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ABSTRACT and non-intelligible Gaussian or close to Gaussian sighals

This paper deals with the independence measure problefflis context, the classification of ICA algorithms accoglio

Over the last decade, many Independent Component Anal{2€ separation quality becomes a difficult and importart tas
sis (ICA) algorithms have been proposed to solve the blind’réviously, we proposed [2] a survey of the performance in-
source separation (BSS) of convolutive mixture. Howeveflices used in instantaneous mixture case. In this paper, the
few performance indices can be found in the literature. Théeal acoustic convolutive model is considered. The most use
most used performance indices are described hereafter aR@"formance indices are described hereafter and three new
three new performance indices are also proposed. performance indices are also proposed.

1. INTRODUCTION 2. MODIFIED CROSSTALK

We are involved in Passive Acoustic Tomography (PAT) _ The crosstalk is the inverse of Signal to Noise Ratio
problem. It is well known that Acoustic Tomography can be(SNR) and it is widely used as a performance index for the
applied in many civil or military applications as : Mapping BSS algorithms of instantaneous mixture, see [2] and the re-
sonar technology. Recently, the Passive Acoustic Tomogr&stimated signal, is given by :
phy (PAT) has taken an increased importance mainly for the . >
three following reasons : Submarine Acoustic Warfare ap- Dr (§1,51) — 10log, (E{(S'l—sl) }) )
plications, Ecological reasons (it doesn’t perturb unceewr ’ 0 E{ﬁ}
ecological system) and Economical and logistical reasons. .

In PAT applications, the emitted signals are natural or ar- here E stands for the expectation. To apply the crosstalk,
tificial signals of opportunity. Therefore, PAT applicati® one should have the original source. Therefore this perfor-

can be considered as a serious challenge to the classicBfnCce index cannot be applied in real situation where the

Active Acoustic Tomography (AAT), since the parametersSOUCE are unknown. However itis very useful in simulations
graphy ( ) b Itis clear that the last definitioD;, is useless for the BSS

(number, position, etc.) of emitted signals as well as tisese h . . . : X
gnals are unknown. In such scenario, the received signals afonvolutive mixture, see equation (1), since it doesn'etak
the mixture of some acoustic signals of opportunity. Blind!Nt0 consideration the power ratio between the filtered ver-
Source Separation (BSS) algorithms obviously are of gre%Ion of the signaky = h(2) +s1(n) and the residual error
importance to our project, see [1]. 2(2) + $(n). o _

In the literature, one can find a huge number of Inde- Here.after, we suggest a modified Qeflnltlon for the cross-
pendent Component Analysis (ICA) algorithms to solve BsSaK- At first, one should apply (2) &3 ($;,¢1). Secondly an
problem. Most of them are dedicated to the separation of inse:St'mate(hl(Z) §hOUId b.e obtained usirg(n) a.nq the es-
tantaneous (i.e. echo free) channel. In our applicatiom, thimated signaki. To estimatehy(z), one can minimize the
underwater acoustic propagation channel can be modeled st Mean Square (LMS) errgr:

a convolutive mixture (i.e a multi path and a Multi-Input-

Multi-Out FIR channel with huge filter order 6000). It is hy = minE(§; — h+sp)? = min ¢ (3)
well known that the BSS of convolutive mixture can lead us
to the original sources up to a permutation and scalar filter:  Let H = (h(0)---h(m)’ and § =
(s(n)---s(n—m))", the convolutive product in equa-
§1(n) = h1(2) *s1(Nn) +h2(2) * s2(n) (1)  tion (1) becomes a simple scalar product :
wheres,(n) represents a mixture of all the sources ex- T
cept the first oney (n). The filterhi(z) = hi(0) + h (1)z + hy(z) +s1(n) =H; S

- +hi(m)z"™ are the residual separation filter. In the fol-  Using the independence properties of the sources, one
lowing, we denote byNsiq the source number and HYs  can easily prove that :

the number of available samples. The separation is consi-

dered achieved when ever the norm of the residual error

hz(2) + $(n) becomes much less than the one of the separa-¢ = (Hi—H)"E (S,S]) (H1 —H) + HJE (SS]) H,

ted signah;(z) «s1(n). In addition, we should mention that T T

the identification or the classification of underwater atious = &2181+Hy 2oH; (4)
signals is very hard because these signals are non-stgtiona = E(§)?+H"3H -HTE(S%) -E(&S))H (5)
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whereeq =H; —H andZ = E (8131) is an invertible The quadratic independence meadd(&) is a compa-
definite positive matrix. The second term of (4) doesn’t detison between the joint FCF and the product of the marginal
pend onH. Therefore, one can prove that the optimal value=CF, [10] :
of H is given by :

