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ABSTRACT

We propose a new method for detecting separate conversa-

tions between people. In this paper, to model the rules of

turn-taking in conversation, we introduce sparsity constraints

of temporal activities within each cluster into the probabilis-

tic latent component analysis (PLCA). The proposed method

can detect conversation groups by using PLCA on the within-

cluster sparsity constraints although the conventional PLCA

has no effectiveness in clustering. Our method has two fea-

tures: First, it can be applied to the cases that more than two

speakers participate in the same group, for which the within-

cluster sparsity constraints can be defined. Second, it has the

practical advantage that it requires no training phase. Despite

the lack of any training phase, experimental results indicate

that the proposed method remains effective in scenarios where

three speakers participate in the same group.

Index Terms— conversation clustering, direction of ar-

rival estimation, probabilistic latent component analysis, turn-

taking, sparsity

1. INTRODUCTION

Automatic conversation analysis is an important technology

to realize speech summarization and robots with communi-

cation capabilities. One of the main tasks in automatic con-

versation analysis is to detect groups of people that partici-

pate in the same conversation group under the condition that

unplanned multi-groups exist simultaneously. Hereafter, this

task is called “conversation clustering.”

Several studies exist in the field of conversation cluster-

ing [1, 2, 3, 4, 5, 6, 7]. Assuming the condition that all the

participants use wearable microphones, Nakakura et al. [1]

focused on the well-known fact that participants of the same

conversation group tend to be near one another, and they as-

sumed that each participant’s voice recorded by his/her mi-

crophone is louder than the recorded voices of other groups.

Based on this assumption, clustering is performed by correlat-

ing amplitudes input at microphones. However, the assump-

tion does not hold in the case that participants of different

groups are near each other in typical office environments. In

most of the studies, conversation groups were detected by fo-

cusing on the timing characteristic of utterances in conversa-

tion [2, 3, 4, 5]. The typical timing characteristic of utter-

ances is the turn-taking rules that “minimize gap and over-

lap” between speakers. These studies on conversation clus-

tering employ the mutual information (MI) of voice activity

between speakers to model the turn-taking rules. However,

these existing approaches have two problems: First, it is nec-

essary to attach wearable microphones to each person in a

conversation; second, these approaches cannot be applied in

the case that more than two speakers participate in the same

group, because MI can only be defined for two speakers. To

solve the first problem, direction of arrival (DOA) estimation

was combined with MI-based conversation clustering to cre-

ate so-called “DOA-MI [6].” To solve the second problem,

an extension of DOA-MI that matches voice activities with

turn-taking of more than two speakers modeled by the Hidden

Markov Model (DOA-HMM) was proposed [7]. DOA-HMM

is effective in the case that more than two speakers belong

to the same group. However, it has the disadvantage that the

HMM requires training phases.

In the present study, a new conversation clustering method

is proposed. This method has two key features: First, it is

applicable in the case that more than two speakers partici-

pate in the same group; second, it requires no HMM train-

ing phase. To model the turn-taking rules in the cases of

two speakers and more than two speakers, sparsity constraints

of temporal activities within each cluster are introduced into

the probabilistic latent component analysis (PLCA) [8, 9, 10].

The proposed method can detect conversation groups by us-

ing PLCA on the within-cluster sparsity constraints, although

conventional PLCA has no effectiveness in clustering. It is

thus called “DOA-PLCA” and is applicable in the case that a

group has more than two speakers, because the within-cluster

sparsity constraints can be defined for more than two speak-

ers. Moreover, DOA-PLCA has no training phase because the

parameter of the within-cluster sparsity is invariant to changes

of speakers. Experimental results indicate that the method is

effective in the case of a three-speaker group in spite of the

fact that it has no training phase.

