent formation processes. Using a new diagnostic diagram that compares
the baryonic gravitational potential (BGP) with the distances from their host stars, we have classi�ed a sample of 355 well-
studied exoplanets according to their possible structures. We have then compared the exoplanets to a sample of 87 con�rmed
BDs, identifying a range in BGP that could be common to both objects. By analyzing the mass-radius relations (MRR) of the
exoplanets and BDs in those di�erent BGP ranges, we were able to distinguish di�erent characteristic behaviors. By comparing
with models in the literature, our results suggest that BDs and massive exoplanets might have similar structures dominated by
liquid metallic hydrogen (LMH).

1 Introduction
The most accepted interpretation of Brown Dwarfs (BDs)

is that they are failed stars (Cushing, 2014), because, although
it is assumed they formed like stars, their masses are too
small to permit the fusion of hydrogen in their nucleus. This
characteristic allows to separate BDs from main sequence
stars based on their masses: because a star must reach a crit-
ical mass to be able to burn its hydrogen, which varies from
0.07 M� for solar metallicity to 0.09 M� for lower metal-
licities (Burrows et al., 2001), any star with a mass < 70MJ

(where MJ is the mass of Jupiter) is a BD (Bate, 2006).
However, determining a lower mass limit for a BD is more

di�cult. In practice, the consensus to adopt the critical mass
for the fusion of deuterium, which is around 13 MJ (Bate,
2006), is arbitrary, because theoretically the lowest mass a
BD could have may be just a few MJ (Larson, 1969; Rees,
1976; Silk, 1977a,b; Boss, 1988). Interestingly, this mass is also
typical of massive exoplanets, and, since there is no obvious
upper-mass limit for an exoplanet, hence, persists the prob-
lem of distinguishing between to two objects.

In this poster, using a large sample of “well-studied” exo-
planets, and comparing with a large sample of “con�rmed”
BDs available in the literature, we probe a mass range com-
mon to both classes of objects, looking for evidence of a dif-
ference between their respective physical structures, as re-
�ected by their mass-radius relations (hereafter MRRs).

Our study concentrates on two questions: 1) At what mass
boundary should we expect to see a variation in the MRR
that would be consistent with a di�erence of structure be-
tween exoplanets and BDs? 2) Is there a special intermedi-
ate mass range where these two classes of objects are likely
to overlap in mass? In particular, we propose a lower-mass
limit for BDs based on the Self-Gravitating (SG) limit, which
marks the moment the self-gravity of matter begins to a�ect
signi�cantly the structure of a body (Padmanabhan, 1993).

In addition to the MRR, the distance of a planet from its
host star could also reveal something about its formation pro-

cess (Lissauer, 1993). For the exoplanets, this last parame-
ter is fundamental to identify Hot Jupiters (Johnson, 2009),
while for the BDs, this parameter can be used to test the
“BD’s desert” hypothesis, which according to some authors
(e.g., Grether & Lineweaver, 2006) might be related to di�er-
ent formation processes for exoplanets and BDs.

2 Samples
Our sample of exoplanets consists of 355 entries in the lat-

est issue of the transiting planets catalog available at TEP-
Cat1, and can be considered as an upgraded version of the
sample of well-studied exoplanets used previously in the
study of Hatzes & Rauer (2015). Note that because these
exoplanets are detected by the transit method, their uncer-
tainties on the inclination of their orbits, i, are relatively
low (Winn, 2010; Koch et al., 2010; Batalha, 2014), which re-
duces signi�cantly the uncertainties on their masses, M =
Mplanet sin i. In our sample, the median uncertainties are 6%
for the masses and 5% for the radius.

Our sample of BDs is composed of 87 objects selected
from the upgraded compilation produced by Johnston (2015),
which is based on published data. For all the BDs in our sam-
ple, we double-check their classi�cation as BDs using SIM-
BAD. Although all these BDs have a mass and radius deter-
mined, only 37 have a distance estimate from a companion
star. Of the remaining 50 BDs that do not have a distance re-
ported in our list, 14 are part of a binary system with another
BD in our list (for which we have the distance), whereas 36
are genuine isolated objects, which already makes them dif-
ferent from exoplanets.

