

Runtime network-level monitoring framework in the

adaptation of distributed time-critical Cloud applications

Salman Taherizadeh
1,4

, Andrew C. Jones
2
, Ian Taylor

2
, Zhiming Zhao

3
, Paul Martin

3
, and Vlado Stankovski

4

1
Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia

2
School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom

3
Informatics Institute, University of Amsterdam, Amsterdam, Netherlands

4
Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia

 {Salman.Taherizadeh, Vlado.Stankovski}@fgg.uni-lj.si, {JonesAC, TaylorIJ1}@cardiff.ac.uk, {Z.Zhao, P.W.Martin}@uva.nl

Abstract - Many distributed time-critical applications have

emerged on the Internet in recent decades, involving for

example sensor-based early warning systems, online gaming

and instant messaging. Such applications can be virtualised

and distributed in a federated Cloud environment. Ensuring

that these types of application are able to offer favourable

service quality has been a challenging issue due to runtime

variations in network conditions intrinsic to connections

between individual application components replicated and

distributed across different Cloud infrastructures. In this

paper, we propose a lightweight method for performing

network-level monitoring that can be used to guide the

autonomous selection of optimal connections between

running components, so improving distributed application

performance at runtime. This solution contributes towards

realising self-adaptation capabilities for time-critical

applications by implementing a non-intrusive monitoring

technique for key network-level parameters including round-

trip time (RTT), packet loss, throughput and/or jitter. The

experimental results show that the proposed framework has a

low communication overhead and requires little processing

power and memory capacity.

Keywords: Monitoring System, Network QoS, Distributed Time-

Critical Applications, Multi-Cloud Environment

1. Introduction

In recent years, time-critical systems such as early warning

systems, multimedia applications and Cloud-based gaming

have emerged as Internet services which are increasingly

widely used and important, especially to organisations that

want to leverage the benefits of distributed applications.

Decomposing such complex applications, each application

component can be distributed to a different machine such that

each component interacts with other components regardless

of deployment location. Accordingly, by using a multi-Cloud

environment, companies can use Cloud infrastructures to run

and replicate their application components in different

locations.

Time-critical applications have specific network QoS

(Quality of Service) requirements between their components,

such as demanding minimal delay and packet loss, and

require suitable support to achieve guaranteed application

performance for their users. This is a challenge because the

network connection quality between different components, as

a key influencer of the overall application performance, is

difficult to maintain when Cloud infrastructures continuously

change. In particular, time-critical Cloud application

providers have to dynamically adapt their services to network

conditions to deliver high performance and a seamless

experience. In essence, the main problem encountered by

time-critical service providers is that there are limited

automated and intelligent adaptation capabilities in existing

Cloud infrastructures based on real-time network features that

can be used to satisfy application performance requirements.

Therefore, to avoid application performance issues, providers

must carefully monitor the network QoS of connections

within and between all of their own servers hosting

application components in different Cloud infrastructures; all

while being non-intrusive to the ordinary operation of the

application [1].

This paper presents a lightweight monitoring approach

based upon a non-intrusive design intended to enable

distributed applications to autonomously reconfigure and

adapt to changing network conditions at runtime. Replicating

application components in different Cloud infrastructures to

increase availability and reliability under various network

conditions and varied amounts of traffic, and dynamically

connecting each component to the best possible component in

each different tier, together offering fully-qualified network

performance, is often an essential requirement for providers

of time-critical applications running on the Cloud. If such a

network performance metric can be measured, then the

system can be made automatically capable of improving the

deployment of an application when performance drops.

Under our proposed system, the network performance metric

is a combination of measurements including network

throughput, round-trip time, packet loss and/or jitter, which

can be measured and responded in order to enhance

application performance and hence user experience.

The rest of the paper is organised as follows. Section 2

presents summary of related work supporting network-level

Cloud monitoring. Section 3 describes the use case. Section 4

discusses the architecture and implementation of our

proposed approach, followed by empirical evaluation results

and finally conclusion respectively in Sections 5 and 6.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144785054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Related Work

To achieve the objective of providing high-quality services

in time-critical systems, it is essential to implement

trustworthy techniques that can be responsible for

maintaining QoS when considering the limitations imposed

by the network. There have been many research approaches,

all trying to provide QoS guarantees over Cloud networks.

