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Multi-stream transmission for highly frequency

selective channels in MIMO-FBMC/OQAM systems
Màrius Caus*, Student Member, IEEE, and Ana I. Pérez-Neira, Senior Member, IEEE

Abstract—This paper addresses the joint design of MIMO
precoding and decoding matrices for filter bank multicarrier
(FBMC) systems based on OQAM, known as FBMC/OQAM.
Existing solutions that support multi-stream transmission only
give satisfactory performance in scenarios with high coherence
bandwidth channels. By contrast, the schemes that do not make
any assumptions about the flatness of the channel do not allow
the allocation of multiple streams per-subband. To make progress
towards the application of FBMC/OQAM to MIMO channels,
we study the design of novel solutions that could simultaneously
provide robustness against the channel frequency selectivity and
support multi-stream transmission. To this end, two techniques
have been devised under the criterion of minimizing the sum
mean square error. The non-circular nature of the OQAM
symbols has not been ignored, making evident the convenience of
performing a widely linear processing. The first technique keeps
the complexity at a reasonable level, which is practical from the
implementation point of view as it is not iterative, but in exchange
the original problem is relaxed yielding a suboptimal solution.
With the objective of performing closer to the optimum solution,
the second option iteratively computes precoders and equalizers
by resorting to an alternating optimization method, which is
much more complex. We have demonstrated via simulations
that the first technique nearly achieves the same results as the
iterative design. Simulation results show that the proposed low-
complexity solution outperforms existing MIMO-FBMC/OQAM
schemes in terms of bit error rate (BER). As for the comparison
with OFDM, the numerical results highlight that FBMC/OQAM
remains competitive, with and without perfect channel state infor-
mation, while it provides spectral efficiency gains. Under highly
frequency selective channels the proposed technique significantly
outperforms OFDM.

Index Terms—MIMO precoder/decoder design, multi-stream
transmission, OFDM, and FBMC based on OQAM.

I. INTRODUCTION

In this work we study the joint design of transmit and

receive beamformers for frequency selective multiple-input-

multiple-output (MIMO) channels. With respect to the figure

of merit that governs the design, we consider the minimization

of the sum mean square error (MSE) subject to a power con-

straint. Since this topic has been widely studied over the recent

years we review right after the different approaches that have

been proposed to tackle the problem. In this sense, we first

introduce a narrowband point-to-point MIMO communication
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and with the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC),
08860 Castelldefels, Barcelona, Spain (e-mail: ana.isabel.perez@upc.edu).

system, where the transmitter and the receiver are equipped

with NT and NR antennas, respectively. At the nth channel

access the system equation is ď[n] = AHHBd[n] + AHw[n].
The vector of symbols d[n] ∈ C

S×1 is pre-processed with

the precoder B ∈ C
NT×S and it is post-processed with the

equalizer A ∈ C
NR×S . Note that S streams are simultaneously

transmitted. The vector w[n] ∈ C
NR×1 models the additive

noise samples that contaminate each receiver chain and the

matrix H ∈ C
NR×NT gathers the channel coefficients that

characterize the links between any transmitter and receiver

antenna pairs. According to the system model, the optimization

problem that is proposed reduces to

argmin
A,B

E

{∥
∥ď[n]− d[n]

∥
∥
2

2

}

s.t. E

{

‖Bd[n]‖22

}

≤ PT .
(1)

The restriction imposed on the average transmitted power

ensures that the problem is well-posed. In this sense, the

maximum allowable transmit power is given by PT . The

solution of (1) can be computed when the channel state

information (CSI) is known at both ends of the link, see e.g.

[1], [2]. When the channel has memory it is mandatory to

carry out a different processing than [1], [2].

One alternative is to operate on a block-by-block fashion,

[3]. To avoid inter-block interference (IBI) a guard interval

(GI) is inserted before the transmission of the next block. If

the receiver stacks the snapshots obtained when the transmitter

is not idle, then the optimization problem is the one in

(1) with a channel matrix that is block Toeplitz. In order

not to sacrifice rate, the precoder and the equalizer have to

diagonalize the MIMO channel transfer function. To do so, it is

required to perform a broadband singular value decomposition

(BSVD) of the polynomial channel matrix, [4]. Since the

resulting independent subchannels are frequency selective it is

deemed necessary to further process the signals to eliminate

the residual inter-symbol interference (ISI).

Another alternative to deal with the frequency selectivity

of the channel consists in partitioning the band into narrower

subchannels. In this respect, the most prominent multicarrier

modulation is the so-called orthogonal frequency division

multiplexing (OFDM). The beauty of this technique stems

from the fact that the end-to-end system can be modeled as a

set of parallel flat fading channels thanks to the transmission of

a cyclic prefix (CP). This enables us to pre- and post-process

the symbols on a per-subcarrier basis as follows:

ďq[k] = AH
q HqBqdq[k] + AH

q wq[k], q = 0, ...,M − 1, (2)

where M is the number of subbands. Now Hq accounts for

the MIMO channel transfer function evaluated on the radial
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frequency 2π
M q. Unlike the single carrier case the optimization

problem in the multicarrier context boils down to solve

argmin
{Aq,Bq}

M−1∑

q=0

E

{∥
∥ďq[k]− dq[k]

∥
∥
2

2

}

s.t.

M−1∑

q=0

E

{

‖Bqdq[k]‖
2
2

}

≤ PT .

(3)

The authors in [5] have developed a framework that enables

us to solve (3). At the expense of increasing the computational

complexity, the performance can be improved by jointly pro-

cessing all the subbands as [3], [5] detail. To overcome the

signal to noise ratio loss, which is due to the CP transmission,

the authors in [6] have proposed the utilisation of the filtered

multitone (FMT) modulation, [7]. The main difference with

respect to OFDM is that the subcarrier signals decay faster

in the frequency domain than the sinc-shaped filter. However,

both OFDM and FMT systems suffer a bandwidth loss. In the

OFDM case, the loss has to do with the CP transmission. In

the FMT modulation, although no redundancy is transmitted a

guard band between subcarriers is inserted to ensure that there

is no overlapping, which results in a spectral efficiency loss.

If maximum bandwidth efficiency is desired, then the filter

bank multicarrier modulation based on the offset quadrature

amplitude modulation (FBMC/OQAM) is the best alternative

[8]. This scheme was first introduced by Saltzberg in [9].

The efficient implementation of FBMC/OQAM as well as the

perfect reconstruction property are derived in [10].

