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Abstract - Many distributed time-critical applications have 

emerged on the Internet in recent decades, involving for 

example sensor-based early warning systems, online gaming 

and instant messaging. Such applications can be virtualised 

and distributed in a federated Cloud environment. Ensuring 

that these types of application are able to offer favourable 

service quality has been a challenging issue due to runtime 

variations in network conditions intrinsic to connections 

between individual application components replicated and 

distributed across different Cloud infrastructures. In this 

paper, we propose a lightweight method for performing 

network-level monitoring that can be used to guide the 

autonomous selection of optimal connections between 

running components, so improving distributed application 

performance at runtime. This solution contributes towards 

realising self-adaptation capabilities for time-critical 

applications by implementing a non-intrusive monitoring 

technique for key network-level parameters including round-

trip time (RTT), packet loss, throughput and/or jitter. The 

experimental results show that the proposed framework has a 

low communication overhead and requires little processing 

power and memory capacity. 

Keywords: Monitoring System, Network QoS, Distributed Time-

Critical Applications, Multi-Cloud Environment 

1. Introduction 

In recent years, time-critical systems such as early warning 

systems, multimedia applications and Cloud-based gaming 

have emerged as Internet services which are increasingly 

widely used and important, especially to organisations that 

want to leverage the benefits of distributed applications. 

Decomposing such complex applications, each application 

component can be distributed to a different machine such that 

each component interacts with other components regardless 

of deployment location. Accordingly, by using a multi-Cloud 

environment, companies can use Cloud infrastructures to run 

and replicate their application components in different 

locations.  

Time-critical applications have specific network QoS 

(Quality of Service) requirements between their components, 

such as demanding minimal delay and packet loss, and 

require suitable support to achieve guaranteed application 

performance for their users. This is a challenge because the 

network connection quality between different components, as 

a key influencer of the overall application performance, is 

difficult to maintain when Cloud infrastructures continuously 

change. In particular, time-critical Cloud application 

providers have to dynamically adapt their services to network 

conditions to deliver high performance and a seamless 

experience. In essence, the main problem encountered by 

time-critical service providers is that there are limited 

automated and intelligent adaptation capabilities in existing 

Cloud infrastructures based on real-time network features that 

can be used to satisfy application performance requirements. 

Therefore, to avoid application performance issues, providers 

must carefully monitor the network QoS of connections 

within and between all of their own servers hosting 

application components in different Cloud infrastructures; all 

while being non-intrusive to the ordinary operation of the 

application [1]. 

This paper presents a lightweight monitoring approach 

based upon a non-intrusive design intended to enable 

distributed applications to autonomously reconfigure and 

adapt to changing network conditions at runtime. Replicating 

application components in different Cloud infrastructures to 

increase availability and reliability under various network 

conditions and varied amounts of traffic, and dynamically 

connecting each component to the best possible component in 

each different tier, together offering fully-qualified network 

performance, is often an essential requirement for providers 

of time-critical applications running on the Cloud. If such a 

network performance metric can be measured, then the 

system can be made automatically capable of improving the 

deployment of an application when performance drops. 

Under our proposed system, the network performance metric 

is a combination of measurements including network 

throughput, round-trip time, packet loss and/or jitter, which 

can be measured and responded in order to enhance 

application performance and hence user experience.  

The rest of the paper is organised as follows. Section 2 

presents summary of related work supporting network-level 

Cloud monitoring. Section 3 describes the use case. Section 4 

discusses the architecture and implementation of our 

proposed approach, followed by empirical evaluation results 

and finally conclusion respectively in Sections 5 and 6. 
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2. Related Work 

To achieve the objective of providing high-quality services 

in time-critical systems, it is essential to implement 

trustworthy techniques that can be responsible for 

maintaining QoS when considering the limitations imposed 

by the network. There have been many research approaches, 

all trying to provide QoS guarantees over Cloud networks. 