Anouari and Haqiq [2] analysed the performances of VoIP

and Video stream traffic that is characterized by the ability to

transmit real-time and interactively visual and auditory

information. These types of traffic are highly delay-intolerant

and need high priority transmission. Addressing this concern,

their study was focused on using different service classes

with respect to QoS parameters such as average delay,

average jitter and throughput. Sodangi [3] designed and

simulated two Cloud-based networks. The first scenario

involved running multimedia applications (voice and video)

and the second one involved running traditional applications

(email, file transfer, web browsing). These were compared,

and the main finding was that multimedia applications need

appropriate throughput and are sensitive to delay, resulting in

data loss, whereas traditional applications can use minimum

throughput and with typical data loss levels are normally

insensitive to changes in delay. In [4], the results showed that

network performance varies substantially from one Cloud

provider to another. Their approach can guide customers in

selecting the best-performing provider for their applications.

To measure the performance of internal connections between

a customer’s instances and to the shared services offered by a

Cloud, they used throughput and latency as metrics.

With regard to network-based measurement, associated

QoS attributes change constantly and so network-layer

parameters need to be closely monitored. Table 1 shows the

most important metrics to be analysed for Cloud network

measurement: (I) Throughput, which is the average rate of

successful data transfer through a network connection. (II)

RTT, which is the time elapsed from the propagation of a

message to a remote place to its arrival back at the source.

(III) Packet loss, which occurs when one or more packets of

data traveling across a network fail to reach their destination.

(IV) Jitter, which is the variation in the delay of successive

packets.

Lampe et al. [5] mostly focused on the QoS parameter of

latency, since this parameter plays an important role in the

overall game experience. The authors conducted their

research only on network latency measurement. Their

experiments could be extended through the consideration of

additional metrics; for example, the effects of network

disturbances, such as increased packet loss or fluctuating

throughput. Samimi et al. [6] introduced a model including a

network-based monitoring system and the enabling of

dynamic instantiation, composition, configuration and

reconfiguration of services on an overlay network. Mohit [7]

selected throughput, RTT and data loss for Cloud network

measurement. The author suggests a solution that involves

use of different technologies such as high-capacity edge

routers which have a high cost and cannot be afforded in all

use cases. Cervino et al. [8] presented an experimental

validation of the Cloud infrastructure's ability to distribute

streaming sessions with respect to some key streaming QoS

parameters. Next, the authors performed experiments to

evaluate the benefits of deploying VMs in Clouds to aid P2P

streaming, by measuring the QoS improvement. Chen et al.

[9] focused on the users’ perspective in Cloud gaming

systems; from their point of view, the QoS metrics have an

important effect on gaming experience. In other words, they

proposed a suite of measurement techniques to evaluate the

QoS of Cloud gaming systems.

Table 1. Relevant research on network-based measurement of Cloud environment performance

Title Field Measured Metrics Results

To frag or to be fragged
- an empirical
assessment of latency
in cloud gaming [5]

Audio/video
stream

Limitations of the network
infrastructure, such as high latency,
potentially affect the QoS of the
cloud gaming system.

While cloud gaming substantially reduces the demand
of computational power on the client side, thus enabling
the use of thin clients, it may also affect the QoS
through the introduction of network latencies.

Service clouds:
distributed
infrastructure for

adaptive communication
services [6]

Adaptive
communication

services

Monitors carry out measurements on
data streams. The metrics can be
generic in nature (e.g., packet delay
and loss rate) or domain-specific
(e.g., jitter in a video stream).

Service clouds are distributed infrastructures which are
designed to facilitate rapid prototyping and deployment
of adaptive communication services in clouds, and they
are appropriate choices when service platforms’
workloads are dynamic or they need a lot of resources.

A comprehensive
solution to cloud-traffic
tribulations [7]

General
systems

Regarding network-based
measurement, the three significant
parameters to be analysed are
throughput, RTT and data loss.

Computation-based infrastructure measurement is
insufficient for the optimal operation and future growth
of the cloud. Network-based measurements of the cloud
computing service are also very important.

Testing a cloud
provider network for
hybrid p2p and cloud
streaming architectures
[8]

Online real-
time

streaming

Authors considered four very
important network parameters for
video/audio streaming and for many
other real-time services: bandwidth,
delay, jitter and packet losses.

Using a cloud network infrastructure to cross continents
has improved the majority of QoS problems. It means
that using connections between distant cloud
datacentres can help to improve the QoS response of
streaming even in videoconferencing P2P systems.