1http://www.astro.keele.ac.uk/jkt/tepcat.html
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Figure 1: The BGP diagram for exoplanets and BDs: nSGEs (black squares), SGEs (orange diamonds), and BDs (red solid dots);
the SGEs falling in BD region are identi�ed by purple triangles. The inverted green triangles correspond to the positions
occupied by the di�erent kinds of planets in the solar system. The position of the ice line (or water "snowline") in the solar
system (vertical dot-dash line) is also indicated.

3 The baryonic gravitational potential
(BGP) diagram and the Self-Gravitating
(SG) limit

To compare the exoplanets with the BDs, we combine the
mass and radius into one physical parameter: the baryonic
gravitational potential (BGP), which is de�ned as the grav-
itational potential energy of a body, divided by the number
of its nucleons, N . Assuming the mass is M = Nmp, where
mp is the mass of a proton, the BGP is thus equal to:

BGP =
VG
N

=
GMmp

R
∝ M

R
(1)

Note that since the BGP∝M/R, this parameter can be taken
as a �rst order approximation for the MRR.

In Figure 1 (hereafter, the BGP diagram) we compare for
the exoplanets (black squares and orange diamonds) and BDs
(red solid dots) the BGP and distances from their companion
stars, as normalized by the distance of Jupiter from the sun
(D/DJup). The BGP diagram is separated in four zones, syn-
onymous with di�erent physical structures. The upper zone
is de�ned by the lower mass limit of 13MJ for the burning

of deuterium in BDs.
Most of the exoplanets in our sample are Hot Jupiters,

which is consistent with the well-known observational bi-
ases related to the detection methods. A few exoplanets are
located above the deuterium-burning limit, while a few BDs
are below this limit, suggesting that the deuterium-burning
criterion does not allow a clear distinction between these two
objects. Also, as observed by Santerne et al. (2016), many BDs
in our sample are found at a distance nearer than Jupiter from
the Sun, contradicting the BD’s desert hypothesis.

Therefore, although the majority of the exoplanets and
BDs occupy di�erent regions in the BGP diagram, their sep-
aration in terms of physical structures is still somewhat am-
biguous.

Based on the SG limit, we separated the gas-giant exoplan-
ets in Self-Gravitating (SGE; orange diamonds) and non Self-
Gravitating (nSGE; black squares). The BGP for the SG limit
is de�ned by a critical mass,Mc, and critical radius,Rc (Pad-
manabhan, 1993). At the SG limit, the maximum number of
baryons that an object can contain, Nmax, is equal to:

Nmax = (α/αg)
3/2 ∼ 1.38× 1054 (2)

2 Zenodo, 2016



The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun

●

●

● ●

●

●
●

●

●

●
●

●

● ●

●

●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●●

● ●
●

●
●

● ●●● ●●● ●●
●

● ● ●
●

●●● ●
●

● ●
● ●

●● ●
●●

●
●●
●

●●
●

●●
● ●

●● ● ●
●

●

●

●
●

●

S
e

lf
−

G
ra

v
it
a

ti
n

g
 L

im
it

7
0

 M
J

10
0

10
0.5

10
1

10
1.5

10
0

10
1

10
2

10
3

10
4

M [M⊕]

R
[R

⊕
]

Figure 2: Comparing the MRRs of exoplanets and BDs. The MRRs are traced with their corresponding 95% con�dence intervals.
The symbols are the same as in Fig. 1. Also shown are the critical mass at the SG limit and the upper mass limit 70MJ for BDs.

where α is the �ne-structure constant and αg the equivalent
constant for gravity. This corresponds to the critical mass:

Mc = Nmaxmp ∼ 2.31× 1027kg ∼ 1.2MJ (3)

Then, assuming the radius of such object is R = N
1/3
maxa0,

where a0 is the radius of Bohr, we obtain the critical radius:
Rc = 6× 107m ∼ 0.84RJ (4)

Note that although both Mc = 1.2MJ and Rc = 0.84RJ

are typical values for massive exoplanets, the critical mass is
also comparable with the theoretical lowest mass expected
for a BD, while the critical radius is consistent with their ob-
served mean radius (Burgasser, 2008; Basri & Brown, 2006;
Sorahana, Yamamura & Murakami, 2013).

