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ABSTRACT

In this work, we approach the piecewise curve approximation
problem with a model-based probabilistic framework. For
this purpose, we propose three different models. These mod-
els can be used for feature extraction or compression. The first
model is a variant of the Bayesian regression model where we
can parametrically alter the design matrix. The second model
approaches the piecewise curve approximation as a cluster-
ing problem. The third model adds temporal connectivity to
the second model and combines Hidden Markov models with
linear regression. We run the first and the third models on a
curve which is used to rank existing algorithms and show that
our approaches outperforms its rivals. We also run our models
on several real-life curves to show their capabilities.

Index Terms— Piecewise curve approximation; Bayesian
modeling; Curve segment clustering; Hidden MarkovModels

1. INTRODUCTION

Curve modeling or curve approximation is a frequently
emerging topic in image processing. It finds various applica-
tions in fields like medical imaging, geographical information
systems, and computer vision. The goals in curve approxi-
mation could be to approximate parsimoniously in order to
decrease the the storage size, to extract useful descriptors to
be used for detection, classification and information retrieval
purposes, or both to compress and describe the curve. For
example, in our previous work [1], we used curve approxima-
tion approach to extract some useful features to analyze the
trajectories of the radio-controlled model helicopters. There
exists a plethora of approaches to piecewise curve approxima-
tion in the literature, ranging from dynamic programming [2]
to tree based coding [3], from Bézier curves [4] to wavelets
[5] and graph theory [6].

Bayesian modeling using graphical models is very pop-
ular in machine learning due to the modeling flexibility and
the availability of various inference and learning algorithms
within the framework. There are several works on piece-
wise curve approximation which employ a Bayesian model-
ing approach [7, 8]. In these works the problem is viewed as

a changepoint detection problem, where changepoints define
the region of fitted piecewise polynomials.

In this work, we propose three different probabilistic
models: i) Bayesian Piecewise Regression Model, ii) Curve
Segment Clustering Model, iii) Hidden Markov Model for
Curve Segment Clustering. The first model also approaches
the problem as a changepoint detection problem. It is basi-
cally an adaptation of the Bayesian linear regression model
[9] which uses linear spline functions as basis functions. The
positions of the splines are controlled by a latent variable.
We use Metropolis-Hastings Markov Chain Monte Carlo
(MCMC) algorithm to do inference on this model. The sec-
ond model approaches the problem as a clustering problem.
Given a curve data, the inference algorithm simultaneously
clusters the data and performs regression. In this sense, it is
a combination of linear regression with the Gaussian mixture
models. The third model adds temporal connectivity to the
second model to impose spatial sequentiality in learning. In
both second and third model we use Expectation Maximiza-
tion Algorithm for learning.

The paper is organized as follows: In Section 2, we in-
troduce the probabilistic models using the generative model
convention and the corresponding directed acyclic graphs.
Sample curves generated from the models are given to illus-
trate these models. The experimental results and comparisons
of the models are provided in Section 3.

2. METHODOLOGY

Before proceeding with the details of these models, we in-
troduce the Bayesian linear regression notation used in the
sequel: Given an input vector x, the output vector y is gener-
ated as follows:

y = Φ(x)w + ε (1)

where,Φ(x) is our design matrix whose columns are the suit-
able basis functions for the problem in hand: If we wish to fit
polynomials to the data, we may choose the columns as the
powers of x. The coefficient vector which enables us to take
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the linear combination of the basis functions is given by w.
Finally, ε ∼ N (0,σ2

yI) is the isotropic observation noise.