Anouari and Haqiq [2] analysed the performances of VoIP 

and Video stream traffic that is characterized by the ability to 

transmit real-time and interactively visual and auditory 

information. These types of traffic are highly delay-intolerant 

and need high priority transmission. Addressing this concern, 

their study was focused on using different service classes 

with respect to QoS parameters such as average delay, 

average jitter and throughput. Sodangi [3] designed and 

simulated two Cloud-based networks. The first scenario 

involved running multimedia applications (voice and video) 

and the second one involved running traditional applications 

(email, file transfer, web browsing). These were compared, 

and the main finding was that multimedia applications need 

appropriate throughput and are sensitive to delay, resulting in 

data loss, whereas traditional applications can use minimum 

throughput and with typical data loss levels are normally 

insensitive to changes in delay. In [4], the results showed that 

network performance varies substantially from one Cloud 

provider to another. Their approach can guide customers in 

selecting the best-performing provider for their applications. 

To measure the performance of internal connections between 

a customer’s instances and to the shared services offered by a 

Cloud, they used throughput and latency as metrics.  

With regard to network-based measurement, associated 

QoS attributes change constantly and so network-layer 

parameters need to be closely monitored. Table 1 shows the 

most important metrics to be analysed for Cloud network 

measurement: (I) Throughput, which is the average rate of 

successful data transfer through a network connection. (II) 

RTT, which is the time elapsed from the propagation of a 

message to a remote place to its arrival back at the source. 

(III) Packet loss, which occurs when one or more packets of 

data traveling across a network fail to reach their destination. 

(IV) Jitter, which is the variation in the delay of successive 

packets.  

Lampe et al. [5] mostly focused on the QoS parameter of 

latency, since this parameter plays an important role in the 

overall game experience. The authors conducted their 

research only on network latency measurement. Their 

experiments could be extended through the consideration of 

additional metrics; for example, the effects of network 

disturbances, such as increased packet loss or fluctuating 

throughput. Samimi et al. [6] introduced a model including a 

network-based monitoring system and the enabling of 

dynamic instantiation, composition, configuration and 

reconfiguration of services on an overlay network. Mohit [7] 

selected throughput, RTT and data loss for Cloud network 

measurement. The author suggests a solution that involves 

use of different technologies such as high-capacity edge 

routers which have a high cost and cannot be afforded in all 

use cases. Cervino et al. [8] presented an experimental 

validation of the Cloud infrastructure's ability to distribute 

streaming sessions with respect to some key streaming QoS 

parameters. Next, the authors performed experiments to 

evaluate the benefits of deploying VMs in Clouds to aid P2P 

streaming, by measuring the QoS improvement. Chen et al. 

[9] focused on the users’ perspective in Cloud gaming 

systems; from their point of view, the QoS metrics have an 

important effect on gaming experience. In other words, they 

proposed a suite of measurement techniques to evaluate the 

QoS of Cloud gaming systems. 

 

Table 1. Relevant research on network-based measurement of Cloud environment performance 

Title Field Measured Metrics Results 

To frag or to be fragged 
- an empirical 
assessment of latency 
in cloud gaming [5] 

Audio/video 
stream 

Limitations of the network 
infrastructure, such as high latency, 
potentially affect the QoS of the 
cloud gaming system.  

While cloud gaming substantially reduces the demand 
of computational power on the client side, thus enabling 
the use of thin clients, it may also affect the QoS 
through the introduction of network latencies. 

Service clouds: 
distributed 
infrastructure for 

adaptive communication 
services [6] 

Adaptive 
communication 

services 

Monitors carry out measurements on 
data streams. The metrics can be 
generic in nature (e.g., packet delay 
and loss rate) or domain-specific 
(e.g., jitter in a video stream). 

Service clouds are distributed infrastructures which are 
designed to facilitate rapid prototyping and deployment 
of adaptive communication services in clouds, and they 
are appropriate choices when service platforms’ 
workloads are dynamic or they need a lot of resources. 

A comprehensive 
solution to cloud-traffic 
tribulations [7] 

General 
systems 

Regarding network-based 
measurement, the three significant 
parameters to be analysed are 
throughput, RTT and data loss. 

