
How many planetwide leaders should there be?

Shengyun Liu
EURECOM

lius@eurecom.fr

Marko Vukolić
IBM Research  Zurich

mvu@zurich.ibm.com

ABSTRACT
Geo-replication becomes increasingly important for modern
planetary scale distributed systems, yet it comes with a spe-
cific challenge: latency, bounded by the speed of light. In
particular, clients of a geo-replicated system must commu-
nicate with a leader which must in turn communicate with
other replicas: wrong selection of a leader may result in
unnecessary round-trips across the globe. Classical proto-
cols such as celebrated Paxos, have a single leader making
them unsuitable for serving widely dispersed clients. To ad-
dress this issue, several all-leader geo-replication protocols
have been proposed recently, in which every replica acts as a
leader. However, because these protocols require coordina-
tion among all replicas, commiting a client’s request at some
replica may incure the so-called “delayed commit” problem,
which can introduce even a higher latency than a classical
single-leader majority-based protocol such as Paxos.
In this paper, we argue that the “right” choice of the

number of leaders in a geo-replication protocol depends on
a given replica configuration and propose Droopy, an op-
timization for state machine replication protocols that ex-
plores the space between single-leader and all-leader by dy-
namically reconfiguring the leader set. We implement Droopy
on top of Clock-RSM, a state-of-the-art all-leader proto-
col. Our evaluation on Amazon EC2 shows that, under
typical imbalanced workloads, Droopy-enabled Clock-RSM
efficiently reduces latency compared to native Clock-RSM,
whereas in other cases the latency is the same as that of the
native Clock-RSM.

1. INTRODUCTION
Modern internet applications are geographically distributed

among datacenters, or sites, across the globe. To provide ro-
bust service against crashes or site outages, applications call
for state machine replication (SMR) protocol, such as Paxos
[6] as a basic synchronization primitive within a larger scale
system (see e.g., [3]). Replication however becomes chal-
lenging at the planetary-scale due to latencies that cannot
be “covered up”, being bounded by the speed of light.
Namely, classical SMR protocols such as Paxos have a sin-

gle leader that is responsible for sequencing and proposing
clients’ requests. These proposed requests are then repli-
cated at least across a majority of replicas, executed in or-
der of their sequence numbers, with application-level replies

Copyright is held by author/owner(s).

eventually sent to the clients. For clients residing at a re-
mote site with respect to that of a leader, this may imply
costly round-trips across the globe.

In order to reduce latency for geo-replicated applications,
several all-leader SMR protocols have been proposed, such
as [10] and [4]. In all-leader SMR, a request can be proposed
and sequenced by any replica, where every replica can act
as a leader, typically by partitioning the sequence number
space. In these protocols, a client submits its request to the
nearest replica, avoiding the communication with a single
(and possibly remote) leader.

However, a challenge for an all-leader SMR is the coordi-
nation with distant or slow replicas, which can be the bot-
tleneck, or even block the system. In some sense, the per-
formance is determined by the ‘slowest’ replica: this causes
what is known as a “delayed commit” problem [10]. Roughly
speaking, the delayed commit problem (that we detail in
Section 2) is due to the need to confirm that all requests
with an earlier sequence number are not “missed”. For most
typical, imbalanced workloads, e.g., if most requests origi-
nate from clients that gravitate to a given site S, this incurs
communication with all replicas including remote and slow
ones. In this case, all-leader SMR may have worse perfor-
mance than single-leader SMR, in which replication involves
only S and the majority of sites closest to S.

Neither single-leader nor all-leader solution fits all situa-
tions. Existing work either assumes that requests are evenly
distributed among all replicas (favoring all-leader SMR), or
requests are largely distributed around one replica (favoring
single-leader SMR). More than often, neither of these as-
sumptions is true in the geo-replicated context: for instance,
due to time zone differences, clients located at a given site
may have different access patterns at different times of a
day, changing the “popularity” of sites dynamically.