2.1. Model 1 - Bayesian Piecewise Regression

Basically, this model is a variant of the standard linear-
regression model [9] where we can also parametrically alter
the design matrix. The generative model of the Bayesian
piecewise regression model is defined as follows:

p(wi) = N (wi; 0,σ
2
wI) (2)

p(yt|W,p) = N (yt;φp(t)W,σ2
yI) (3)

σ2
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Fig. 1. Directed Graph of the Bayesian piecewise regression
model

The directed graph of the model is given in Figure 1. The
columns of the design matrix Φp are first order spline func-
tions. The p vector determines the position of the peaks of
the spline functions which in turn determines the breaking
points of the generated curve. The construction of the de-
sign matrix ensures that we always have a continuous curve.
Notice the modifications in p are coupled between all basis
functions in that the peak position of a spline is also the onset
position of the next spline, the offset of the previous spline,
and as a consequence the design matrix rows sum to a con-
stant. In Figure 2 we show an example design matrix and
the resulting generated curve. The combination coefficient
vectors wi form a matrix, each column for an individual di-
mension. For example, in the case of planar curves one has
simply W = [w1 w2] = [wx wy]. The i index is used
to index the x,y coordinates of the data and t is the discrete
time index where T is the total number of observations andK
is the number of segments to be used in the generated curve.
The observation noise and the prior coefficient variance are
respectively controlled by parameters σ2

y and σ2
w .

2.1.1. Inference & Parameter Learning

It is not possible to find a analytical solution for the posterior
distribution of the partition vector p. So we resort to MCMC
sampling p. Specifically, we use Metropolis-Hastings sam-
pling. In each iteration, we propose a new partition vector p∗

according to some proposal density q(p∗|pτ ), and then find
the corresponding curve to this particular partition vector. We
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Fig. 2. Left column: from top to bottom, the x and y co-
ordinates of the data, and the noisy data (circles) generated
according to Eq. 4, mean Φp(t)W is shown with solid
line; Middle column: The design matrix Φp. p is chosen
as [100 120 270], which determine the peaks of the triangles
in columns 2, 3, 4; Right column: Linear combination coeffi-
cientswi, of the corresponding basis functions.

accept the partition vector proposed in iteration τ , using the
following acceptance probability:

A(p∗,pτ ) = min
(

1,
p(yt,W

∗,p∗)q(pτ |p∗)

p(yt,Wτ ,pτ )q(p∗|pτ )

)

(4)

where,W∗ is the coefficient matrix corresponding to p∗. We
find it using,

W* =

(

I

σ2
w

+
ΦT

p∗Φp∗

σ2
y

)−1 (
ΦT

p∗y

σ2
y

)

(5)

This way, it is observed that the algorithm converges to
a stationary distribution quickly with a random initialization.
Generally, choosing an uniform initialp vector is a good strat-
egy. After having sampled from the posterior distribution of
the partition vector, we estimate it via averaging the samples
after the burn-in period of the Markov Chain. Finally, note
that the construction of the basis matrix makes this model ap-
plicable only to data having ordering information, hence it is
not amenable to analyze unordered point clouds.

2.2. Model 2 - Curve Segment Clustering

The main motivation of this model is to combine the Bayesian
linear regression model with Gaussian mixture model. The
generative model is defined as follows:

p(rt) =
K
∏

k=1

πrtk
k (6)

p(wk) = N (wk; 0,σ
2
wI) (7)

p(yt|wk, rt) =
K
∏

k=1

N (yt;φ(xt)wk,σ
2
y,k)

rtk (8)
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Fig. 3. Directed Graph of the line clustering model

The corresponding directed graph is given in Figure 3.
Different from the first model, in this model we have K lin-
ear combination vectors denoted as wk. Also, the construc-
tion of the design matrix is different. In this model, we take
one of the coordinates of the two dimensional curve (e.g., x-
coordinate) as the input to our design matrix. This gives us the
freedom to treat curve data without ordering information, i.e.,
point clouds as in the case of edgemaps in images to avoid the
need for the ordering information of the data, so as to be able
to model a point cloud. From the data generating perspective,
first each data item indexed by t is assigned to one of the K
clusters using the indicator variable rt which has only one of
its K components set to 1 and the rest to zero. Then, each
cluster (curve segment) is generated by multiplying the de-
sign matrix Φ with the corresponding coefficient vector wk.
The parameters of the model are σ2

w, σ2
y,k and π, which re-

spectively denote the prior variance of the coefficient vectors,
the observation noise, and the prior cluster assignment proba-
bilities. Notice that, because of the construction of the design
matrix, this model is restricted to two dimensional curves. An
example generated data is given in Figure 4 .