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 619

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144785225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. PROBLEM STATEMENTS AND NOTATION

It is assumed that K speakers exist, and the set of the speak-

ers is defined as S = {1, · · · ,K}. The voices of the speak-

ers are recorded at a microphone array that consists of M

microphones. The recorded signals are analog-to-digital

converted and analyzed by the short-time Fourier trans-

form. These multi-channel signals represented as x(f, τ) =

[x1(f, τ) · · ·xM (f, τ)]
T

, where xm(f, τ) is the input signal

of the m-th microphone, f is the index of a frequency bin,

and τ is the frame index. x(f, τ) is modeled as follows:

x(f, τ) =

K
∑

k=1

ak(f)sk(f, τ) + b(f, τ), (1)

where ak(f) is a complex vector that represents the im-

pulse responses of the frequency domain for the k-th speaker,

sk(f, τ) is the source signal of the k-th speaker, and b(f, τ)
is background noise. Here, ak(f) is the normalized vector

such that |ak(f)| = 1.

Next, we estimate the direction of arrival (DOA) θ(f, τ) in

each (f, τ) by modified delay-and-sum beamformer (MDSBF)

[11] as follows:

θ̂(f, τ) = argmax
θ

∣

∣aθ(f)
H
x(f, τ)

∣

∣

2
, (2)

where aθ(f) is the vector of the theoretical impulse responses

for discrete direction θ, superscript H represents Hermitian

transposition, and this vector can be calculated from the con-

figuration of the microphones. A DOA histogram H(θ, τ) is

created by voting for direction θ̂(f, τ) as follows:

H(θ, τ) =
∑

f

|a
θ̂(f,τ)(f)

H
x(f, τ)|2 (3)

The goal of conversation clustering is to estimate the set

of the directions of each speaker D = {θ1 · · · θK} and the set

of the clusters X = {C1, · · · , CN} from the given H(θ, τ),
where N is the number of clusters, each cluster Cn is a dis-

joint subset of the set of speakers S , where n is the index of

a cluster, and all the speakers in Cn participate in the conver-

sation group that corresponds to Cn. The clusters are called

“conversation clusters” hereafter.

3. CONVENTIONAL METHODS

3.1. MI-based clustering

MI-based clustering (DOA-MI) [6] assumes the turn-taking

rules that “minimize gap and overlap” between speakers, the

concept of which was pioneered by Sacks [12]. The turn-

taking rules can be interpreted that, in the frames when the

voice of one speaker is active, those of the other speakers are

inactive at a high probability. DOA-MI utilizes the mutual

information to represent this inverse correlation of the voice

activities.

First, this approach estimates the directions of each

speaker θ̂k. θ̂k can be calculated as the centroid of k-means

clustering for θ weighted by w(θ) =
∫

H(θ, τ)dτ . Next, the

voice activities of each speaker vk(τ) = 0, 1 in each frame τ

are estimated by voice activity detection (VAD) for H(θ̂k, τ).
Then, conversation clusters are detected by agglomerative

clustering for MI between speakers. MI between the k-th

speaker and the l-th speaker, µ(k, l), is defined by Basu [3]

as follows:

µ(k, l) =
∑

bk,bl∈{0,1}

P (vk = bk, vl = bl)

× log
P (vk = bk, vl = bl)

P (vk = bk)P (vl = bl)
, (4)

where

P (vk = bk, vl = bl)

=



















1
T

∑T
τ=1 vkvl if (bk, bl)=(1, 1),

1
T

∑T

τ=1 vk(1− vl) if (bk, bl)=(1, 0),
1
T

∑T

τ=1(1− vk)vl if (bk, bl)=(0, 1),
1
T

∑T

τ=1(1− vk)(1− vl) if (bk, bl)=(0, 0),

P (vk = bk) =

{

1
T

∑T
τ=1 vk if bk = 1,

1
T

∑T
τ=1(1− vk) if bk = 0,

and T is the number of the frames.

DOA-MI is effective for many cases, but cannot be ap-

plied in the case that more than two speakers belong to the

same cluster because MI can be defined only for two speak-

ers.