With the aim of exploiting the spatial diversity without

sacrificing the rate, we propose combining MIMO precoding

and decoding techniques with FBMC/OQAM. To the best

of authors’ knowledge the work derived in [11] is one of

the few publications that have studied the design of MIMO

precoding and decoding techniques in the FBMC/OQAM

context. The results in [11] confirm that the solution gives

a satisfactory performance in scenarios where the channel

coherence bandwidth exceeds the subcarrier spacing. However,

when the channel frequency selectivity becomes stronger the

bit error rate (BER) plots exhibit an error floor [11]. To

remedy it, the authors in [12] propose a joint transmitter

and receiver beamforming design that is ISI and inter-carrier

interference (ICI) aware, which makes the system more robust

to the channel frequency selectivity than [11]. Nevertheless,

the scheme is only able to accommodate a single stream per-

subband for a fixed power allocation. It must be mentioned

that most of the existing solutions that combine multi-stream

techniques with the FBMC/OQAM modulation solely resort

to the CSI at the receiver, see e.g. [13]–[23].

As a summary the contributions of this paper are as follows:

• We design MIMO precoding and decoding matrices with

the objective of transmitting several streams on a per-

subcarrier basis in the FBMC/OQAM context. In this

sense, two different designs have been described. The

first one aims at keeping the complexity low. To this

end, the original problem is relaxed and, therefore, the

solution is suboptimal. In the second case, we are able to

find a local optimal solution. However, the complexity is

drastically increased because the solution is based on the

alternating optimization method. In both cases, we make

no assumptions about the flatness of the channel and we

exploit the non-circular nature exhibited by the OQAM

symbols by performing a widely linear (WL) processing.

• We have carried out an analysis of the quality of the

links after pre- and post-processing the symbols when the

non-iterative technique is applied. The analysis reveals

in which multi-antenna configurations the FBMC/OQAM

modulation scheme may remain competitive with OFDM.

The rest of the paper is organized as follows. Section II

formulates the expressions involved in MIMO-FBMC/OQAM

systems. In Section III, we devise a new subband process-

ing that supports multi-stream transmission for the MIMO-

FBMC/OQAM scheme. Additionally, we have carried out an

analysis of the quality of the links. In Section IV, we propose

to minimize the sum MSE by resorting to an alternating

optimization method. The numerical results are included in

Section V and finally Section VI draws the conclusions.

Notation: Upper case boldfaced letters denote matrices and

lower case boldfaced letters denote vectors. Let the super-

scripts (.)T , (.)∗ and (.)H denote transpose, complex conjugate

and Hermitian operations, respectively. We will use [A]ij to

refer to the (ith, jth) element of matrix A. By IN we denote

the N -dimensional identity matrix. We define λl (A) to be the

lth largest eigenvalue of matrix A. We define diag {a1, ..., aN}
to be a N×N diagonal matrix, where the (kth, kth) element is

given by ak. We will use ∗ to denote the convolution operation.

II. MIMO-FBMC/OQAM SYSTEM MODEL

In this work we focus on the FBMC/OQAM modulation,

[10]. We consider a multi-antenna configuration that consists

of deploying NT antennas at transmission and NR antennas

at reception. The resulting superimposed signal at the ith (1 ≤
i ≤ NT ) transmit antenna output is given by

si[n] =

∞∑

k=−∞

M−1∑

m=0

vim[k]fm

[

n− k
M

2

]

(4)

fm[n] = p[n]ej
2π
M

m(n−L−1

2 ) (5)

where p[n] is the prototype pulse, which has a length equal to

L. Note that the subband filters {fm[n]} are used to build the

synthesis filter bank (SFB), which allows us to partition the

band into M subchannels. The precoded symbol is expressed

as follows: vim[k] =
∑S

r=1 b
r
imxr

m[k], which highlights that

S streams are spatially multiplexed over each subcarrier. Let

{brim} be the coefficients of the precoders and xr
m[k] be

the rth stream multiplexed on the mth subband. Since the

transmitted symbols are modulated according to the OQAM

scheme, it is possible to factorize xr
m[k] as the product of

the real PAM symbol drm[k] and the phase term θm[k], i.e.

xr
m[k] = drm[k]θm[k]. The phase term is defined as

θm[k] =

{
1 m+ k even

j m+ k odd
(6)

to ensure that the frequency shift between adjacent symbols

in the time-frequency grid is π
2 . To differentiate between low-



3

and high-rate signals we have used different sampling indexes.

In this sense, the index k is used by the low-rate signals while

the high-rate signals utilize the index n.

The received signal at the input of the jth receive antenna

is contaminated by additive noise and degraded by multipath

fading. As a result, the signal received by the jth antenna is

rj [n] =

NT∑

i=1

si[n] ∗ hij [n] + wj [n], j = 1, ..., NR, (7)

where wj [n] denotes the noise samples of the jth receive

antenna and the term hij [n] refers to the channel impulse

response associated to the transmitter i and the receiver j.

To demultiplex the low-rate signals, the received signal is

passed through a bank of matched filters, whose outcomes

are downsampled by the factor M/2, yielding

yjq [k] =
(
rj [n] ∗ f

∗
q [−n]

)

↓M/2
, (8)

for 1 ≤ j ≤ NR and 0 ≤ q ≤ M −1. As for the mathematical

notation, the expression (.)↓x performs a decimation by a

factor of x. Unlike the processing carried out at the transmit

side, now the matched filters
{
f∗
q [−n]

}
are used to build the

analysis filter bank (AFB). Bearing in mind (4), the AFB

outputs can be compactly formulated as

yjq [k] =

q+1
∑

m=q−1

NT∑

i=1

vim[k] ∗ gijqm[k] + wj
q[k] (9)

gijqm[k] =
(
fm[n] ∗ hij [n] ∗ f

∗
q [−n]

)

↓M/2
(10)

wj
q[k] =

(
wj [n] ∗ f

∗
q [−n]

)

↓M/2
. (11)

Note that ICI exclusively comes from the most immediate

neighbors thanks to the good confinement of the pulses in

the frequency plane, see e.g. [10], [24], [25]. In the same

line, we assume that only the first and the second order

neighbours bring about ISI. As a consequence, gijqm[k] 6= 0
for −2 ≤ k ≤ 2. In order to enhance the quality of the

estimates, the demodulated data is further processed on a

per-subcarrier basis by means of a broadband MIMO equal-

izer. This means that on the qth subcarrier the multi-tap

equalizers
{
al1q[k], ..., a

l
NRq[k]

}
, which are different from zero

for −La ≤ k ≤ La, are responsible for performing the

receive processing that is aimed at recovering the stream

dlq[k]. Then, it follows that the PAM symbols are estimated by

compensating the phase term and extracting the real part of

the equalized signals, which boils down to operate as follows:

ďlq[k] = ℜ
(
ul
q[k]
)
, l = 1, ..., S, q = 0, ...,M − 1, (12)

ul
q[k] = θ∗q [k]





NR∑

j=1

(
aljq[k]

)∗
∗ yjq [k]



 . (13)

Plugging (9) into (13) results in

ul
q[k] = θ∗q [k]





NR∑

j=1

(
aljq[k]

)∗
∗ wj

q[k]+

q+1
∑

m=q−1

NR∑

j=1

NT∑

i=1

(
aljq[k]

)∗
∗ vim[k] ∗ gijqm[k]



 .