Fig. 4. An example data generated from the Curve Seg-
ment Clustering Model. The “mean lines” of each cluster,
Φ(xk)wk are shown with solid lines and the generated noisy
data y are shown as circles.

2.2.1. Parameter Learning

In order to learn the parameters of the model we use an
Expectation-Maximization Algorithm. The latent variable is
rt and the parameters to be optimized are σ2

y,k, πk andwk.

• E-Step:
The posterior distribution of the indicator variable rt is

as follows:

Ep(r1:T |y1:T ,θ)[rtk] =
πkN (yt;φ(xt)wk,σ

2
y,k)

∑K
j=1 πjN (yt;φ(xt)wj ,σ2

y,j)

(9)

where θ is used as a shorthand for the parameters σ2
w ,

σ2
y,k and π. Note that the posterior distribution of all of
the indicator variables r1:T factorizes over t because of
the conditional independence properties of the model
which can be seen easily using Figure 3.

• M-Step:
Update equations for the parameters to be optimized
are as follows:

wnew
k =

(

I

σ2
w

+

∑T
t=1 E[rkt]φ

T (xt)φ(xt)

σ2
y,k

)−1

(10)

×

(

∑T
t=1 E[rtk]φ

T (xt)yt
σ2
y,k

)

πnewk =
1

N

T
∑

t=1

E[rtk] (11)

(σ2
y,k)

new =

∑T
t=1 E[rtk](yt − φ(xt)wk)2

∑T
t=1 E[rtk]

(12)

2.3. Model 3 - Hidden Markov Model for Curve Segment
Clustering

One shortcoming of the curve segment clustering model in
section 2.2 was that it could not handle non-convex shapes
or self-crossing curves. Typical example are trajectories of
hand gestures, of handwriting, of acrobatic maneuvers etc.
To compensate for this problem, we now add temporal con-
nectivity between the successive indicator variables rt so that
they form a first order Markov chain. One would conjecture
that with the imposition of a chain behavior, the curve model
could resolve better sequences where sequentiality is to be
preserved. The generative model is specified as follows:

p(rt) =
K
∏

k=1

πrtk
k (13)

p(rt|rt−1) =
K
∏

j=1

K
∏

k=1

A
r(t−1),jrt,k
jk (14)

p(wki) = N (wki; 0,σ
2
w) (15)

p(yt|Wk, rt) =
K
∏

k=1

N (yt;φ(t)Wk,σ
2
y,k)

rtk (16)

The corresponding directed graph is given in Figure 5. A
is the state transition matrix, π is the prior distribution for the
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Fig. 5. Directed graph of the Hidden Markov Model. Note
that the main difference of this model from the second model
is the Markovian relationship between the indicator variables
rt.

first state. As in the second model σ2
y,k ve σ2

w are the ob-
servation noise and the prior coefficient variance respectively.
Note that, the columns of the design matrix are formed using
the discrete index of the data. Therefore, we use a coefficient
matrix as in the first model, but this time we have in total K
Wk matrices for each cluster k. Like in the first model i index
is for the coordinates of the data. An example data generated
from the data is given in Figure 6.
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Fig. 6. An example data generated from the Hidden Markov
Model. Left column:The hidden indicator variable sequence;
Right column: The corresponding generated data.

2.3.1. Parameter Learning

We again use Expectation Maximization Algorithm for pa-
rameter learning. The latent variable is r1:T . The parameters
to be optimized are σ2

y,k, Ajk , πk andWk.