3.2. HMM-based approach

The HMM-based approach (DOA-HMM) [7] is an extension

of DOA-MI to more than two speakers. DOA-HMM models

turn-taking within groups as the HMM for each number of

speakers that belongs to the same cluster. It detects conver-

sation clusters by matching the HMM to voice activities of

combinations of speakers in place of clustering for MI.

Here, we assume L speakers (p1, · · · , pL) participate in a

conversation cluster C. We introduce the HMM that models

turn-taking within C = {p1, · · · , pL} as follows: The number

of states of the HMM is L, each state of the HMM represents

that the corresponding speaker has a turn, and the HMM out-

puts the observation symbol V C(τ) = [vp1
(τ) · · · vpL

(τ)] in

frame τ , where vpi
(τ) represents the voice activity of speaker

pi. Now, we can observe the voice activities of all the speak-

ers V (τ) = [v1(τ) · · · vK(τ)]. Therefore, we can formulate

the problem as the maximization of the probability distribu-

tion that the combination of the HMM generates the sequence
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of observation symbols V (1), · · · ,V (T ) as follows:

X̂ = argmax
X

P (V (1), · · · ,V (T )|X )

= argmax
X

N
∏

n=1

P (V Cn
(1), · · · ,V Cn

(T )|Cn). (5)

P (V Cn
(1), · · · ,V Cn

(T )|Cn) can be calculated from the

HMM defined above. DOA-HMM is effective in the case that

more than two speakers take part in the same group. How-

ever, it has the disadvantage that the HMM needs training

phases.

4. CONVERSATION CLUSTERING BASED ON

PLCA

4.1. PLCA model

A new conversation-clustering method, called DOA-PLCA,

which solves the disadvantage of DOA-HMM, is proposed

in the following. The turn-taking rules in conversation are

modeled as sparsity constraints of temporal activities within

each cluster in PLCA [8][9]. DOA-PLCA detects conversa-

tion clusters by using PLCA on the within-cluster sparsity

constraints. It can be applied in the case that more than two

speakers participate in the same group because the within-

cluster sparsity constraints can be defined for more than two

speakers. Furthermore, it has no training phase because the

parameter of the within-cluster sparsity is invariant to changes

of speakers.

The observed DOA histogram H(θ, τ) can be modeled

as a linear combination of non-negative basis components

that correspond to speakers, where the voice activity of each

speaker is generated probabilistically in each frame, and the

mixing weights increase in the frame when the voice of cor-

responding speaker is active. The generation model of PLCA

[8] is such a probabilistic non-negative mixing model. The

generation process of H(θ, τ) was thus modeled by using the

PLCA model as follows:

P (H(θ, τ)∀θ, τ) =
∏

τ

∏

θ

{

K
∑

k=1

Pτ (k)P (θ|k)

}H(θ,τ)

,

(6)

where Pτ (k) is the probability that the voice of the k-th

speaker is active in frame τ , and P (θ|k) represents the prob-

ability distribution that the voice activity of the k-th speaker

votes at θ in the DOA histogram. Pτ (k) is called the “proba-

bilistic activity,” and P (θ|k) is called the “probabilistic basis

component.” Equation (6) leads to the log-likelihood

logP (H(θ, τ)∀θ, τ)=
∑

τ

∑

θ

H(θ, τ) log
K
∑

k=1

Pτ (k)P (θ|k).

(7)

Pτ (k) and P (θ|k) that maximize Eq. (7) can be calculated

by the expectation-maximization (EM) algorithm similarly to

the conventional PLCA proposed by Raj [8]. However, these

estimates of Pτ (k) and P (θ|k) are not the solutions of the

conversation clustering problem. To detect conversation clus-

ters, “within-cluster sparsity constraints” that model the turn-

taking rules in Section 4.2 are introduced in the following.