Hopt = = 'E(S1$1) (6) D(X) = / () - N, &(Q)h(Q)d2  (9)

Our experimental results show that for low order chan-
nel filter (less than 20) this performance index can be used Herehis an integrable function froR" to R. If the com-
efficiently. When the order of channel is larger than 20,ponents of the vectdX are independent in their set than the
computing time becomes more important. Unfortunately, wgoint FCF is equal to the product of the marginal FCF (i.e.
couldn’tget good results using this performance index an oud(Q2) = i, ®(Q;)) andD(X) = 0. Functionh should sa-

acoustic sounds and underwater channel. tisfy the following two conditions, see [10] :
— his anon zero almost every where and a positive func-
3. MUTUAL INFORMATION tion.

— For analytical FCRP(£2), h should be positive around
zero and vanish elsewhere.
Achardet al.in [8] proposed the followindp :

Mutual information is used as criteria in many ICA al-
gorithms [3, 4]. According to [5], mutual information is one
of the best independence indices. The mutual information is

defined as following : . X
: h(Q) = [ L2 ‘ (10)
I(pu) =./ pu (V)Iog%dv (7) [l Van

T HereK is a square integrable kernel function that its Fourier
whereU = (uy,---,Un)" is a random vector anBy(V)  transform should be non zero almost every whereapis a
(resp.py (vi)) are the joint (resp. marginal) probability den- gcae factor (i.e. a positive function only depends on the PD
sity function (PDF). In the context of BSS problem, the joint o¢ X;). Using the energy conservation theorem of Parseval,
and the marginal PDF are unknown but they can be estimateg-nardet al. in [8] shows that equation (9) can be replaced

[6]. _ _ o _ by the following function :
To estimate the mutual information in our project, we
used a method proposed recently by Pham [7]. In his me- 1 )
thod, the integral is replaced by a discrete sum and the PDF QAX) =3 o D(T)“dT (11)

are estimated using kernel methods. In [7], spline funstion

f i rder have been e as kermo funton. Final 10 whered() =€ [ i )] -1 € 1 (1 )]
g y: The authors of [8] prove thatQ(X) = 0 <
fu(i) X are indenpendent from each other. In  [11], Achard
Ai) (8)  estimates as following :

nknﬁk(lk)

(g, ,Un) = an(i)log(

Here 7y (i) is the joint PDF estimator andi, (j) is the L L0 .
marginal PDF estimator. Even though we got good result _le e R )
with stationary signals, we couldn’t get similar results fo 5(X) - 2E{F(X)}+ zille{f(X')} E ﬂf(xl)
underwater acoustic signals. B B

4. QUADRATIC DEPENDENCE Heref(x) = g 2151 K (—kaaikm)*

Mutual information isn’t the only independence index F(X) = gz SN M., K (X"’T)im)),xk(i) is the ith sample of

used in the literature. To measure the independence amopg, |, component aX andE is the empirical mean. Func-

the components of a random vec®r= (x3,---, %), the : : .
authors of [9] make a comparison between the joint PDr_tlonK can be chosen from the following functions, [11] :

of the vectorX and the marginal PDF product of its com- 1. Gaussian Kernd{;(x) = exp(—x?)

ponentsx. Using similar approach, Kankainen in [10] pro- . 1
pose an independence index based on the quadratic depe%‘- Square Gaussian Kerrigb(x) = (1+x2)2

dence measure and the First Characteristic Function (FCF}  The inverse of Square Gaussian Kernel second derivative
i.e.®(Q) = E{exp(jQTX)}. In [8], Achardet al. proposed functionKa(x) —  4-202
a method to apply the last independence index in the context TUNCONKs(X) = —=57

of nonlinear blind source separation problem. . . .
P P In our experimental studies, best results were obtained

1Spline function of order is the PDF of the sum of uniform inde- ~ USING the Gaussian Kernel. In fact, the Gaussian Kernel
pendent random variables  [—0.5,0.5]. For example, the spline function gives the largest possible difference between the quadrati

of third order is defined as : independence measure applied on a veAtaith i.i.d uni-
3_ 2 If [u] < & formly independent components and the quadratic indepen-
4 =2 . .
Ka(u)=1¢ @52 fo5<|y<15 dence measure applied on a vedor MA, M is a full rank
b Elsewhere mixing matrix. Using 2000 samples and random signals, we

foundD(A) = —68 andD(B) = —28.
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Signals Mixture Model | NL-Decorrelation of Sources NL-Decorrelation of Mixed Signals
ii.d Kernel 'Gaussian’ -23.4 Kernel 'Gaussien’ -5.8319