• E-Step:
The sufficient statistics which should be computed in
the E-step are as follows:

Ep(r|y,θ)[rtk] =γ(rtk) = p(rtk|y) (17)
Ep(r|y,θ)[r(t−1),jrt,k] =ξ(r(t−1),jrt,k) (18)

=p(r(t−1),jrt,k|y)

Note that γ and ξ are widely used in HMM literature, so
we stick to this convention. γ(rt) ve ξ(rt−1, rt), can be

computed efficiently using the forward-backward mes-
sage passing algorithm. [9].

• M-Step:
The update equations to optimize the parameters are as
follows:

wnew
ki =

(

I

σ2
w

+

∑T
t=1 γ(rtk)φ

T (t)φ(t)

σ2
y,k

)−1

(19)

×

(

∑T
t=1 γ(rtk)φ

T (t)yti
σ2
y,k

)

Anewjk =

∑T
t=2 ξ(r(t−1),jrt,k)

∑K
l=1

∑T
t=2 ξ(r(t−1),jrt,l)

(20)

πnewk =
γ(r1k)

∑K
j=1 γ(z1k)

(21)

(σ2
y,k)

new =

∑T
t=1 γ(rtk)(yt − φ(t)Wk)T (yt − φ(t)Wk)

∑T
t=1 γ(rtk)

(22)

3. EXPERIMENTAL RESULTS

In this section, we try our algorithms on the task of approx-
imating the curves with linear segments. First, we run the
algorithms on a test curve, which was also used in [10, 11],
where the relative performance of 23 different algorithms
were compared. We use the same metric as in [11], i.e., the
combination of integrated squared error (ISE) and the number
of approximating points M. Secondly, we run the algorithms
on three different real life curves which are used in [6]. In
Figure 7, we show our results using Model 1 and Model 3
on the curve from [10]. We don’t show the results obtained
with Model 2, because of space constraints and the similarity
betweenModel 2 and 3. It is also observed that Model 3 gives
better results than Model 2. We choose the number of lines

(a) Model 1, ISE:28.86, M=10 (b) Model 3, ISE:24.73, M=12

Fig. 7. The results obtained on the curve given in [cite]. The
green squares are the points used for approximation.

to be fitted K , by running the models within a range of K ,
and then by choosing the best K with respect to the perfor-
mance metric in [11]. In order to be able to report the number
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of points used in Model 3, we resort to a heuristic pruning
procedure: The model does not have a continuity constraint
between the lines. So, generally, we have to report twice the
number of lines as M. However, in most cases, the lines end
up to be continuous. What we do is to find the intersection of
the consecutive lines and accept it as a representative point if
it is nearer to the end points of the consecutive segments than
a certain threshold. We depict points that do not qualify as
such with a black line between them in Figure 7 and 8. We
see that both the first and the third model performs better than
the other 23 competitors and even better than the reference
algorithm [2], which has reference ISE values 38.9 and 25.9
for M=10,12 respectively. To obtain these results, we arbi-
trarily initialize the models. In Figure 3, we show the results
of Model 1 and Model 3 on the curves used in [6] . We see
that we are able to express these curves with a few number of
points without losing the general shape information if losing
some details. We’ve seen in these results that, the first model
is more parsimonious in terms of points whereas the third
model is more loyal to the original curve.

(a) Model 1, M=30 (b) Model 3, M=36

(c) Model 1, M=26 (d) Model 3, M=31

(e) Model 1, M=26 (f) Model 3, M=29

Fig. 8. The results obtained on the curves used in [6]. The
green squares are the points used for approximation.

4. CONCLUSIONS

In this work we propose three different probabilistic models
for curve compression using Bayesian modeling framework.
We’ve tried our algorithms on several different curves and see
that, our models are competitive with the existing curve anal-
ysis algorithms. It may be possible to extend our models to

more sophisticated ones, where it is possible to impose prior
knowledge on spatial properties of the approximating curves
as a future work. Also, for model selection, reversible jump
MCMC algorithm can be employed on the first model and dif-
ferent sparsity constraints can be considered on third model to
enrich the design matrix, which may enable us to handle com-
plicated shapes with a fewer number of parameters.
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