4.2. Solution of PLCA by using within-cluster sparsity

constraints

The within-cluster sparsity constraints model the turn-taking

rules, which “minimize gap and overlap” between speakers

within the same conversation group. The constraints represent

that the voice of only one speaker is active in every frame at a

high probability in the same conversation cluster. The aim of

using the constraints is to correspond the estimates of P (θ|k)
to the indices of speakers of each conversation cluster.

To use sparsity constraints of the whole probabilistic ba-

sis component, Shashanka [9] introduced “entropic priors”

into PLCA. PLCA has the advantage that it makes it possi-

ble to use a priori knowledge of domains like these methods.

We also introduce the entropic priors to represent the within-

cluster sparsity constraints and solve the clustering problem.

The objective function is defined by adding the term of en-

tropic priors to Eq. (7) as follows:

J ({Pτ (k)} , {P (θ|k)})

=
∑

τ

∑

θ

H(θ, τ) log
K
∑

k=1

Pτ (k)P (θ|k)

−β
∑

n

∑

τ

E({Pτ (k)}k∈Cn
), (8)

where β is the parameter of the within-cluster sparsity of

Pτ (k), and E({Pτ (k)}k∈Cn
) is the α-order Renyi’s entropy

defined as E({Pτ (k)}k∈Cn
) = 1

1−α
log

∑

k∈Cn
Pτ (k)

α
. The

second term of Eq. (8) corresponds to the within-cluster

sparsity of Pt(k). Equation (8) has two notable features.

One is that the within-cluster sparsity can be defined in the

case that more than two speakers belong to each cluster Cn.

DOA-PLCA is thus applicable to the case that more than two

speakers participate in the same group. The other feature is

that the within-cluster sparsity has only one a priori parame-

ter, β. Unlike the state transition and emission probabilities

of the HMM, β is invariant to changes of speakers, and we

can use β that is tuned once for different scenes. Therefore,

DOA-PLCA need no training phase.

By maximizing the objective function J ({Pτ (k)} ,
{P (θ|k)}) in Eq. (8), the following EM algorithm is ob-

tained to estimate Pτ (k) and P (θ|k):
E step:

Pτ (k|θ) =
Pτ (k)P (θ|k)

∑K
k′=1 Pτ (k′)P (θ|k′)

, (9)

M step:

Pτ (k) = g(β,
∑

θ

H(τ, θ)Pτ (k|θ)), (10)
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Fig. 1. Experimental setup.

P (θ|k) =

∑T
τ=1 H(τ, θ)Pτ (k|θ)

∑K

k′=1

∑T

τ=1 H(τ, θ)Pτ (k′|θ)
, (11)

where g(β, γk) is the α-order Renyi’s entropic prior, which

can be calculated by an iteration process as follows:

1. h(k) = βγk +
α

α− 1

g(β, γk)
α

∑

k′∈Cns.t.k∈Cn
g(β, γk′)α

2. g(β, γk) =
h(k)

∑

k′∈Cns.t.k∈Cn
h(k′)

3. Return to 1 until convergence.

The difference between the above estimation process and

the conventional PLCA [9] is that the areas of the sparsity

constraints are limited to within each cluster. The conven-

tional PLCA has no effectiveness in clustering. However, the

within-cluster sparsity constraints enable PLCA to perform

clustering. This clustering process can detect correspon-

dences between the indices of speakers k and the basis com-

ponents P (θ|k′) such that the temporal activities of speakers

in the same cluster follow the turn-taking rules.

5. EXPERIMENTAL RESULTS

The performance of the proposed method was evaluated as

follows. Five speakers and a micropone array were config-

ured as shown in Fig. 1. The microphone array consists of

eight microphones configured in a semicircle with radius of

80 mm. The reverberation time RT60 is 310 milliseconds.

Casual conversations between the speakers were recorded at

8 kHz sampling rate and 16 bit-per-sample. The conversations

were recorded under the following two conditions:

Condition 1: Three-speaker conversation C1 = {k=1, 2,
3} and two-speaker conversation C2 = {k=4, 5}.