(14)

A. Compact formulation

The problem of devising transmit and receive matrices

directly from (12) and (14) is difficult. To get a more tractable

expression we use this equality

NT∑

i=1

(
aljq[k]

)∗
∗ vim[k] ∗ gijqm[k] =

La+2∑

t=−La−2

θm[k − t]
(
al
jq

)H
Gj

qm[t]Bmdm[k − t]

(15)

where al
jq =

[
aljq[−La], ..., a

l
jq[La]

]T
,

Gj
qm[t] =






g1jqm[t+ La] · · · gNT j
qm [t+ La]

...
...

g1jqm[t− La] · · · gNT j
qm [t− La]




 (16)

Bm =






b11m . bS1m
... .

...

b1NTm . bSNTm




 (17)

and dm[k] =
[
d1m[k]...dSm[k]

]T
. Note that La determines

the length of aljq , which is equal to 1 + 2La. With the aim

of alleviating the complexity, the precoder has been restricted

to be real-valued and to have a single-tap. The reason why

we have discarded the alternative configuration where both

MIMO precoding and decoding matrices are complex-valued

is further justified at the end of this section. Now, plugging

(15) into (14) leads to

ul
q[k] = θ∗q [k]

(
q+1
∑

m=q−1

La+2∑

t=−La−2

θm[k − t]
(
alq
)H

×Gqm[t]Bmdm[k − t]) +
(
al
q

)H
wq[k],

(18)

where the noise vector is written as

wq[k] = θ∗q [k]
[
w1

q [k + La] . . . w
1
q [k − La]

. . . wNR
q [k + La] . . . w

NR
q [k − La]

]T
.

(19)

To get (18) we define alq =
[(

al
1q

)T
...
(
al
NRq

)T
]T

and

Gqm[t] =

[
(
G1

qm[t]
)T

...
(

GNR

qm [t]
)T
]T

. As the subcarrier

model that is depicted in Fig. 1 highlights, the symbol

detection is sensitive to be affected by ISI and ICI and

thus the precoders and the equalizers have to be interference

aware, which complicates the design. Defining Ek
qm[t] =

(
θ∗q [k]θm[k − t]

)
Gqm[t], then (18) becomes

ul
q[k] =

q+1
∑

m=q−1

La+2∑

t=−La−2

(
alq
)H

Ek
qm[t]Bmdm[k − t]

+
(
alq
)H

wq[k].

(20)

Let a be either a matrix or a vector, we can define the

extended notation by stacking column-wise the real and imag-

inary components, i.e. ae =
[
ℜ
(
aT
)

ℑ
(
aT
)]T

. This enables
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Figure 1. Subcarrier model of the MIMO-FBMC/OQAM scheme.

us to formulate the estimated real PAM symbols as follows:

ďlq[k] =

q+1
∑

m=q−1

La+2∑

t=−La−2

(
alq,e
)T

Ek
qm,e[t]Bmdm[k − t]

+
(
al
q,e

)T
wq,e[k].

(21)

At this point it is reasonable to question why precoders

are restricted to be real-valued. By examining (20) and (21)

we can assert that if precoders are complex-valued, then there

are more degrees of freedom at the transmit side whereas the

number of interference terms in (21) increases. Thus, at first

glance it is not obvious to foresee if complex-valued precoders

are advantageous. However, we have empirically observed that

the suboptimal processing proposed in Section III yields the

lowest BER when precoders solely have in-phase components,

thus supporting the use of real-valued precoders. It seems that

the good behaviour exhibited by the real-valued precoders is

related to the optimization procedure described in Section III

and the OQAM.

In order to exploit the non-circular nature exhibited by the

OQAM symbols we have adopted a real-valued representa-

tion. By examining (21) it becomes noticeable that real and

imaginary parts are independently processed giving rise to WL

filtering [26]. In other words, (21) depends linearly on the

real and the imaginary parts of the equalizer inputs. Note that

the structure of the proposed receiver hinges on the use of

real-valued equalizers the length of which is two-fold with

respect to the complex-valued linear counterpart. As a result,

there is no penalty in terms of complexity for treating real

and imaginary parts separately. Therefore, WL filters are as

attractive as linear filters to devise low-complexity solutions.

III. JOINT TRANSMITTER AND RECEIVER DESIGN

In this section we devise a new subband processing that

supports multi-stream transmission in MIMO-FBMC/OQAM

systems. Since the required complexity to solve the original

problem may render the solution impractical, we have relaxed

the problem. This strategy poses a simpler problem to be

solved but the solution is suboptimal. For this reason we have

carried out an analysis of the quality of the links to determine

in which multi-antenna configurations FBMC/OQAM and

OFDM may give similar performance.

A. Suboptimal subband processing

In this subsection we study how to jointly design transmit

and receive processing when perfect CSI is available. Regard-

ing the optimization criterion, we opt for the minimization of

the sum MSE. Defining the MSE of the lth stream transmitted

on the qth subband as MSEl
q = E

{∣
∣dlq[k]− ďlq[k]

∣
∣
2
}

, the

problem to be solved is

argmin
{alq,e,Bq}

M−1∑

q=0

S∑

l=1

MSEl
q

s.t.
M−1∑

q=0

E

{

‖Bqdq[k]‖
2
2

}

=
M−1∑

q=0

‖Bq‖
2
F ≤ PT ,

(22)

where ‖Bq‖
2
F = tr

(
BqBH

q

)
. We use tr

(
BqBH

q

)
to denote the

trace of BqBH
q . Note that we have assumed that symbols are

independent and have unit-energy, i.e. E
{∣
∣dlm[k]dsq[n]

∣
∣
2
}

=

δl,sδm,qδn,k. Then, the MSE can be formulated as

MSEl
q = 1 +

q+1
∑

m=q−1

La+2∑

t=−La−2

∥
∥
∥

(
alq,e
)T

Ek
qm,e[t]Bm

∥
∥
∥

2

2

+
(
al
q,e

)T
Rqalq,e − 2

(
alq,e
)T

Ek
qq,e[0]Bqel.