On the quality of
service of cloud gaming
systems [9]

Cloud gaming
systems

Authors concentrate on the metrics
related to network conditions namely
delay, packet loss, bandwidth and
also other types of metrics which are
graphic quality and frame rate.

Packet loss and bandwidth limitations impose negative
impact on the frame rates and the graphic quality in the
cloud gaming systems. The network delay does not
predominantly affect the graphic quality of the games on
the cloud gaming systems.

3. Use Case

A typical example for time-critical services considers

disaster early warning systems developed for the purpose of

providing proper alert before disaster occurs. Figure 1 depicts

the basic framework of such a system.

Figure 1. The basic framework of an early warning system

All application components are defined in Table 2. IP

Gateway and RTU cannot be virtualized as these components

have physical items like attached antennas.

Table 2. Components of a disaster early warning system
Component Functionality Type

Call
Operator

The Call Operators decide
whether or not to send an alert to
emergency systems or to the
public.

Dedicated
and ad-

hoc
agents

CC Server
(Contact
Centre
Server)

The server checks sensed data
stored in DB Server and statistics
in real-time and sends
notifications (such as e-mail, SMS
or voice call via SIP based IP
telephony or ordinary PSTN) to
Call Operators if values are
outside predetermined thresholds
for sensors.

Apache
web

server

DB Server
(Database
Server)

This is a Time Series Database
which is used for storing and
handling sensed values indexed
by time.

Cassandra

IP Gateway The IP Gateway is a node that
allows communication between
networks. It receives data over
direct radio link or GSM/GPRS
from sensors, aggregates the
data and sends the data to the
database.

E.g.
TA900e or
Cisco-ASA

RTU Remote terminal units (RTUs)
connect to sensors in the process
and convert sensor signals to
digital data.

E.g.
Modbus-

RTU

Sensors Sensors can measure
temperature, barometric pressure,
humidity and other environmental
variables.

E.g.
DHT11

In this case, the overall application performance is the

system’s reaction time, which means the length of time taken

from sensor data acquisition to when a notification is sent to

the Call Operator. This application performance metric is

mainly affected by the network communication quality

between the DB Server and the CC Server. Due to the Cloud-

based environment, several DB Servers and CC Servers can

be running in various Cloud providers’ infrastructures in

different geographical locations, all connecting with each

other. Assume that the data is replicated among DB Servers

and also that each CC Server is dedicated to a certain number

of Call Operators who must send warning messages through

various communication channels in each region. The

proposed mechanism aims at providing the ability to connect

each CC Server to the best possible DB Server which has the

superior network QoS in relation to the CC Server. Therefore,

a Monitoring Probe is running on each CC Server’s VM to

measure the network performance metric (NPM) between the

CC Server and every single DB Server. Our proposed

approach shows how different Cloud providers can offer

varying network performance in the execution of real-time

applications depending on various aspects. We introduce (1)

to calculate NPM including three important network

parameters which are network throughput (NT), average

delay (AD) and packet loss (PL).

AD

NT
PL

NPM

*
100

1 









 (1)

In this use case, jitter is not taken into account; since this

disaster early warning system is not a real-time service

involving e.g. video/audio streaming in which lower jitter is

advantageous (because lower jitter means the delay times are

more consistent, and therefore a connection is more stable).

4. Architecture and Implementation

Cloud-based applications can be viewed from both design-

time and run-time perspectives. In the design-time view, the

whole Cloud service, including application topology and

application components, is shown. In the run-time view,

instances of application components are examined as they are

deployed and executed in VMs. Considering these two views,

Figure 2 presents an overview of the proposed architecture to

make an effective improvement in the performance of the

aforementioned disaster early warning system. In this figure,

at run-time, for example there are three running CC Servers

and two running DB Servers which are dynamically

connected to each other in the best possible way to maximise

the overall application performance.

Network QoS between these two components (DB Server and CC Server) strongly influences the overall application performance

Figure 2. Overview of the proposed architecture to improve the performance of early warning system

Figure 3. Pseudocode for Monitoring Probe which is
deployed along with the CC Server

As depicted in Figure 2, this monitoring system employs a

number of distinct components. The Network Monitoring

Probe is responsible for monitoring network QoS parameters

of links between instances of two application components

(the DB Server and the CC Server). For each CC Server, the

network performance metric for every connection with

potential DB Servers is simultaneously evaluated periodically

at regular intervals by a Network Monitoring Probe. The

pseudocode of the developed algorithm for the Monitoring

Probe is depicted in Figure 3.

