

ALMA: Exocometary gas in the HD 181327 debris ring

Sebastian Marino University of Cambridge 19 May 2016

L. Matrà, C. Stark, M. C. Wyatt, S. Casassus, G. Kennedy, D. Rodriguez, B. Zuckerman[,] S. Perez, W. R. F. Dent, M. Kuchner, A. M. Hughes, G. Schneider, A. Steele, A. Roberge, J. Donaldson and E. Nesvold.

Credit: NASA/JPL-Caltech

Debris disks and gas

- Byproduct of planet formation
- Collisional cascade between um- to km-sized bodies (see Wyatt 2008)
- Kuiper belt analogues present in at least 20% of FGK stars (e.g. Eiroa+2013)
- ~8 gas detections (4 CO) until now, but only around young A stars (Moor+2015).
- Ongoing debate about gas origin: Primordial or secondary?

HD 181327 debris disk

- F6V ~23 Myr old star
- Debris disk of radius 90 AU
- e ~ 0.02
- Asymmetric in scattered light:
 - Giant collision
 - or warping by ISM

Deprojected, smoothed fractional residuals

ALMA: dust continuum

- Band 6 (1.3 mm)
- S/N ~ 30
- Radius ~90 AU
- Axisymmetric
- Width of ring marginally resolved:

ALMA: dust continuum

- Band 6 (1.3 mm)
- S/N ~ 30
- Radius ~90 AU
- Axisymmetric
- Width of ring marginally resolved:

Dust continuum modeling

MCMC+RADMC fitting in visibility space

- $\Delta r = 23 \pm 1 \text{ AU}$
- H/r ≤0.14

Peak radius smaller than in scattered light

-> grain size segregation?

£.

0^{,9}

0.15

0,09

0.96

. رک^م

86[.]X

£.

 $r_0 \, \left[A U \right]$

Double ring?

- No significant asymmetries
- Significant residuals at R~200 AU
- Visible in azimuthal average
- Origin:
 - Dust/planetesimals in eccentric orbits?
 - Gap?
 - Planet disk secular interactions? (Pearce & Wyatt 2015)

CO gas

CO (2-1) Clear detection?

CO gas

CO gas

Azimuthally averaging:

- $F_{CO} = 30.1 \pm 5.4$ mJy km/s
- No signs of asymmetries
- Gas co-located with dust

Constrains on the CO gas mass

- MCMC+RADMC+non-LTE CO fitting
- $M_{CO} \sim 1.2-2.9 \times 10^{-6} M_{\oplus}, r_{CO}=81 \pm 10 \text{ AU}$
- Gas co-located, but ∆r unconstrained
- CO/dust ratio 2 orders of magnitude lower

than in B Pic at the same age !!

CO origin

- Gas co-located with dust and planetesimals
- N_{co} (+ N_{H2} if primordial) —> photodissociation timescale ~150-200 yr

—> secondary origin

- CO gas must be released from:
 - Icy bodies in collisions
 - Through photodesorption
 - Product of CO₂ photodissociation (~30 yr)

CO Cometary composition

- CO production rate determined by Mass loss rate of planetesimals.
- Then in steady state:

$$\dot{\mathrm{M}}_{\mathrm{co}}^{+} = f_{\mathrm{CO}} \times \dot{\mathrm{M}} = \frac{\mathrm{M}_{\mathrm{CO}}}{\tau_{\mathrm{co}}} = \dot{\mathrm{M}}_{\mathrm{co}}^{-}$$

- —> fco ~ 0.3%-11% given all the uncertainties in M_{CO} and dM/dt.
- Solar system comets have fco~ 0.3-16% (Mumma & Charnley 2011)
- It is roughly consistent with Solar system comets, despite the age difference.

Scattered light asymmetries?

- The asymmetry can be explained by
 - Very recent giant collision (<5 orbits)
 - Big body releasing small dust

However, no counterpart in mm-sized dust or in the CO distribution.

• PF effect caused by a warp?

Summary and Conclusions

- Ring of planetesimals at 86 AU and $\Delta r = 23$ AU.
- No signs of a giant collision. —> warped disk?
- CO gas co-located with dust. CO mass ~10⁻⁶ M_{\oplus} .
 - CO/dust mass << ß Pic (F vs A star?).
- Gas is of secondary origin.
- CO ice fraction consistent with Solar System comets.

Thanks!

ESO - 2016 - Planet formation

Sebastian Marino

1 m

Gas - dust interactions

Total gas mass assuming:

- gas composed by CO+H₂O+photodissociation products
- CO/H₂O in comets
- C/CO in ß Pic

$$\tau_{\rm fric} \simeq 3 \times 10^3 \left(\frac{\rm M_{gas}}{0.04 \rm \ M_{\oplus}}\right)^{-1} \left(\frac{a_d}{1 \rm \ mm}\right) \left(\frac{T_k}{50 \rm \ K}\right)^{-1/2} \Omega_K^{-1}$$
$$\tau_{\rm coll} \simeq 200 \left(\frac{a_d}{1 \rm \ mm}\right)^{1/2} \Omega_K^{-1}$$

-> It is unlikely that dust distribution is shaped by gas (Lyra & Kuchner 2013)

CO as a result of CO2

CO₂ photodissociates in ~30 yr << τ_{co}

--> N_{CO} traces primordial N_{CO}+N_{CO2}

 $\longrightarrow (N_{CO}+N_{CO2})/N_{H2O} \sim 0.4 - 18\%$

Consistent with Solar system comets (2-27%)