(23)

In notation terms the unitary vector el is zero-valued except

in the lth position. The noise correlation matrix is given by

Rq = E
{

wq,e[k]w
T
q,e[k]

}
. The analytical expression can be

found in [12]. It can be readily checked that the MSE is inde-

pendent of k and, therefore, the same metric is used for k odd

and k even. Due to the ICI we cannot decouple the problem

into M disjoint problems. This highlights that some relaxation

has to be applied if we want to alleviate the complexity of the
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MSEl
q ≤ MSEUB

lq = 1 +

q+1
∑

m=q−1
m 6=q

La+2∑

t=−La−2

λ1

(
BmBT

m

)
∥
∥
∥

(
al
q,e

)T
Ek
qm,e[t]

∥
∥
∥

2

2
+

La+2∑

t=−La−2
t 6=0

λ1

(
BqBT

q

)
∥
∥
∥

(
al
q,e

)T
Ek
qq,e[t]

∥
∥
∥

2

2

+
∥
∥
∥

(
alq,e
)T

Ek
qq,e[0]Bq

∥
∥
∥

2

2
+
(
al
q,e

)T
Rqal

q,e − 2
(
alq,e
)T

Ek
qq,e[0]Bqel.

(24)

optimization procedure. In this sense, we propose to substitute

the objective function of (23) by the upper bound of (24).

Note that (24) hinges on the well-known inequality tr (AB) ≤
∑N

i=1 λi (A)λi (B), where A and B are two N ×N positive

semidefinite Hermitian matrices, [27]. The terms λi (A) and

λi (B) account for the eigenvalues of A and B, respectively,

which are arranged in descending order. Taking into account

that rank =
(
Ek
qm,e[t]

)T
alq,e

(
al
q,e

)T
Ek
qm,e[t] = 1 along with

the invariance of the trace with the order of the multiplication,

leads to this result

∥
∥
∥

(
alq,e
)T

Ek
qm,e[t]Bm

∥
∥
∥

2

2
≤ λ1

(
BmBT

m

)
∥
∥
∥

(
alq,e
)T

Ek
qm,e[t]

∥
∥
∥

2

2
.

(25)

With the aim of further simplifying the problem we assume

that the dominant eigenvalue of BmBT
m is upper bounded as

follows: λ1

(
BmBT

m

)
≤ bm. This assumption opens the door

to work with a new performance metric, which is defined as

UBl
q = 1 +

q+1
∑

m=q−1
m 6=q

La+2∑

t=−La−2

bm

∥
∥
∥

(
al
q,e

)T
Ek
qm,e[t]

∥
∥
∥

2

2
+

La+2∑

t=−La−2
t 6=0

bq

∥
∥
∥

(
alq,e
)T

Ek
qq,e[t]

∥
∥
∥

2

2
+
∥
∥
∥

(
alq,e
)T

Ek
qq,e[0]Bq

∥
∥
∥

2

2

+
(
al
q,e

)T
Rqalq,e − 2

(
al
q,e

)T
Ek
qq,e[0]Bqel.

(26)

Then, the new minimization problem becomes

argmin
{alq,e,Bq}

M−1∑

q=0

S∑

l=1

UBl
q

s.t.
M−1∑

q=0

‖Bq‖
2
F ≤ PT

λ1

(
BqBT

q

)
≤ bq, 0 ≤ q ≤ M − 1.

(27)

It is important to remark that MSEl
q ≤ MSEUB

lq ≤ UBl
q if

λ1

(
BqBT

q

)
≤ bq . As a consequence, (27) minimizes an upper

bound of the sum MSE. As we will show in the following,

the expressions that come into play when solving (27) offer a

good analytical tractability, which is of paramount importance

to formulate a solution in a closed-form expression. Towards

this end, we propose to apply the two-step algorithm described

in [5] to obtain the precoding matrices {Bq} and the receive

vectors
{

al
q,e

}
. The first problem to be solved is given by

argmin
{alq,e}

M−1∑

q=0

S∑

l=1

UBl
q. (28)

For a fixed transmit processing the problem (28) is convex,

thus the optimal equalizers are written in this form

alq,e =
(

Cq + Ek
qq,e[0]Bq

(
Ek
qq,e[0]Bq

)T
)−1

Ek
qq,e[0]Bqel

(29)

with

Cq =

q+1
∑

m=q−1
m 6=q

La+2∑

t=−La−2

bmEk
qm,e[t]

(
Ek
qm,e[t]

)T

+

La+2∑

t=−La−2
t 6=0

bqEk
qq,e[t]

(
Ek
qq,e[t]

)T
+ Rq.

(30)

In the second step of the algorithm, the receive vectors

in (26) are particularized for (29) and the transmit matrices

are optimized so that the upper bound on the sum MSE is

minimized. Thus, the problem reduces to

argmin
{Bq}

M−1∑

q=0

S∑

l=1

UBl
q

s.t.

M−1∑

q=0

‖Bq‖
2
F ≤ PT

λ1

(
BqBT

q

)
≤ bq, 0 ≤ q ≤ M − 1,

(31)

where the objective function can be written as

S∑

l=1

UBl
q = tr

(

IS −
(
Ek
qq,e[0]Bq

)T

×
(

Cq + Ek
qq,e[0]Bq

(
Ek
qq,e[0]Bq

)T
)−1

Ek
qq,e[0]Bq

)

= tr

((

IS +
(
Ek
qq,e[0]Bq

)T
C−1

q Ek
qq,e[0]Bq

)−1
)

.

(32)

Although (31) does not match the minimization of the sum

MSE, it allows us to benefit from the framework developed

in [5]. In this regard, we can state that if the constraints on

the dominant eigenvalues are ignored, the solution of (31) has

the structure Bq = UqΣq , where Uq ∈ R
NT×Ľq contains the

eigenvectors of
(
Ek
qq,e[0]

)T
C−1

q Ek
qq,e[0] ∈ R

NT×NT that are

associated with the Ľq largest eigenvalues. The matrix Σq is

decomposed as Σq = [0 Pq], where 0 ∈ R
Ľq×S−Ľq is zero

valued and Pq = diag

{√

p
Ľq

q , ...,
√

p1q

}

∈ R
Ľq×Ľq . Whether

it is possible or not to spatially multiplex S streams will

be given by Ľq = min
(

S, rank
((

Ek
qq,e[0]

)T
C−1

q Ek
qq,e[0]

))

.