4 Mass-Radius Relation (MRR)
According to Padmanabhan (1993), the MRRs of bod-

ies with di�erent structures would be expected to change
abruptly at the SG limit, from a positive MRR below the SG
limit, to a negative one above it, which may help distinguish-
ing between exoplanets and BDs. Indeed, this is what we
observe in Figure 2, where we compare the MRRs for the ex-
oplanets and BDs: the nSGEs show a positive MRR while the

Table 1: Linear regression in log, (R/R⊕) = 10b ×
(M/M⊕)

a, and their coe�cients of correlation r2

Sub-samples a b r2

nSGE +0.41± 0.01 0.17± 0.03 0.785
SGE +0.01± 0.03 1.09± 0.10 0.001
BD −0.18± 0.08 1.60± 0.33 0.069

BDs show a negative one (see Table 1). On the other hand,
the SGEs show a relation where the radius does not increase
with the mass. Note that this characteristics was also ob-
served by Hatzes & Rauer (2015), although these authors did
not o�ered any physical explanation for this behavior.

For the SGEs, we interpret the radius that shows NO signif-
icant change as the mass increases as evidence for the pres-
ence of a dominant liquid metallic hydrogen (LMH) envelop
(Wigner & Huntington, 1935; Hubbard et al., 1997; Dalladay-
Simpson et al., 2016): this is due to the very low compress-
ibility of LMH (Hubbard et al., 1997).

That gas-giant planets, like Jupiter and Saturn in the solar
system, have a LMH envelope was suspected by many au-
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Figure 3: Model of BDs formed of LMH. The unsigni�cant change of radius of the SGEs is due to a change of the polytropic
index, n, below M = 5 MJ from 1.5 to 1.0. Just at the point where the main sequence thermonuclear burning starts, around
70MJ , there is a bifurcation: the MRR for the very low-mass stars (VLM, in light blue) becoming positive as they evolve towards
the main sequence (dark blue x), while the MRR for WDs (white dwarfs, brown squares) is still negative. Two MRR for WDs,
with di�erent hydrogen richness (Z/A = 1.0 and Z/A = 1.5), are also represented.

thors since a very long time (see Burrows & Liebert, 1993,
and reference therein). But, one would not expect to observe
evidence for such envelopes. This is because, although the
LMH layer could constitute 50% to 85% of the mass of a gas-
giant planet, this layer would generally be hidden below a
rich envelope of hydrogen gas. What we think could have
happened, therefore, is the following. As the mass of a gas-
giant exoplanet increased above the critical mass, Mc, the
self-gravity of matter became more important, the pressure
increased and most of the hydrogen in the outer gas envelope
changed phase, transforming into LMH. Alternatively, since
most of these exoplanets are Hot Jupiters with high eccen-
tricities, they might have lost their outer envelop of gas when
passing near their stars, revealing their underlying LMH en-
velopes.

However, based on the LMH interpretation there is still an-
other alternative, which is that above the SG limit, objects
are really BDs. In Figure 3 we compare our data with the
predictions made by such a model, as developed by Burrows
& Liebert (1993). In this model BDs are formed at 99.9% of
LMH, this percentage decreasing as the mass of the star de-

creases, down to the SG limit. Below 5MJ , the Coulomb cor-
rection competes with the degeneracy component, and the
polytropic index, n, changes from 1.5 to 1.0, making the ra-
dius independent from the mass. Note that, according to this
model, even above 5MJ , whenn = 1.5 andR ∝M−1/3, the
dependence of the radius on the mass would be weak, con-
sistent with the low coe�cients of correlation we observed.

5 Conclusions
• We conclude that the unsigni�cant change of radius of

exoplanets above the SG limit is the characteristic sig-
nature of objects formed by LMH.

• As for the nature of these objects we propose that they
could be either giant gas planets with a dominant layer
of LMH, more massive than what is assumed to exist in
Jupiter and Saturn, or genuine very low-mass BDs.
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