In this paper, we present Droopy, an optimization for
SMR in wide area networks (WAN). Droopy explores the
space between single-leader and all-leader SMR, by dynam-
ically reconfiguring the set of leaders. Each set of leaders
is selected based on previous workload and network condi-
tion. We then implement Droopy in a state-of-the-art WAN
SMR protocol, namely Clock-RSM [4], and evaluate it on
Amazon EC2. Our evaluation shows that, under typical im-
balanced workloads, Droopy-enabled Clock-RSM efficiently
reduces latency compared to native Clock-RSM, whereas in
other cases the latency is the same as that of the native one.

The rest of this paper is organized as follows. In Section 2
we discuss, in the context of related work, how delayed com-
mit problem affects the latency. In Section 3 we describe the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144784712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


model and assumption used in the paper. In Section 4 we
give the overview and in Section 5 the details of Droopy.
Finally, Section 6 depicts the way we evaluate Droopy.

2. THE “DELAYED COMMIT” PROBLEM
AND STATE OF THE ART

We first describe two closely related all-leader SMR pro-
tocols: Mencius [10] and Clock-RSM [4], and how their per-
formance is affected by the delayed commit problem. Then
we briefly discuss other related work.
Mencius [10] facilitates multiple leaders by evenly parti-

tioning sequence number space across all replicas, so that
each replica can propose requests (e.g., replica 0 sequences
requests 0,3,6..., replica 1 sequences 1,4,7,..., and replica 2
sequences 2,5,8,...). In case a replica lags behind, it skips the
missing sequence numbers in order to catch up with other
replicas. A skipping replica must however let its peers know
its skips sequence numbers — leading to what is known as
the “delayed commit” problem.

JP

AU

UW

UE IR

107

159104

80

76

UE UW IR JP AU

UE 0 80 76 158 241

UW 0 159 107 159

IR 0 277 302

JP 0 104

158

Figure 1: Round-trip latency (ms) among 5 sites
on Amazon EC2 : US East (UE), US West (UW),
Ireland (IR), Japan (JP) and Australia (AU).

We illustrate the delayed commit problem in Mencius by
an example on Amazon EC2. The round-trip latency among
5 sites is shown in Fig. 1. The example is shown in Fig. 2(a).
We assume that replica in UE (replica 2 in Fig. 2(a)) pro-
poses request R1 at sequence number 2, whereas replica at
AU (replica 1 in Fig. 2(a)) is responsible for proposing re-
quest at sequence number 1. Because of imbalanced work-
load, replica AU has not proposed any request when it re-
ceives proposal of R1 from replica UE, at which time replica
AU skips sequence number 1. Only upon replica UE has
received skip message for sequence number 1, it can execute
R1 locally. Hence, a round-trip latency between UE and
AU is introduced (241 ms), which is much larger than the
round-trip latency from replica 2 to a majority (76 ms) that
a solution based on a single UE leader would require.
Clock-RSM [4] addresses the delayed commit problem us-

ing loosely synchronized clocks. In Clock-RSM, each replica
proposes requests piggybacked with its physical clock times-
tamp, instead with logical sequence numbers. Requests are
then ordered by associated clock timestamps. Replicas syn-
chronize their physical clocks periodically.
However, the delayed commit problem still exists in Clock-

RSM. In Fig. 2(b), after replica UE proposes R1, replica AU
sends its current clock time to all replicas. Upon UE receives
the clock message from AU, it confirms that no request with
earlier clock is proposed by replica AU.1 Nevertheless, one-

1Because of FIFO channels assumed by Clock-RSM.

replica 1 (AU) 

replica 2 (UE)  

replica 3 (IR)  

propose 

R
1
 at 2  

skip 1  

delayed commit 

(a) Mencius

propose R
1 

at 1:23:00.100  

delayed commit 

no-op at 1:23:00.105  
replica 1 (AU) 

replica 2 (UE)  

replica 3 (IR)  

(b) Clock-RSM

Figure 2: Delayed commit problem in Mencius and
Clock-RSM.

way latency from AU to UE (120 ms) is still larger than the
round-trip latency from UE to a majority (76 ms).