The Monitoring Manager is responsible for aggregating

and analysing network QoS data received from Monitoring

Probes. The Monitoring Manager consists of two parts; a

Knowledge Base Engine and a Reasoning Engine. The

Knowledge Base Engine is responsible for all the work that

controls the collection of network QoS values as RDF

(Resource Description Framework) triples, along with

actually storing and also retrieving these data on disk. This

proposed monitoring system incrementally stores information

about the environment in a Knowledge Base (KB) that will be

used for interoperability, integration, analysing and

optimisation purposes. Maintaining a KB enables analysis of

long-term trends, supports capacity planning and allows for a

variety of strategic analysis like year-over-year comparisons

and usage trends. The Reasoning Engine is responsible for

network-based QoS analysis and evaluating relevant policies

such as interpreting the network performance metrics

between CC Servers and DB Servers. Therefore, based on

network-based analysis, the Reasoning Engine will return

decisions such as which CC Server should be automatically

and dynamically connected to which DB Server when current

conditions do not satisfy the expected requirements. Each

alternative possesses different attributes which can be

compared and evaluated using network-level criteria; the

proposed framework via the Reasoning Engine can then

choose the best one at real-time.

For our experiments, the actual network QoS parameters

for time-critical services are measured by using ICMP

(Internet Control Message Protocol) requests. The “ping” tool

operates by sending echo request packets to the target host

and waiting for an echo reply packets. It measures the round-

trip time from transmission to reception and reports errors

and packet loss. We used different command options to

enable the monitoring system to adjust the size of the ICMP

packet, determine the number of echo requests to send, and

specify wait period between pings. Moreover, we used an

option to set the “Do Not Fragment” bit on the ICMP packet

which does not allow fragmentation to occur in the path of

the data flow by intermediate routers. We implemented the

Knowledge Base Engine using a Jena Fuseki server to load an

1:

2:

3:
4:

5:

6:
7:

8:

9:
10:

11:

12:
13:

14:

15:

/* Probe resides in VMi where the CC Server is running */

/* Packet Loss (PL), Network Throughput (NT), Average Delay (AD) */

/* Network Performance Metric: NPM */
while(true){

 TS ← TimeStamp()

 for each DB Server running on a VMx do {
 PL ← Calculate_PL(VMi, VMx)

 NT ← Calculate_NT(VMi, VMx)

 AD ← Calculate_AD(VMi, VMx)
 NPM ← ((1 - (PL/100)) * NT)/AD

 Message ← Make_Message(VMi, VMx, TS, NT, AD, PL, NPM)

 Send_To_Knowledge_Base_Engine(Message)
 } // end of for

 wait(interval)

} // end of while

RDF dataset and make it accessible through a REST API as a

SPARQL endpoint, to expose the CRUD operations for

creating, retrieving, updating and deleting records. Jena

Fuseki is an open source, lightweight database server, easy to

install and able to efficiently store large numbers of RDF

triples on disk [10].

5. Empirical Evaluation Results

As a preliminary set of proof-of-concept results to test the

design of the monitoring components, we performed an initial

set of experiments to measure the network-based metrics

between a particular CC Server (Hosti) and two replicated DB

Servers (Hostx and Hosty) at runtime. Periodically (every 10

seconds), our Network Monitoring Probe deployed on the

VM, hosting also the CC Server, sends 10 ICMP packets to

the both DB Servers with a 0.2 second delay between sending

each packet, and then calculates the network metrics. The CC

Server will then be automatically connected to the DB Server

providing the highest connection quality.

The following experiment shows how this configuration

allows us to check the network-based QoS features related to

two different connections with the same source: the first link

between Hosti and Hostx and the second one between Hosti

and Hosty. Table 3 shows features of these three hosts. Hosti

which is a CC Server, belongs to the Flexiant Cloud

infrastructure in the United Kingdom. Two DB Servers—

Hostx and Hosty—are in different locations in Slovenia and

belong to different Cloud infrastructure providers: the

ARNES (the Academic and Research Network of Slovenia)

and the FGG (the Faculty of Civil and Geodetic Engineering,

University of Ljubljana).