As a consequence, Ľq ≤ S. From the precoding structure

described above, the constraint on the dominant eigenvalue

becomes λ1

(
BqBT

q

)
= max

{

p1q, ..., p
Ľq

q

}

≤ bq . Then, all
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the power coefficients should comply with this inequality

plq ≤ bq , for l = 1, ..., Ľq . Since the additional constraints

are linear with the power coefficients, the upper bounds on

the dominant eigenvalues do not affect the solvability of the

problem (see [5]). Hence, the precoder that solves (31) is given

by Bq = UqΣq . As a consequence, the power coefficients are

obtained by solving

argmin
{pl

q}

M−1∑

q=0

Ľq∑

l=1

1

1 + λl
qp

l
q

s.t.

M−1∑

q=0

Ľq∑

l=1

plq ≤ PT

0 ≤ plq ≤ bq, 1 ≤ l ≤ Ľq, 0 ≤ q ≤ M − 1.

(33)

Let λl
q be the lth largest eigenvalue of matrix

(
Ek
qq,e[0]

)T
C−1

q Ek
qq,e[0]. Since the problem (33) is convex,

the power coefficients can be formulated as follows:

plq = min

((

µ−1/2
(
λl
q

)−1/2
−
(
λl
q

)−1
)+

, bq

)

(34)

where µ is the Lagrange multiplier that guarantees that the

total power constraint is active and (x)+ = max(0, x). One

option to compute (34) is to proceed similarly to the cap-

limited water-filling algorithm [28].

In order to find a low-complexity solution we have forced

per-stream powers to be lower than {bq}, i.e. plq ≤ bq .

If the coefficients that delimit the allowed values are too

high the exact MSE will lie far below with respect to (26).

Conversely, if the parameters {bq} take small values, the

streams transmitted on the worst subchannels may not receive

enough power to overcome the spectral nulls. In this regard,

we have empirically observed that when the values of bq
are around PT

M , we achieve a good trade-off. The problem

of finding a tight upper bound for λ1

(
BqBT

q

)
that relies on

analytical expressions is not fully explored in this paper and,

therefore, it remains open.

B. Refinement of the subband processing

To perform closer to the optimum, we propose to update

the receive matrices so that the exact sum MSE is minimized

having fixed the transmit processing. In other words, having

computed the precoders with (31), the receivers are recalcu-

lated to solve (23). Therefore it results in

Aq,e =
[
a1q,e...a

S
q,e

]
= (Rq+

q+1
∑

m=q−1

La+2∑

t=−La−2

Ek
qm,e[t]Bm

(
Ek
qm,e[t]Bm

)T

)−1

Ek
qq,e[0]Bq.

(35)

Note that matrix inversion is allowed since it is as-

sumed that the noise autocorrelation matrix is full rank.

By using this equality A =
(

EB (EB)
H
+ R

)−1

EB =

R−1EB
(

I + (EB)
H

R−1EB
)−1

[5], the MIMO decoding ma-

trix can be expressed as

Aq,e = C̄
−1
q Ek

qq,e[0]Bq

×
(

IS +
(
Ek
qq,e[0]Bq

)T
C̄

−1
q Ek

qq,e[0]Bq

)−1 (36)

with

C̄q = Rq +

q+1
∑

m=q−1

La+2∑

t=−La−2

Ek
qm,e[t]Bm

×
(
Ek
qm,e[t]Bm

)T
− Ek

qq,e[0]Bq

(
Ek
qq,e[0]Bq

)T

(37)

From here onwards we assume that the equalizers are built

as (36) describes if otherwise stated.

C. Widely linear vs. linear processing

In this section we compare a MIMO-FBMC/OQAM system

that is based on the proposed WL processing with a MIMO-

OFDM system that relies on the linear processing described

in [5]. The expressions presented in the following are built on

optimistic assumptions for the ease of the tractability when

FBMC/OQAM is considered. Thus, the comparison might be

unfair. The analysis derived in this section does not allow us

to conclude which is the best technique but it allows us to

find out in which multi-antenna configurations FBMC/OQAM

may remain competitive with OFDM.

In the WL case, the input/output relationship of those

symbols transmitted on the qth subband and the time instant

of interest will be given by AT
q,eEk

qq,e[0]Bq . Unless (30) and

(37) coincide, i.e. C̄q = Cq , the MIMO channel matrix is

not decoupled into independent subchannels. The diagonal

structure can be achieved if the additive noise is the dominant

source of interference or in the absence of ISI and ICI.

Supposing the latter assumption, the noise correlation matrix

is formulated as C̄q = Cq = Rq = 0.5N0I2NR
(see [12]),

provided that we stick to the case that La = 0 and the noise

samples are independent and identically distributed circularly

symmetric Gaussian variables, i.e. wj [n] ∼ CN (0, N0). In

order to make expressions analytically tractable, we consider

an interference-free scenario and we focus on the case that the

equalizers have no memory, i.e. La = 0. Then, the signal to

interference plus noise ratio (SINR) is given by

SINRl
q =

1

MSEl
q

− 1 =
plqλ̄

l
q

0.5N0
, (38)

where λ̄l
q is the lth largest eigenvalue of matrix

(
Ek
qq,e[0]

)T
Ek
qq,e[0]. We have assumed that S ≤

rank
((

Ek
qq,e[0]

)T
Ek
qq,e[0]

)

= min (NT , 2NR). Since (38)

corresponds to a fictitious scenario that is interference-free, we

can conclude that the exact SINR is upper bounded by (38).

Thoroughly examining Ek
qq,e[0] it is possible to approximate

its value by Ek
qq,e[0] ≈

[
ℜ
(
HT

q

)
ℑ
(
HT

q

)]T
= Hq,e, where

Hq is the frequency response of the MIMO channel matrix

evaluated on 2π
M q. To support this statement we first expand

this term gijqq[0], written in (10), as follows:

gijqq[0] =

Lch−1∑

t=0

hij [t]

(
L−1∑

v=0

p [v] p [v + t]

)

︸ ︷︷ ︸

rp[t]

e−j 2π
M

qt. (39)

It should be mentioned that p[v] 6= 0 for v = 0, ..., L − 1.