Besides Mencius and Clock-RSM, there are several other
geo-replication SMR protocols proposed recently. Some are
single-leader based, such as [3]. Moreover, some protocols
(e.g., [13, 7]) do not suffer from the delayed commit problem
as they explore the commutativity of concurrent requests.
Other protocols, such as Fast Paxos [8] allow clients to send
requests directly to all replicas. In case a collision is de-
tected, Fast Paxos relies on a single leader to re-orders the
requests. Finally, some protocols (e.g., [3, 12, 2]) employ
read leases in order to improve read performance — read
leases are orthogonal to the problem we focus on here.

The Totem protocol [1] circulates a token among a set of
processes to allow processes broadcasting their messages in
a round-robin manner. A process can broadcast messages
only upon it holds the token. Ring Paxos [11] combines
ring topology of f + 1 processes and IP multicast in order
to maximize the network throughput. These two methods
are not suitable for geo-replication since clients can suffer
from much extra delay (when waiting for the token or the
sequential commit path of ring topology).

3. SYSTEM MODEL
We assume there are n ≥ 2f + 1 replicas (sites), among

which f can crash (but not be Byzantine) and may recover
later. We allow for asynchrony in that communication time
between any two replicas is not bounded — however, to cir-
cumvent the FLP impossibility [5], we assume the system to
be eventually synchronous. We further assume FIFO chan-
nel between any two replicas. When referring to clock-based
systems, we assume a physical clock at each replica. Clocks
at different replicas are loosely synchronized by a clock syn-
chronization protocol, such as NTP.

4. DROOPY PROTOCOL OVERVIEW
Droopy is designed to dynamically configure the set of

leaders. Each set is called a config. Droopy splits the space of
sequence indices (e.g., logical sequence numbers or physical
timestamps) into ranges. Each range of indices is mapped
to a config and maintained as a lease. In a nutshell, a lease
in Droopy is a commitment of a replica to a range of in-



dices, such that only those specific replicas, a.k.a., leaders,
can propose requests. Leases are proposed by replicas and
maintained by a total order primitive, which can be imple-
mented by Paxos (we call this L-Paxos). In a way, Droopy
follows the approach to reconfiguration proposed in [9].
When current lease is about to expire, every replica pro-

poses a new config for the next lease, which is selected based
on previous workload and network condition. In this paper
we assume that the goal for Droopy is to minimize the aver-
age latency across all sites. Droopy can easily support other
criteria (e.g., minimize the maximal latency for a site). Ev-
ery replica proposes a new lease so that the crash of any
replica will not stop the lease renewal process. However, in
order to guarantee that all leases are consistent among all
replicas, Droopy requires that the first delivered config for
each lease is the one agreed by all. This is guaranteed by
the total order primitive within L-Paxos.
It is important to notice that, although a lease can reflect

a physical time range, time anomalies such as clock drifts, do
not affect the correctness Droopy, but only its performance.
Generally, a client submits a request by contacting the

nearest replica, that we call the source replica of the re-
quest. The source replica then proposes the request if it is
one of the leaders in the current lease. Otherwise, the source
replica propagates the request to the leader that acts as a
proxy. For each non-leader replica, its proxy is the leader
that is expected to introduce the minimum commit latency,
with respect to the non-leader replica. Upon a request is
committed locally, each replica executes the request, and
the source replica further replies to the client. Besides, each
updates its frequency array monitor, that records the num-
ber of requests from each source replica.

5. PROTOCOL DETAILS
In this section we explain the detail of Droopy. The vari-

able definitions and pseudocode is given in Alg. 1.
Proposing. Client c first sends req to the nearest replica

si and waits for reply from si. Upon arrival of req from c
(line 1, Alg. 1), si becomes the source replica for req (line
2). Then, si obtains and updates the sequence index by
getOrder() from underlying SMR protocol, e.g., Mencius
or Clock-RSM (line 3). Then, si may update the lease num-
ber if necessary (lines 4-5). If si is one of the leaders in
current lease ln, i.e., si ∈ configln, then si proposes req
with the sequence index obtained; otherwise, si propagates
req to its proxy pi ∈ configln which is expected to introduce
the minimum commit latency with respect to si (lines 6-9).
Committing. In the commit phase, Droopy needs to