Table 3. Features of infrastructures used in our experiment
 Feature Hosti Hostx Hosty

 Type CC Server DB Server DB Server
 OS Ubuntu 14.04 Debian 7.8 Ubuntu 14.04
 CPU(s) 2 1 1
 CPU MHz 2600.030 2666.760 2397.222
 Memory 1024 MB 1024 MB 1024 MB
 Speed 1000 Mbps 1000 Mbps 1000 Mbps
 IP 109.231.121.55 193.2.91.109 194.249.0.142
 Cloud Flexiant FGG ARNES

The round-trip delay gives the total end-to-end time, and

hence is an important metric in evaluating the performance of

the time-critical Cloud service. A lower average delay is

always preferred; because it takes less time for packets to

reach and return between the servers. Therefore, Figure 4

shows that according to the average delay, the network

quality of Hostx is a little bit better than that of Hosty for a

period of time.

Figure 4. Average Delay (ms) for 200 second

monitoring window

Time-critical Cloud applications require network services

with minimal packet loss. The possibility of packet loss

increases as traffic travels a longer distance and over more

hops in the network. Data loss has one of the biggest impacts

on time-critical applications, seriously affecting the quality of

services, and this is the reason that the network should be

engineered for zero percent packet loss. Our test system

showed that packet loss ratio was zero, which indicates that

there was no drop in either connection related to the servers

deployed during the experiment.

Network throughput is the amount of data moved

successfully from one place to another in a given time period.

It is possible to benchmark network throughput and find

bottlenecks in the network to ensure that network interfaces

are fast enough to achieve desired performance. The amount

of traffic in current high-speed, heavy-traffic and multi-

service networks increases continuously, and traffic

characteristics change heavily in time—for example network

throughput fluctuates due to time of day, server backup

operations, DoS (Denial of Service) attacks, scanning attacks

and other anomalous network traffic. The performance of

Cloud services must be independent of such states and must

continue to behave reliably in all possible cases. Our

proposed monitoring system sends ICMP packets, each one

containing 500 bytes of data, from the first node (CC Server)

to the second node (DB Server). Then it receives the results

including the average delay (“Avg”). To make the proposed

monitoring system lightweight, network throughput was

estimated from the latency based on (2), which converts bytes

per millisecond into kilobytes per second:

10

6

2 *

10*500

Avg
KB/s)roughput (Network Th  (2)

Figure 5 shows no major variation in throughput

belonging to either server; however in real-time systems,

continuous fluctuation is important to be taken into account.

Figure 5. Network Throughput (KB/s) for 200 second

monitoring window

Finally, regarding NPM, Figure 6 shows that Hosti has

better network performance quality with Hostx compared to

Hosty during the last 10 intervals. Therefore, if Hosti is

connected to the Hosty, adaptation should occur and thus

Hosti will be connected to the Hostx instead of Hosty.

Figure 6. Network performance metric (NPM) for 200

second monitoring window

By employing only the last measurement explained above,

this metric can have significant effect on the application

performance and hence users' satisfaction; Cloud services for

time-critical applications can automatically optimise the

process of choosing the best possible application components,

which are responsible for offering acceptable network QoS.

A challenge in designing a monitoring framework in the

Cloud environment is ensuring that the overhead of the

monitoring system is kept to the minimum [11]. The

distributed nature of proposed monitoring framework

quenches the runtime overhead of system to a number of

Monitoring Probes running across different VMs. A detailed

view on the resource consumption of the Monitoring Probe

revealed that our approach is lightweight in terms of CPU and

memory overhead. To confirm this, we applied the “top” tool

which provides a dynamic real-time view of tasks currently

being managed by the Linux kernel. Our running Monitoring

Probe consumes only 0.3 percent of the whole CPU time and

3.1 percent of the whole memory usage in average.

Furthermore, comparing with the average network

throughput of CC Server, the running Monitoring Probe

consumes a small fraction of network bandwidth. To this end,

we parsed the output of “nethogs” tool to estimate the

bandwidth overhead introduced by our Monitoring Probe. We

found out our Monitoring Probe transmits 1282944 bytes

during 15 minutes, which means ~712 bytes per second for

every DB Server in average.

Since the architecture includes a knowledge base, average

“write” performance in milliseconds for the Fuseki backend

implementation was calculated. The Fuseki server has one

CPU 2397 MHz and 2GB total memory. During 15 minutes,

90 “write” queries were executed for each DB Server and the

average query execution time was 3.93 ms.