The maximum channel excess delay is denoted Lch and



7

it is assumed equal for all the links. According to [29],

the prototype pulse in the discrete-time domain can be

obtained by sampling the analog pulse p(t), i.e. p[v] =

p
(

(v − 0.5(L− 1)) 1
fs

)

, where fs is the sampling frequency

and the delay 0.5(L− 1) is chosen to force p[v] to be causal.

Then, using the first order Taylor expansion of p(t), we can

approximate the samples around the vth sampling instant as

p [v + t] ≈ p[v] + t
fs
d[v], [29]. Writing the derivative of the

pulse as p′(t) we define d[v] = p′
(

(v − 0.5(L− 1)) 1
fs

)

.

In the FBMC/OQAM context the pulses follow the Nyquist

pulse shaping idea, thus they present an even symmetry, which

implies that p[v] = p[L − 1 − v] as it is stated in [10],

and consequently d[v] = −d[L − 1 − v]. The discrete-time

signal d[v] will present an odd symmetry with respect to the

central sample. As a consequence, rp [t] ≈
∑L−1

v=0 |p [v]|2. If

the prototype pulse is properly scaled to have unit-energy,

the value of gijqq[0] is approximately the element of matrix

Hq located at the ith column and jth row. This confirms

that Ek
qq,e[0] ≈ Hq,e, as long as the number of carriers is

sufficiently large (see [29]). From here onwards we assume

that Ek
qq,e[0] = Hq,e holds true.

At this point, it would be interesting to know how the upper

bound in (38) compares with the solution based on the linear

processing [5]. To this end, we formulate the SINR in the

OFDM case, which is given by

SINRl
q =

2plqβ
l
q

N0
. (40)

The variance of the noise is not halved because the tech-

nique is designed over the complex field. The factor 2 in the

numerator highlights that the real PAM symbols are obtained

from in-phase and quadrature components of the QAM sym-

bols, which are transmitted in OFDM systems. The coefficients
{
β1
q , ..., β

S
q

}
denote the S largest non-zero eigenvalues of the

matrix HH
q Hq , so it becomes clear that the power distribution

will be different from that of (38). In OFDM systems the

maximum number of streams that can be spatially multiplexed

is given by rank
(
HH

q Hq

)
= min(NT , NR). To carry out a

fair comparison with FBMC/OQAM we exclusively consider

the schemes where S ≤ min(NT , NR). Also notice that

HT
q,eHq,e = ℜ

(
HH

q Hq

)
and ℑ

(
HH

q Hq

)
= ℜ

(
HT

q

)
ℑ (Hq) −

ℑ
(
HT

q

)
ℜ (Hq), which highlights that

∑NT

l=1 β
l
q =

∑NT

l=1 λ̄
l
q .

In addition, cTℑ
(
HH

q Hq

)
c = 0 for any c ∈ R

NT×1. In view

of the above discussion we can write these inequalities

β1
q = max

‖c‖
2
=1

cHHH
q Hqc ≥

(
u1
q

)H
HH

q Hqu1
q = λ̄1

q

βNT
q = min

‖c‖
2
=1

cHHH
q Hqc ≤

(
uNT

q

)H
HH

q HquNT

q = λ̄NT

q ,

(41)

when ul
q corresponds to the real-valued eigenvector of

HT
q,eHq,e that is associated to the eigenvalue λ̄l

q . With the

exception of the two specific cases written in (41), we have not

been able to establish any inequality for the rest of eigenvalues.

With that, we should set S = NT ≤ NR to ensure that at

least in one spatial subchannel, in particular the Sth spatial

subchannel, the highest gain will take place when the WL

filtering is performed, as long as the interference is removed.

With an alternative configuration all the spatial subchannels

might present the highest gain when OFDM is considered.

IV. ITERATIVE DESIGN

The processing developed in Section III gives rise to a

suboptimal design. Examining (22) from a different perspec-

tive, that is forgetting about the complexity, we can find a

local solution that is computed via the alternating optimization

method. The idea is to independently optimize receive and

transmit matrices in an iterative fashion. The resulting design

will be used as a benchmark for the results of Section III.

Without making any relaxation the sum MSE is given by

MSE ({Aq,e,Bq}) =
M−1∑

q=0

E

{∥
∥dq[k]− ďq[k]

∥
∥
2

2

}

= M × S +

M−1∑

q=0

q+1
∑

m=q−1

La+2∑

t=−La−2

∥
∥
∥AT

q,eEk
qm,e[t]Bm

∥
∥
∥

2

F

+

M−1∑

q=0

tr
(

AT
q,eRqAq,e − 2AT

q,eEk
qq,e[0]Bq

)

.

(42)

The cost function in (42) is obtained by resorting to this

definition Aq,e =
[
a1
q,e...a

S
q,e

]
∈ R

2NR(1+2La)×S and the pre-

coding matrix written in (17). Hence, precoders are restricted

to be real-valued. It can be verified that the (lth,lth) element

of E
{∥
∥dq[k]− ďq[k]

∥
∥
2

2

}

coincides with (23).

A. Receiver design

The receiver design hinges on minimizing (42) for fixed

MIMO precoding matrices. Then, the optimal equalizers are

Aq,e =

(

Rq +

q+1
∑

m=q−1

La+2∑

t=−La−2

Ek
qm,e[t]Bm

×
(
Ek
qm,e[t]Bm

)T
)−1

Ek
qq,e[0]Bq.

(43)

B. Transmitter design

The transmitter design is challenging because of the total

power constraint. Given the equalizers, the problem becomes

argmin
{Bq}

MSE ({Aq,e,Bq})

s.t.

M−1∑

q=0

‖Bq‖
2
F ≤ PT .

(44)

Notice that (44) is convex and satisfies the Slater’s constraint

qualification [30], thus we can resort to the dual optimization

framework to solve the primal problem. Based on that, we first

generate the Lagrangian function as follows:

L (λ, {Aq,e,Bq}) = MSE ({Aq,e,Bq})

+λ

(
M−1∑

q=0

‖Bq‖
2
F − PT

)

(45)

where λ accounts for the Lagrange multiplier. The dual

function is obtained by solving

g (λ) = min
{Bq}

L (λ, {Aq,e,Bq}) , (46)
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which allows us to pose the dual problem in this form

g(λopt) = max
λ

g(λ)

s.t. λ ≥ 0.
(47)

The MIMO precoding matrix that solves (46) is given by

B∗
q(λ) =

(
q+1
∑

m=q−1

La+2∑

t=−La−2

(
Ek
mq,e[t]

)T
Am,e

×AT
m,eEk

mq,e[t] + λINT

)−1 (
Ek
qq,e[0]

)T
Aq,e.