modify the underlying SMR protocol at the condition which
checks whether there might be unreceived requests preceding
sequence index sn. In particular, this check in all-leader
protocols involves all replicas (leaders), whereas in Paxos it
involves a single leader. In Droopy, this condition depends
on which replicas are leaders in each lease. The modification
is shown as function updated(sn).
Upon req is committed at replica si (line 10), i.e., up-

dated(sn) is true, all SMR protocols maintain the invari-
ant that req is replicated by a majority of replicas and all
preceding requests are committed locally at si. Then, si (1)
executes req and replies response to client c if si is the source
replica, and (2) updates frequency array f (lines 11-14).
Lease update. (also refer to Fig. 3) When current lease

ln is about to to expire (in λ sequence indices, lines 15-18),

Algorithm 1 Dynamic reconfiguration at replica si.

si, sj , sk : replicas
req : request from client c
src : source replica
sn : sequence index
ln : current lease number
LEln : the end index of lease ln
configln : the set of leaders in lease number ln
pi : the proxy of non-leader replica si
replicas : the set of all replicas in the system
clock : physical clock at replica si
d∗,∗ : updated latency from all to all
freq∗ : the number of requests received by each replica
latest∗ : the most recent sequence indices updated locally

1: upon receive ⟨Request, req, sj⟩ from client c or sk
2: src← sj = null ? si : sj /* source replica */
3: sn← getOrder()
4: while sn ≥ LEln do /* update lease */
5: ln← ln+ 1
6: if si ∈ configln then /* leader */
7: propose(req, sn, src) in underlying SMR protocol
8: else /* non-leader */
9: sends ⟨Request, req, src⟩ to pi ∈ configln

10: upon decide(req, sn, src) in underlying SMR protocol, in
which updated(sn) is applied and true (see lines 23-24)

11: rep← execute req
12: freqsrc ← freqsrc + 1
13: if si = src then /* source replica replies to client */
14: send ⟨Reply, rep⟩ to client c
15: if LEln − λ ≤ sn /* time to propose a new lease */
16: config ← getNewConfig(freq, d)
17: propose(ln+ 1,config,LEln + δ) in L-Paxos
18: reset freq∗

19: upon decide(ln′,config,LE) in L-Paxos
20: if configln′ = null then /* 1st decision for lease ln′ */
21: configln′ = config
22: LEln′ = LE

23: function updated(sn) /* returns boolean */
24: return ∀sk and ln : if sk ∈ configln then

latest[sk] ≥ LEln or sn ≤ latest[sk]

25: abstract function getOrder()
26: abstract function getNewConfig(freq, d)

replica si first selects a new config config based on array f∗
and table d∗,∗; then si proposes config piggybacked with
lease number ln + 1 in L-Paxos and resets the frequency
array freq∗. Upon config in lease ln′ is decided at replica
si (lines 19-22), if config is the first decision for ln′, then si
updates the leader set configln′ and the end index LEln′ .

Config selection. To select a suitable config, replica
si enumerates all possible combinations of sets of leaders.
Given a set of leaders, si calculates the estimated latency
based on latency table d∗,∗ and frequency array f∗.

The calculation of estimated latency depends on how un-
derlying SMR protocol proceeds. For example, to confirm
that all previous requests have been received, one-way la-
tency from the farthest replica matters in Clock-RSM; whereas,
this latency for Mencius can be a round-trip.

More specifically, the latency for req is dominated by three
conditions : 1⃝ the time it takes for req to be replicated by
a majority; 2⃝ the time it takes replica sj to confirm that
no request with a sequence index smaller than that of req
will be proposed by some leader; and 3⃝ the time it takes for



λ �������� + 1
sequence number

or physical clock

lease

number

����+1����−1�� − 1
propose

lease �� + 1
λ

propose

lease �� +2

δ��
δ��+1

Figure 3: Lease renewal.

si to commit all requests that precede req. Based on these
three conditions, the calculation for each SMR protocol can
be designed separately. As an illustration, the calculation
for Clock-RSM is shown in Alg. 2 in line 4.