Computation-based infrastructure measurement is 
insufficient for the optimal operation and future growth 
of the cloud. Network-based measurements of the cloud 
computing service are also very important. 

Testing a cloud 
provider network for 
hybrid p2p and cloud 
streaming architectures 
[8] 

Online real-
time 

streaming 

Authors considered four very 
important network parameters for 
video/audio streaming and for many 
other real-time services: bandwidth, 
delay, jitter and packet losses.  

Using a cloud network infrastructure to cross continents 
has improved the majority of QoS problems. It means 
that using connections between distant cloud 
datacentres can help to improve the QoS response of 
streaming even in videoconferencing P2P systems. 

On the quality of 
service of cloud gaming 
systems [9] 

Cloud gaming 
systems 

Authors concentrate on the metrics 
related to network conditions namely 
delay, packet loss, bandwidth and 
also other types of metrics which are 
graphic quality and frame rate.  

Packet loss and bandwidth limitations impose negative 
impact on the frame rates and the graphic quality in the 
cloud gaming systems. The network delay does not 
predominantly affect the graphic quality of the games on 
the cloud gaming systems. 



 

3. Use Case 

A typical example for time-critical services considers 

disaster early warning systems developed for the purpose of 

providing proper alert before disaster occurs. Figure 1 depicts 

the basic framework of such a system.  

 
Figure 1. The basic framework of an early warning system 

 

All application components are defined in Table 2. IP 

Gateway and RTU cannot be virtualized as these components 

have physical items like attached antennas.  
 

Table 2. Components of a disaster early warning system 
Component Functionality Type 

Call 
Operator 

The Call Operators decide 
whether or not to send an alert to 
emergency systems or to the 
public.  

Dedicated 
and ad-

hoc 
agents 

CC Server 
(Contact 
Centre 
Server) 

The server checks sensed data 
stored in DB Server and statistics 
in real-time and sends 
notifications (such as e-mail, SMS 
or voice call via SIP based IP 
telephony or ordinary PSTN) to 
Call Operators if values are 
outside predetermined thresholds 
for sensors.  

Apache 
web 

server 

DB Server 
(Database 
Server) 

This is a Time Series Database 
which is used for storing and 
handling sensed values indexed 
by time. 

Cassandra 

IP Gateway The IP Gateway is a node that 
allows communication between 
networks. It receives data over 
direct radio link or GSM/GPRS 
from sensors, aggregates the 
data and sends the data to the 
database. 

E.g. 
TA900e or 
Cisco-ASA 

RTU Remote terminal units (RTUs) 
connect to sensors in the process 
and convert sensor signals to 
digital data.  

E.g. 
Modbus-

RTU 

Sensors Sensors can measure 
temperature, barometric pressure, 
humidity and other environmental 
variables.  

E.g. 
DHT11 

 

 

In this case, the overall application performance is the 

system’s reaction time, which means the length of time taken 

from sensor data acquisition to when a notification is sent to 

the Call Operator. This application performance metric is 

mainly affected by the network communication quality 

between the DB Server and the CC Server. Due to the Cloud-

based environment, several DB Servers and CC Servers can 

be running in various Cloud providers’ infrastructures in 

different geographical locations, all connecting with each 

other. Assume that the data is replicated among DB Servers 

and also that each CC Server is dedicated to a certain number 

of Call Operators who must send warning messages through 

various communication channels in each region. The 

proposed mechanism aims at providing the ability to connect 

each CC Server to the best possible DB Server which has the 

superior network QoS in relation to the CC Server. Therefore, 

a Monitoring Probe is running on each CC Server’s VM to 

measure the network performance metric (NPM) between the 

CC Server and every single DB Server. Our proposed 

approach shows how different Cloud providers can offer 

varying network performance in the execution of real-time 

applications depending on various aspects. We introduce (1) 

to calculate NPM including three important network 

parameters which are network throughput (NT), average 

delay (AD) and packet loss (PL).  