Condition 2: Two-speaker conversation C1 = {k=1, 2} and

another two-speaker conversation C2 = {k=4, 5}.
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Fig. 2. Example of estimates of the basis component P (θ|k)
for Condition 1 (C1 = {k=1, 2, 3} and C2 = {k=4, 5}). X

and Y axis show the azimuth θ and P (θ|k). Each line repre-

sents the corresponding speaker.
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Fig. 3. Example of estimates of activity Pτ (k) for condition

1 (C1 = {k=1, 2, 3} and C2 = {k=4, 5}). Top: C1. Bottom:

C2. X and Y axis show frame τ [sec] and Pτ (k). Each line

represents the corresponding speaker.

32 sessions and 7 sessions were recorded under condition 1

and condition 2 respectively. The length of each session was

60 seconds.

Figure 2 and 3 illustrate an example of the estimation

results. As shown in Fig. 2, all the correct directions of

the speakers were estimated, and the speakers were corre-

sponded to the correct clusters. According to Fig. 3, the esti-

mated activities followed the turn-taking rules within clusters.

These results indicate that the proposed method works well.

Next, the accuracy of the proposed method was compared

with that of existing methods. The accuracy is calculated by

Accuracy = NB

NA
, where NA is the total number of sessions,

and NB is the number of sessions in which all the speakers

are clustered into the correct clusters. “DOA-MI” and “DOA-

HMM” represents the conventional methods based on mutual
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Table 1. Accuracy by using DOA-MI, DOA-HMM, DOA-

PLCA without WCSC, and the proposed method (DOA-

PLCA with WCSC) for each condition.

Method Condition 1 Condition 2

DOA-MI 0.53 (17/32) 0.86 (6/7)

DOA-HMM 0.88 (28/32) 0.86 (6/7)

DOA-PLCA without WCSC 0 (0/32) 0.29 (2/7)

DOA-PLCA with WCSC 0.81 (26/32) 0.86 (6/7)

information [6] and the HMM [7], respectively. “DOA-PLCA

with within-cluster sparsity constraints (WCSC)” represents

the proposed method. “DOA-PLCA without WCSC” is a ver-

sion of the proposed method in which the number of clusters

is set to one. This version corresponds to conventional PLCA.

The HMM parameter set of DOA-HMM was trained by using

the Baum-Welch algorithm [13]. The training data were all

the data except the test session. In DOA-PLCA with WCSC,

the number of clusters was set as N = 2. The accuracy of

each method is listed in Table 1. Under condition 1 (three-

speaker group), the accuracy of DOA-MI is much lower than

that of the other methods. This is due to the fact that mutual

information is defined only for two speakers. On the other

hand, the accuracy of the proposed method is over 80%, and

this performance is comparable to that of DOA-HMM, which

needs a training phase. As Table 1 shows, DOA-PLCA with-

out WCSC corresponding to the conventional PLCA has no

effectiveness in clustering. This result shows that the within-

cluster sparsity constraints enable PLCA to perform cluster-

ing.

These results indicate that the within-cluster sparsity of

the proposed method can model the turn-taking rules in three-

speaker groups and that the method is effective in the case

that there is a three-speaker group. In addition, the proposed

method needs no training phase (unlike DOA-HMM).

6. CONCLUSION

A new method for conversation clustering in the case that

more than two speakers participate in the same group and in

the case that it is difficult to perform training was proposed.

To model the turn-taking rules in conversation in the cases of

two speakers and more than two speakers, sparsity constraints

of temporal activities within each cluster were introduced into

PLCA. The proposed method can detect conversation groups

by using PLCA on the within-cluster sparsity constraints al-

though conventional PLCA has no effectiveness in clustering.

Experimental results indicate that the method is effective in

the case of a three-speaker group in spite of the fact that it

needs no training phase.
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