Algorithm 2 Clock-RSM function.

1: function getOrder()
2: return clock /* physical clock */

3: function getNewConfig(freq, d)
4: return s ⊆ replicas s.t.

min(
n∑

i=1
freqi ×min(

max

 di,j +median(dj,k + dk,i|∀sk), 1⃝
di,j +max(dk,i|∀sk ∈ s), 2⃝

di,j +max((median(dk,l + dl,i)|∀sl)|∀sk ∈ s), 3⃝


|∀sj ∈ s)|∀s ⊆ replicas)

6. EVALUATION
Implementation We implement Droopy and Clock-RSM in
Java and deploy them on Amazon EC2. Both replicas and
clients are deployed in c3.large instances that run Ubuntu
Server 14.04. We use TCP as the transport protocol to
guarantee FIFO channels. Replicas run NTP daemon to
keep the clock synchronized. The timestamp is obtained by
System.currentT imeMillis(). We set δ to 10 seconds and
λ to 2 seconds for Droopy.
Static workload We evaluate the protocols under imbal-
anced workload. In each experiment, 40 clients at one spe-
cific site issue requests of 64B to their source replica. The
results for f = 1 and f = 2 are shown in Fig. 4. The latency
among replicas are shown in Fig. 1.
Fig. 4 shows that Droopy can efficiently reduce the latency

when workload deployed at UE and IR in Fig. 4(a), or UE,
IR and JP in Fig. 4(b). This is because at these replicas the
coordination time in Clock-RSM is larger than the round-
trip latency from a majority. In other cases, the performance
of Droopy is the same as that of native one.

7. ACKNOWLEDGEMENTS
This work is supported in part by the EU H2020 project

SUPERCLOUD (grant No. 643964) and Swiss Secretariat
for Education, Research and Innovation (contract No. 15.0025).
Shengyun Liu’s work is also supported by the China Schol-

arship Council.

8. REFERENCES
[1] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A.

Agarwal, and P. Ciarfella. The totem single-ring

UE IR AU
0

50

100

150

200

250

300

Replica location

La
te

nc
y 

(m
s)

 

 

Droopy
Clock−RSM

(a) f = 1

UE UW IR JP AU
0

50

100

150

200

Replica location

La
te

nc
y 

(m
s)

 

 

Droopy
Clock−RSM

(b) f = 2

Figure 4: Average latency (bars) and 95%ile (lines
atop bars) of imbalanced workload.

ordering and membership protocol. ACM Trans.
Comput. Syst., 13(4):311–342, Nov. 1995.

[2] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In PODC, 2007.

[3] J. C. Corbett et al. Spanner: Google’s globally-
distributed database. In OSDI, 2012.

[4] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, and
F. Pedone. Clock-RSM: Low-latency inter-datacenter
state machine replication using loosely synchronized
physical clocks. In DSN, 2014.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. 32(2):374–382, Apr. 1985.

[6] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16:133–169, May 1998.

[7] L. Lamport. Generalized consensus and paxos.
Technical Report MSR-TR-2005-33, Microsoft
Research, March 2005.

[8] L. Lamport. Fast paxos. Distributed Computing,
19:79–103, 2006. 10.1007/s00446-006-0005-x.

[9] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos
and primary-backup replication. In PODC, 2009.

[10] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building efficient replicated state machines for wans.
In OSDI, 2008.

[11] P. Marandi, M. Primi, N. Schiper, and F. Pedone.
Ring paxos: A high-throughput atomic broadcast
protocol. In DSN, 2010, pages 527–536, June 2010.

[12] I. Moraru, D. G. Andersen, and M. Kaminsky. Paxos
quorum leases: Fast reads without sacrificing writes.
In SoCC, 2014.

[13] I. Moraru et al. There is more consensus in egalitarian
parliaments. In SOSP, 2013.