AD

NT
PL

NPM

*
100

1 









   (1) 

In this use case, jitter is not taken into account; since this 

disaster early warning system is not a real-time service 

involving e.g. video/audio streaming in which lower jitter is 

advantageous (because lower jitter means the delay times are 

more consistent, and therefore a connection is more stable). 

4. Architecture and Implementation  

Cloud-based applications can be viewed from both design-

time and run-time perspectives. In the design-time view, the 

whole Cloud service, including application topology and 

application components, is shown. In the run-time view, 

instances of application components are examined as they are 

deployed and executed in VMs. Considering these two views, 

Figure 2 presents an overview of the proposed architecture to 

make an effective improvement in the performance of the 

aforementioned disaster early warning system. In this figure, 

at run-time, for example there are three running CC Servers 

and two running DB Servers which are dynamically 

connected to each other in the best possible way to maximise 

the overall application performance. 

 

 

 

 

 

 

 



 

Network QoS between these two components (DB Server and CC Server) strongly influences the overall application performance 

 
Figure 2. Overview of the proposed architecture to improve the performance of early warning system 

 

Figure 3. Pseudocode for Monitoring Probe which is 
deployed along with the CC Server 

 

As depicted in Figure 2, this monitoring system employs a 

number of distinct components. The Network Monitoring 

Probe is responsible for monitoring network QoS parameters 

of links between instances of two application components 

(the DB Server and the CC Server). For each CC Server, the 

network performance metric for every connection with 

potential DB Servers is simultaneously evaluated periodically 

at regular intervals by a Network Monitoring Probe. The 

pseudocode of the developed algorithm for the Monitoring 

Probe is depicted in Figure 3. 

The Monitoring Manager is responsible for aggregating 

and analysing network QoS data received from Monitoring 

Probes. The Monitoring Manager consists of two parts; a 

Knowledge Base Engine and a Reasoning Engine. The 

Knowledge Base Engine is responsible for all the work that 

controls the collection of network QoS values as RDF 

(Resource Description Framework) triples, along with 

actually storing and also retrieving these data on disk. This 

proposed monitoring system incrementally stores information 

about the environment in a Knowledge Base (KB) that will be 

used for interoperability, integration, analysing and 

optimisation purposes. Maintaining a KB enables analysis of 

long-term trends, supports capacity planning and allows for a 

variety of strategic analysis like year-over-year comparisons 

and usage trends. The Reasoning Engine is responsible for 

network-based QoS analysis and evaluating relevant policies 

such as interpreting the network performance metrics 

between CC Servers and DB Servers. Therefore, based on 

network-based analysis, the Reasoning Engine will return 

decisions such as which CC Server should be automatically 

and dynamically connected to which DB Server when current 

conditions do not satisfy the expected requirements. Each 

alternative possesses different attributes which can be 

compared and evaluated using network-level criteria; the 

proposed framework via the Reasoning Engine can then 

choose the best one at real-time. 

For our experiments, the actual network QoS parameters 

for time-critical services are measured by using ICMP 

(Internet Control Message Protocol) requests. The “ping” tool 

operates by sending echo request packets to the target host 

and waiting for an echo reply packets. It measures the round-

trip time from transmission to reception and reports errors 

and packet loss. We used different command options to 

enable the monitoring system to adjust the size of the ICMP 

packet, determine the number of echo requests to send, and 

specify wait period between pings. Moreover, we used an 

option to set the “Do Not Fragment” bit on the ICMP packet 

which does not allow fragmentation to occur in the path of 

the data flow by intermediate routers. We implemented the 

Knowledge Base Engine using a Jena Fuseki server to load an 

1: 

2: 

3: 
4: 

5: 

6: 
7: 

8: 

9: 
10: 

11: 

12: 
13: 

14: 

15: 

/* Probe resides in VMi  where the CC Server is running */ 

/* Packet Loss (PL), Network Throughput (NT), Average Delay (AD) */ 

/* Network Performance Metric: NPM */ 
while(true){ 

   TS ← TimeStamp() 

   for each DB Server running on a VMx do { 
       PL ← Calculate_PL(VMi, VMx) 