6. Conclusion

In distributed time-critical Cloud applications, network-

level features such as throughput and latency of packets

travelling between application components directly affect

user experience. Therefore, time-critical service providers

must constantly monitor the network performance between

their current servers running on different Cloud

infrastructures, and other alternatives. In this way, preventing

and predicting potential network performance drops related to

the connections between the servers or possible overloads in

the system will give more time to take action like

dynamically changing connectivity topology among running

components and switching from one server to another server

to adjust the system in an anticipatory manner.

This research paper presented a lightweight network-based

monitoring approach that is particularly suitable for

autonomously adapting distributed time-critical Cloud

applications. The lightweight feature for the implemented

monitoring approach is a significant property in Cloud

computing environments because of the necessity of being

non-intrusive to the normal flows of application. The

proposed solution is general and extensible, and it can be

applied to any distributed Cloud application. The goal of the

paper was to investigate network QoS properties that are

especially important for the development of modern time-

critical Cloud applications. We extend the current state-of-

the-art by proposing a turnkey approach that not only

monitors network QoS, but also stores the monitoring

information, processes it, and integrates it with other system

information for controlling the overall performance.

7. Acknowledgements

This project has received funding from the European

Union's Horizon 2020 Research and Innovation Programme

under grant agreement No. 643963 (SWITCH project:

Software Workbench for Interactive, Time Critical and

Highly self-adaptive cloud applications).

8. References

[1] Ma, K., Sun, R., and Abraham, A., "Toward a lightweight

framework for monitoring public clouds"; Proceedings of 4th

International Conference on Computational Aspects of Social

Networks (CASoN 2012), Brazil, Pp. 361—365, 2012.

[2] Anouari, T. and Haqiq, A., "Analysis of VoIP and Video

Traffic over WiMAX Using Different Service Classes";

Journal of Mobile Multimedia, Vol. 9, No. 3&4, 2014.

[3] Sodangi, L. S., "Distributed Multimedia Applications in

Quality of Service for Wireless Wide Area Network";

International Journal of Engineering Research and

Technology (IJERT), Vol. 2, No. 10, Pp. 4088—4104, 2013.

[4] Li, A., Yang, X., Kandula, S., and Zhang, M., "Cloudcmp:

comparing public cloud providers"; Proceedings of the ACM

SIGCOMM conference on Internet measurement, 2010.

[5] Lampe, U., Wu, Q., Hans, R., Miede, A., and Steinmetz,

R., "To Frag Or To Be Fragged - An Empirical Assessment

of Latency in Cloud Gaming"; 3rd International Conference

on Cloud Computing and Services Science, 2013.

[6] Samimi, A. F., McKinley, P. K., Sadjadi, S. M., Tang, C.,

Shapiro, J. K., and Zhou, Z., "Service Clouds: Distributed

Infrastructure for Adaptive Communication Services"; IEEE

Transactions on Network and Service Management, Vol. 4,

No. 2, Pp. 84—95, 2007.

[7] Mohit, M., "A comprehensive solution to cloud traffic

tribulations"; International Journal on Web Service

Computing, Vol. 1, No. 2, Pp. 1—13, December 2010.

[8] Cervino, J., Rodriguez, P., Trajkovska, I., Mozo, A., and

Salvachua, J., "Testing a Cloud Provider Network for Hybrid

P2P and Cloud Streaming Architectures"; IEEE International

Conference on Cloud Computing, Pp. 356—363, 2011.

[9] Chen, K. T., Chang, Y. C., Hsu, H. J., Chen, D. Y.,

Huang, C. Y., and Hsu, C. H., "On the quality of service of

cloud gaming systems"; IEEE Transactions on Multimedia,

Vol. 16, No. 2, Pp. 480—495, February 2014.

[10] Roda, C., Navarro, E., and Cuesta, C. E., "A comparative

analysis of Linked Data tools to support architectural

knowledge"; ISD2014 International Conference on

Information Systems Development, 2014.

[11] Aceto, G., Botta, A., De Donato, W., and Pescape, A.,

"Cloud Monitoring: definitions, issues and future directions";

IEEE 1st International Conference on Cloud Networking

(CLOUDNET), Pp. 63—67, November 2012.