Uniform PDF Instantaneous Kernel'poly” -25.5 Kernel 'poly” 8.1

Kernel 'hermite™ -22.4 Kernel 'hermite™-20.4
4 Acoustic Signalg Instantaneous Kernel 'poly’ -33.4 Kernel 'poly” 3.2

2000 samples Convolutive Kernel 'poly’ -14.9817

4 Acoustic Signalg Instantaneous Kernel 'poly” -31.3 Kernel 'poly” 8.8

4+ 10° samples Convolutive Kernel 'poly’ -13.2

TaB. 1 — NL-Decorrelation applied on source and mixed signailsgudifferent kernels, Gaussian, Polynomial and Hermite
functions.

The main drawback of such performance index is the im-  Table 1 shows Experimental results obtained by applying
portant computing time, few minutes are needed to get the réNL-Decorrelation on source signals and mixed signals using
sults over a random signals of 2000 samples. In our applicahree different kernels, Gaussian, Polynomial and Hermite
tion, the underwater acoustic signals are very close to Gaufunctions. We should notice that for acoustic signals bette
sian signals that means a huge number of samples (overresults are obtained using polynomial kernel. Our experi-
million samples) are needed to achieve the separation bf suenental studies show that this performance index can be ap-
signals. Therefore, we couldn’t consider this performanee plied successfully in our project. However, computing time

dex in our project. and needed memory become very important when the num-
ber of samples is over 500000 samples. Finally, we should
5. NON-LINEAR KERNEL DECORRELATION mention that the difference between the NL-Decorrelation o

_ the sources and the mixed signals depends on the original
The authors of [12, 13] propose an ICA algorithm as wellsjgna|s, the chosen kernel, as well as the mixing model and
as an independence measure based on the concept of Noframeters.

linear Decorrelation. To achieve the source separatian, th

authors minimize the following-correlationfunction pr : 6. SIMPLIEIED NON-LINEAR DECORRELATION
Using similar approach to the previous one [12, 13], we
pr = maxCorr(f(X),g(Y)) propose here a simplified performance index based on the
f.geF concept of non-linear covariance matrix. Let us define the
— ma Cov(f(X),q(Y)) (12) following matrix Y'= (pij) as the non-linear covariance ma-
t.ek | /Var(f(X)) Var(g(Y)) trix::
We call Corr(X,Y), Cov(X,Y) and Var(X) respectively pij = E ({f04))c(9(X)))c) (14)
the correlation, the covariance and the varianceXadnd \/E(<f(Xi)>§) E (<9(XJ)>§)
Y. We s.hould me_ntion here thét is a vectorial space of
all functions applied fronR to R. It is known that when whereX = (x;) is a random vectorf,(x) andg(x) are two

F contents al! Fouri_er transform basis (i.e. the exppnentiaﬁon_nnear functions, antk)c = x— E{x}. If the components
functions expjwx) with w € R) thanpr = 0 means the inde-  of X are independent from each other than we can prove that

pendence of the random variabkesndY. 'Y becomes a diagonal matrix. using the last definition, we
The algorithm of [12] can be considered as Canonisuggest the following performance index :

cal Correlation Analysis (CCA) which is a generalized ver-

sion of classical Principal Component Analysis (PCA). It |Off(Y)||2

is well known that PCA can be done using an EigenVa- c= 20|09<W> (15)

lue Decomposition (EVD) of decorrelation matrices. Accor-

ding to [12], CCA can be considered as the EVD of a huge Here diagM) is a diagonal matrix which has the same

NsigNsx NsigNsdecorrelation matrix. principal diagonal of matrit and OffM) = M — diag(M).
According to [12], the best choice of the two non-linearThe two functionsf andg are chosen from the following

functionsf andg can be done using Mercer Kernel func- functions :

tions. K(X,Y) should also have the translation invariance1 G . .

. ; i . 'Gauss’ : Gaussian kernel.
property, the convergence propertylifi(R™) and isotropic ] ) o
property. One possible kernel is the Gaussian kernel propo2- 'Poly’: 6 order polynomial Kernel which the coefficients

sed by the authors of [12] : are the components of an unitary vector.
1 3. ’atan’: Saturation kernel using arc-tangent function.
K(x,y) = exp< 202|Xy“2) (13) 4. 'tanh’: Saturation kernel using hyperbolic tangent func
tion.
2A bilinear functionK (X,Y) from a vectorial space X (for exampR™) Our experimental studies (see table 2) show the effec-

to R is said to be a Mercer kernel iff its Gram matrix is a semi-posi ; ; ; ;
matrix. By definition the Gram matrix of basis vectofs... X, of am  UVENESS of this performance index to deal with underwater