       NT ← Calculate_NT(VMi, VMx) 

       AD ← Calculate_AD(VMi, VMx) 
       NPM ← ((1 - (PL/100)) * NT)/AD 

       Message ← Make_Message(VMi, VMx, TS, NT, AD, PL, NPM) 

       Send_To_Knowledge_Base_Engine(Message)  
   } // end of for 

   wait(interval) 

} // end of while 



 

RDF dataset and make it accessible through a REST API as a 

SPARQL endpoint, to expose the CRUD operations for 

creating, retrieving, updating and deleting records. Jena 

Fuseki is an open source, lightweight database server, easy to 

install and able to efficiently store large numbers of RDF 

triples on disk [10]. 

5. Empirical Evaluation Results 

As a preliminary set of proof-of-concept results to test the 

design of the monitoring components, we performed an initial 

set of experiments to measure the network-based metrics 

between a particular CC Server (Hosti) and two replicated DB 

Servers (Hostx and Hosty) at runtime. Periodically (every 10 

seconds), our Network Monitoring Probe deployed on the 

VM, hosting also the CC Server, sends 10 ICMP packets to 

the both DB Servers with a 0.2 second delay between sending 

each packet, and then calculates the network metrics. The CC 

Server will then be automatically connected to the DB Server 

providing the highest connection quality.  

The following experiment shows how this configuration 

allows us to check the network-based QoS features related to 

two different connections with the same source: the first link 

between Hosti and Hostx and the second one between Hosti 

and Hosty. Table 3 shows features of these three hosts. Hosti 

which is a CC Server, belongs to the Flexiant Cloud 

infrastructure in the United Kingdom. Two DB Servers—

Hostx and Hosty—are in different locations in Slovenia and 

belong to different Cloud infrastructure providers: the 

ARNES (the Academic and Research Network of Slovenia) 

and the FGG (the Faculty of Civil and Geodetic Engineering, 

University of Ljubljana).  
 

Table 3. Features of infrastructures used in our experiment 
 Feature Hosti Hostx Hosty 

 Type CC Server DB Server DB Server 
 OS Ubuntu 14.04 Debian 7.8 Ubuntu 14.04 
 CPU(s) 2 1 1 
 CPU MHz 2600.030 2666.760 2397.222 
 Memory 1024 MB 1024 MB 1024 MB 
 Speed 1000 Mbps 1000 Mbps 1000 Mbps 
 IP 109.231.121.55 193.2.91.109 194.249.0.142 
 Cloud Flexiant FGG ARNES 

 

The round-trip delay gives the total end-to-end time, and 

hence is an important metric in evaluating the performance of 

the time-critical Cloud service. A lower average delay is 

always preferred; because it takes less time for packets to 

reach and return between the servers. Therefore, Figure 4 

shows that according to the average delay, the network 

quality of Hostx is a little bit better than that of Hosty for a 

period of time.  

 
Figure 4. Average Delay (ms) for 200 second 

monitoring window 

Time-critical Cloud applications require network services 

with minimal packet loss. The possibility of packet loss 

increases as traffic travels a longer distance and over more 

hops in the network. Data loss has one of the biggest impacts 

on time-critical applications, seriously affecting the quality of 

services, and this is the reason that the network should be 

engineered for zero percent packet loss. Our test system 

showed that packet loss ratio was zero, which indicates that 

there was no drop in either connection related to the servers 

deployed during the experiment.  

Network throughput is the amount of data moved 

successfully from one place to another in a given time period. 