(48)

Plugging λopt into (48) yields the optimal precoder. In this

sense, we propose to compute the optimal Lagrange multiplier

by performing a bisection search assuming that λ ∈ [0 λmax].
The criterion to bisect the plane is based on evaluating the

supragradient of the dual function since it might not be

differentiable [31]. The authors in [32] have demonstrated that

the dual function can be upper bounded as follows:

g(λ̄) ≤ g(λ) + (λ̄− λ)

(
M−1∑

q=0

∥
∥B∗

q(λ)
∥
∥
2

F
− PT

)

. (49)

From (49) it is easy to identify the supragradient of the dual

function, which is given by ∂g(λ) =
∑M−1

q=0

∥
∥B∗

q(λ)
∥
∥
2

F
−PT .

At this point, we should define the initial interval where the

Lagrange multiplier lies. Since the strong duality holds, the

complementary slackness has to be satisfied [30]. Hence, if

λopt > 0 the total power constraint is active. By contrast, if

the constraint is not satisfied with equality then λopt = 0.

Bearing the complementary slackness in mind along with the

trace inequality
(

tr (AB) ≤
∑N

i=1 λi (A)λi (B)
)

, yields

PT =

M−1∑

q=0

∥
∥B∗

q(λopt)
∥
∥
2

F
≤

M−1∑

q=0

NT∑

i=1

αi
q

(

λopt + γNT+1−i
q

)2 ≤
M−1∑

q=0

NT∑

i=1

αi
q

λ2
opt

,

(50)

for λopt > 0. Therefore

0 ≤ λopt ≤

√
√
√
√

1

PT

M−1∑

q=0

∥
∥
∥AT

q,eEk
qq,e[0]

∥
∥
∥

2

F
= λmax. (51)

This result follows from defining the eigenvalues of matrices
(
Ek
qq,e[0]

)T
Aq,eAT

q,eEk
qq,e[0] and

q+1
∑

m=q−1

La+2∑

t=−La−2

(
Ek
mq,e[t]

)T
Am,eAT

m,eEk
mq,e[t] (52)

as
{
α1
q , ..., α

NT
q

}
and

{
γ1
q , ..., γ

NT
q

}
, respectively. The eigen-

values collected in both sets are arranged in descending

order. Setting the upper bound according to (51) certifies that

the optimal Lagrange multiplier is confined in the selected

interval. The authors have demonstrated in [33] that B∗
q(λ)

decreases monotonically with λ. Hence, if ∂g(0) < 0, then

∂g(λ) < 0 for any λ ∈ [0 λmax]. Consequently λopt = 0 if

∂g(0) < 0. Taking this result into account, the Algorithm 1

enables us to perform as close to the optimal value as desired.

Algorithm 1 Precoder design

1: if ∂g(0) < 0 then λ = 0
2: else

3: Set l=0, u=λmax

4: repeat

5: λ = 0.5(l + u)
6: if ∂g(λ) < 0 then u = λ else l = λ

7: until

M−1∑

q=0

∥
∥B∗

q(λ)
∥
∥
2

F
∈ [δPT PT ] , 0 < δ < 1

8: end if

9: Bq = B∗
q(λ), 0 ≤ q ≤ M − 1

The algorithm stops when the desired precision is reached.

In this paper we fix δ = 0.99. It is important to remark that

through a different reasoning we have arrived at the same result

as [33]. The overall algorithm operates as the Algorithm 2

describes. At each iteration the sum MSE decreases because

the design of precoders and equalizers is governed by the

same objective function. Hence, the Algorithm 2 converges

to a minimum point since the sum MSE is lower bounded

by zero [33]. However, we cannot state that the solution is

a global optimum point because (42) is not jointly convex in

{Bq} and {Aq,e}.

Algorithm 2 Alternating optimization method

1: Initialize Aq,e,Bq 0 ≤ q ≤ M − 1
2: for i=1,...,N do

3: Compute Aq,e using (43)

4: Compute Bq executing the Algorithm 1

5: end for

V. SIMULATION RESULTS

This section evaluates the system performance of the pro-

posed techniques in terms of BER against the average energy

symbol to noise ratio, which is defined as Es

N0

= M+CP
M

2×PT

M×N0

.

The factor 2 in the numerator accounts for the energy of a com-

plex QAM symbol, since the PAM symbols have unit-energy.

It must be mentioned that the FBMC/OQAM modulation does

not transmit redundancy, thus CP = 0. As for the benchmark,

we have simulated the solution that minimizes the sum MSE

derived in [5]. The solution can be implemented either in an

OFDM or in a FBMC/OQAM architecture, as proposed in

[11]. To differentiate each case we use these two acronyms:

MSE (OFDM) and MSE (FBMC). Since the non-iterative

technique that is described in Section III is based on a real-

valued representation of the system model, it is identified in the

figures as R-MSE (FBMC). Regarding the system parameters

and the propagation conditions, two different scenarios are

considered. In scenario 1 the B =10 MHz bandwidth is split

into M = 1024 carriers and the sampling frequency is set to

fs = 11.2 MHz. The propagation conditions obey the ITU

Vehicular A channel model. In the scenario 2 the bandwidth

and the sampling frequency keep unchanged but the number

of carriers is halved, i.e. M = 512, and the propagation
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Figure 2. BER against Es

N0
for a 4x2 MIMO communication system. The number of streams transmitted over each subband is S = 2. The spectral efficiency

values are in bits/s/Hz: (FBMC)=6.615, (OFDM CP=M/8)=5.6 and (OFDM CP=M/4)=5.04.

conditions obey the ITU Vehicular B channel model. Channel

models are designed following the guidelines provided in [34].