dimensional vectorial space X with respect to a bilineacfiamK(X,Y)is ~ acoustic signals and channels. The main drawback of this
the matrix given byGi; = K(X,X;). performance index is that the obtained values depend on the
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Signals Mixture Model | NL-Decorrelation of Sources NL-Decorrelation of Mixed Signals
ii.d Kernel 'Gaussian’ -66.3211 Kernel 'Gaussian’ -40.6513
Uniform PDF Instantaneous| Kernel'poly” -49.2054 Kernel 'poly” -6.6205
uniform Kernel atan™-63.2202 Kernel "atan’-0.0802
Kernel 'tanh’-52.5625 Kernel 'tanh” 0.1597
4 Acoustic Signalg Instantaneous| Kernel’atan’ -40.7142 Kernel 'atan’ 1.5864
2000 samples Convolutive Kernel 'atan’ -31.8532
4 Acoustic Signalg Instantaneous| Kernel'tanh’ -86.6931 Kernel'tanh® 1.0391
4% 10° samples Convolutive Kernel 'tanh’ -57.4885

TaB. 2 — Simplified NL-Decorrelation applied on source and migigghals using different kernels.

kind and number of the original independent signals. There- Recently, Murata in [16] proposed a simplified test to

fore this performance index can only be used in simulationsneasure the independence between two random signals. This

where the original sources are known. independence measure is also based on the estimation of the
cross FCF :

7. INDEPENDENCE MEASURE BASED ON THE
FIRST CHARACTERISTIC FUNCTION

In the last few decades, many signal processing resear- oXY(tg) — 1 exl itX: - isY 18
chers were involved in independence measurement problem. n (9 nlZ PUEXi + ) (18)
In [9] and to measure the independence among random si-
gnals, the authors proposed a joint PDF estimator. In [14],

the authors propose a study and an estimédt) of First If X andY are independent thaby (t,s) = ®x (t) Py (S).
Characteristic Function (FCR)(t) : Murata’s independence measure is defined by the following
equation :
1
dy(t) = - > exp(v—1tX) (16)
|
HereX is a random iid signal witm samples anc; is /u‘@Z [{®RY (1) — ] () Py (s)}v/nk(t,9)||dtds  (19)

the ith realization ofX. The authors proved that : ¥(t) =
{®n(t) — (1) }/nis the residual estimation error thag(t)
is a zero-mean complex Gaussian random variable. They also K(t,s) is a bounded estimation window. Let & and

proved that Prol{limrHoo SUPy <t [Pn(t) — B()| = O} = Im(X) denote the real and the imaginary parXofUsing the
1 VT eR. fact thatZ(t,s) becomes asymptotically Gaussian, Murata

We mentioned before that the joint FCF of a random vecProved that the following random variable :
tor X = (xq,---,X%,)" is equal to the product of the margi-
nal FCF of its components iff these components are inde-
pendent from each other. Using the previous property of the 1 [ Re(Zu(t,s))
FCF, Feuerverger in [15] proposed an independence measufét,s) = (Re(Zx(t,s))  Im(Zy(t,9))) 2™ < Im(Zn(t,s)) >
based on the FCF of two random signdlandy : me

2 is a central chi-squared random variable of second order.
Th= — Z a(X! —=xg(Y/ —=Y/) 2 is a specific Z 2 symmetrical matrix based on the variance

n2 0] ) ) and the covariance of the component&gft,s), further de-
tails can be founded in [16]. Using the fact thB(t,s) is
S-S/ - Xi')g(Yj' -Y)) a central chi-squared random variable, one can easily prove

f that ProHT (t,s) < 5.9915} = 0.95. Our experimental stu-
dies show that :
/

2
+— Y aXj = XNa(Ye—Y) (17) — The norm ofZ,(t,s) often gives better results than the
i minimum value ofT (t,s).
— The obtained values depend on the original sources.

whereg is an adequately chosen function (see [15] for This inconvenientis common to previous performance
further details) X’ = &~ ($1-3) is the approximation of indices.
the score function oK, and®(X) is the PDF of zero mean — For beta random variable, good results have been ob-
and unite variance Gaussian signal. Our experimentalestudi tained. On the other hand, we noticed bad results for
show that the computing time is the main drawback of this ~ uniform random signals. _
performance index. We should mention that for stationary si — For acoustic signals, we noticed good results for ins-
gnals, this performance index is a consistence one. Unfor-  tantaneous mixture and bad ones for convolutive mix-
tunately, the last nice property is useless in our appbcati tures.

since the acoustic signals are non-stationary signals. — Computing time is important.
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