It is possible to benchmark network throughput and find 

bottlenecks in the network to ensure that network interfaces 

are fast enough to achieve desired performance. The amount 

of traffic in current high-speed, heavy-traffic and multi-

service networks increases continuously, and traffic 

characteristics change heavily in time—for example network 

throughput fluctuates due to time of day, server backup 

operations, DoS (Denial of Service) attacks, scanning attacks 

and other anomalous network traffic. The performance of 

Cloud services must be independent of such states and must 

continue to behave reliably in all possible cases. Our 

proposed monitoring system sends ICMP packets, each one 

containing 500 bytes of data, from the first node (CC Server) 

to the second node (DB Server). Then it receives the results 

including the average delay (“Avg”). To make the proposed 

monitoring system lightweight, network throughput was 

estimated from the latency based on (2), which converts bytes 

per millisecond into kilobytes per second:  

10

6

2 * 

10*500

Avg
KB/s)roughput (Network Th    (2) 

Figure 5 shows no major variation in throughput 

belonging to either server; however in real-time systems, 

continuous fluctuation is important to be taken into account.  

 
Figure 5. Network Throughput (KB/s) for 200 second 

monitoring window 
 

Finally, regarding NPM, Figure 6 shows that Hosti has 

better network performance quality with Hostx compared to 

Hosty during the last 10 intervals. Therefore, if Hosti is 

connected to the Hosty, adaptation should occur and thus 

Hosti will be connected to the Hostx instead of Hosty. 

 
Figure 6. Network performance metric (NPM) for 200 

second monitoring window 



 

By employing only the last measurement explained above, 

this metric can have significant effect on the application 

performance and hence users' satisfaction; Cloud services for 

time-critical applications can automatically optimise the 

process of choosing the best possible application components, 

which are responsible for offering acceptable network QoS.  

A challenge in designing a monitoring framework in the 

Cloud environment is ensuring that the overhead of the 

monitoring system is kept to the minimum [11]. The 

distributed nature of proposed monitoring framework 

quenches the runtime overhead of system to a number of 

Monitoring Probes running across different VMs. A detailed 

view on the resource consumption of the Monitoring Probe 

revealed that our approach is lightweight in terms of CPU and 

memory overhead. To confirm this, we applied the “top” tool 

which provides a dynamic real-time view of tasks currently 

being managed by the Linux kernel. Our running Monitoring 

Probe consumes only 0.3 percent of the whole CPU time and 

3.1 percent of the whole memory usage in average.  

Furthermore, comparing with the average network 

throughput of CC Server, the running Monitoring Probe 

consumes a small fraction of network bandwidth. To this end, 

we parsed the output of “nethogs” tool to estimate the 

bandwidth overhead introduced by our Monitoring Probe. We 

found out our Monitoring Probe transmits 1282944 bytes 

during 15 minutes, which means ~712 bytes per second for 

every DB Server in average.  

Since the architecture includes a knowledge base, average 

“write” performance in milliseconds for the Fuseki backend 

implementation was calculated. The Fuseki server has one 

CPU 2397 MHz and 2GB total memory. During 15 minutes, 

90 “write” queries were executed for each DB Server and the 

average query execution time was 3.93 ms. 

6. Conclusion 

In distributed time-critical Cloud applications, network-

level features such as throughput and latency of packets 

travelling between application components directly affect 

user experience. Therefore, time-critical service providers 

must constantly monitor the network performance between 

their current servers running on different Cloud 

infrastructures, and other alternatives. In this way, preventing 

and predicting potential network performance drops related to 

the connections between the servers or possible overloads in 

the system will give more time to take action like 

dynamically changing connectivity topology among running 

components and switching from one server to another server 

to adjust the system in an anticipatory manner.  

This research paper presented a lightweight network-based 

monitoring approach that is particularly suitable for 

autonomously adapting distributed time-critical Cloud 

applications. The lightweight feature for the implemented 

monitoring approach is a significant property in Cloud 

computing environments because of the necessity of being 

non-intrusive to the normal flows of application. The 

proposed solution is general and extensible, and it can be 

applied to any distributed Cloud application. The goal of the 

paper was to investigate network QoS properties that are 

especially important for the development of modern time-

critical Cloud applications. We extend the current state-of-

the-art by proposing a turnkey approach that not only 

monitors network QoS, but also stores the monitoring 

information, processes it, and integrates it with other system 

information for controlling the overall performance.  
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