It is important to remark that only Ma out M subbands

are active. In the OFDM case Ma is equal to 720 and 360 in

scenario 1 and 2, respectively. By contrast, the reduced out-

of-band radiation exhibited by the FBMC/OQAM modulation

enables us to reduce the guard bands at the edges of the

frequency band. Among the possible prototype pulses that

can be used in the FBMC/OQAM modulation, we favour

the design based on the frequency sampling approach with

an overlapping factor equal to 4, [24]. This translates into

the utilization of 756 carriers in the scenario 1 and 378 in

the scenario 2, [35]. In all the simulations the symbols are

drawn from the 16QAM constellation. This means that the real

symbols
{
dlq[k]

}
are 4PAM. According to the features of the

system, the spectral efficiency is η = S×Ma×2×fs
B×0.5×M = S3.3075

bit/s/Hz, when FBMC/OQAM is considered. The term S de-

notes the number of streams transmitted over each subband. In

the OFDM context, the spectral efficiency is η = S×Ma×4×fs
B×(M+CP )

bit/s/Hz. By setting CP = M
8 we obtain η = S2.8 bit/s/Hz.

If the cyclic prefix is extended to CP = M
4 , the spectral

efficiency becomes η = S2.52 bit/s/Hz. It is worth mentioning

that the spectral efficiency expresses the information rate that

is transmitted over a given bandwidth.

When the transmission is done over a NR × NT MIMO

channel, the receiver and the transmitter have NR and NT

antennas, respectively. For the simulations, the number of

streams and the number of antennas are related as follows:

S = NT ≤ NR. The justification is provided in Section III-C.

In particular, we focus on the configuration 4x2.

A. BER evaluation under perfect CSI

First we show some results when the CSI is perfectly

known. The results depicted in Fig. 2a show that the proposed

technique slightly outperforms OFDM. This implies that the

R-MSE technique succeeds in removing the interferences as

well as the loss in the first subchannel is compensated by

the improvement of the second spatial subchannel. The gap

between R-MSE and MSE (OFDM) is also due to the energy

wastage that implies transmitting the CP. The BER curves

of Fig. 2a also highlight that the proposed technique does

not benefit from implementing a multi-tap linear equalizer.

Therefore, we can state that the channel frequency response

is approximately flat at the subcarrier level. As for the MSE

(FBMC) technique, it provides satisfactory results at high

and moderate noise regime. However, for Es

N0

≥ 14dB the

performance starts degrading because the interferences are not

removed and as a consequence the BER plot exhibits an error

floor when the noise is not the dominant source of interference.

The scenario 2 is very challenging because the CP is not long

enough to absorb the maximum channel excess delay. As Fig.

2b shows, the larger is the CP, the lower is the BER. The MSE

(FBMC) technique does not compare favourably even at high

noise regime. Now, the multi-tap linear equalization does push

down the BER curves with respect to the single-tap case. The

reason lies in the fact that the channel frequency response

cannot be modeled flat at the subcarrier level. We have not

increased the number of taps beyond 3 because it does not

significantly improve the results. The reason is because most

of the energy of the interferences comes from the first and

second order neighbours. Under the conditions of the scenario

2, the R-MSE technique provides the best results because it is

able to cope with the loss of orthogonality.

To evaluate how close the designs addressed in Section III

and IV perform, we have tested both schemes in Fig. 3. In

particular, we focus on a 4x2 MIMO communication system

fixing Es

N0

=20dB. The number of taps of the equalizers is

set to 3 and the iterative design is initialized with random

matrices. As Fig. 3 shows, the BER achieved by the iterative

design decreases as the number of iterations increase. It

only outperforms the one-shot design after performing 100

iterations. Beyond that point the improvement is marginal,

thus we can conclude that the non-iterative design almost

gives the same BER when compared to the value at which

the alternating optimization method converges.

B. BER evaluation under imperfect CSI

In real systems the knowledge of the channel is only avail-

able through an estimation, which is not perfectly matched to
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Figure 3. BER for a 4x2 MIMO communication system having fixed
Es

N0
=20dB. The number of streams transmitted over each subband is S = 2.

the real CSI. To determine the sensitivity to the channel un-

certainty we simulate the BER achieved by the MSE (OFDM)

and the R-MSE techniques when the channel impulse response

is estimated. While the FBMC/OQAM modulation scheme

uses the estimator described in [12], the OFDM technique

implements the method addressed in [36]. In both cases the

training data consists of M
8 pilot symbols, which are arranged

in a sparse preamble. In Fig. 4 the BER is computed against

the energy pilot to the average energy symbol ratio, which

is defined as
Ep

Es
=

EpM
2PT

where Ep is the energy pilot.

Note that Es

N0

is fixed to 14 dB and 20 dB. The system

parameters and the propagation conditions have been chosen

according to the scenario 1. The plots depicted in Fig. 4

indicate that the energy pilot has to be boosted with respect to

the average energy symbol if we want to perform close to the

ideal case, both in the FBMC/OQAM and the OFDM case.

However, the most interesting conclusion is that the proposed

technique is not more sensitive to the channel uncertainty than

the benchmark. As a result, the gap between FBMC/OQAM

and OFDM observed in Fig. 2a is maintained. These results

provide evidence that MIMO-FBMC/OQAM is as much robust

as MIMO-OFDM to the noisy channel estimation.

VI. CONCLUSIONS

In this paper we have tackled the joint design of MIMO

precoding and decoding matrices for FBMC/OQAM sys-

tems under highly frequency selective channels. It is worth

mentioning that the non-circular nature exhibited by the

OQAM symbols has not been ignored. This has revealed

the convenience of performing a WL filtering. Regarding

the objective function, we have opted for the minimization

of the sum MSE for a given global power budget. Due

to the difficulty of solving the original problem, we have

replaced the objective function by an upper bound, which

poses a problem easier to solve. Simulation-based results

show that the proposed solution clearly outperforms existing

MIMO-FBMC/OQAM schemes in terms of BER. This work

also demonstrates that FBMC/OQAM compares favourably to

OFDM as long as the number of streams transmitted over

each subband and the number of antennas deployed at each

side satisfy this relation: S = NT ≤ NR, which has been
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Figure 4. BER against
Ep

Es
for a 4x2 MIMO communication system under

the propagation conditions of the scenario 1.

theoretically justified. Although the comparison in terms of

BER is interesting, the decision that tips the balance towards

OFDM or FBMC/OQAM may be determined by other aspects

such as the synchronization requirements. Having said that, it

must be mentioned that the numerical results highlight that

FBMC/OQAM can compete with OFDM even in presence

of imperfect CSI. By contrast, in those scenarios where the

CP is not long enough to avoid IBI, the FBMC/OQAM

modulation scheme shows superior performance than OFDM

since the devised subband processing can cope with the loss of

orthogonality. Finally, we have demonstrated via simulations

that the proposed joint transmit and receive design, which is

suboptimal, performs close to a local optimal point that can

be reached by means of an alternating optimization method.
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