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Abstract—Compressive sensing (CS) is a powerful technique for 
sub-sampling of signals combined with reconstruction based on 
sparsity. Many papers have been published on the topic; 
however, they often fail to consider practical hardware factors 
that may prevent or alter the implementation of desired CS 
measurement kernels. In particular, different compressive 
architectures in the RF domain either sacrifice collected signal 
energy or create noise folding, both of which cause SNR 
reduction. In this paper, we consider valid signal models and 
other system aspects of RF compressive systems. 

I. INTRODUCTION 
Interest in the application of compressive sensing (CS) to 

radar and other radio frequency (RF) applications has grown 
rapidly. This interest is fueled by the potential to implement 
RF systems that perform well while reducing the burden on 
data collection hardware. For example, the idea of a sparsely 
populated or thinned array has been used for a long time as a 
way of obtaining high resolution from a long array baseline 
without the cost and weight of a fully populated array. The 
difference in recent years is that CS principles are now being 
used to design the array, to analyze its performance, and to 
process its data via sparse reconstruction methods. Similar 
statements can be made regarding other examples of 
compressive RF systems (not just antenna arrays). 

The current literature on compressive RF systems is 
skewed toward demonstrating the ability to recover signals 
from such systems using sparse reconstruction methods. While 
this approach is interesting, there is still a shortage of analysis 
on the system impacts of RF compression and on the ultimate 
performance of compressive RF systems in useful exploitation 
tasks such as signal detection and parameter estimation. 
Unfortunately, some published papers also fail to consider the 
architecture of the compressive system and resulting 
constraints that this architecture imposes on the structure of 
the compression kernels and the relevant signal model.  

In this paper, we address some of these structural and 
system considerations in compressive RF systems. We 
consider fundamental models of measurement as linear 
projections implemented in time and space, and map these 

models to appropriately structured sensing matrices for several 
types of compressive RF sensing. We then focus on 
compression via sub-Nyquist analog-to-digital conversion 
(ADC) and consider a compressive version of the traditional 
quadrature receiver.  

II. MODELS FOR RF COMPRESSION 
In this section, we start with a model for conventional 

sampling and map that model to the matrix-vector notation 
typically used in CS. We then use the model to represent two 
types of compression that RF systems might employ, namely 
measurement “thinning” and measurement “mixing”. We also 
discuss the inclusion of additive receiver noise in the models. 

Let a compressive RF receiver observe a signal, ( ),s tr , 
that varies over space and time where r is a three-dimensional 
vector of spatial coordinates. Let the compressive system 
comprise a P-element antenna array with element coordinates 
rp and each element having its own receiver. We can express 
a “traditional” sample as the projection of the signal onto a 
measurement kernel that is localized in time and space. In 
ideal sampling, this kernel is an impulse-like space-time 
function located at the element position and sample time 
where the sample is to occur, such that 
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We can then express data collected by the array and sampled 
over time by a set of impulsive measurement kernels located 
at every element location and sampling time instant.  

In order to represent (1) with a discrete model suitable for 
computer simulations or manipulation via linear algebra, we 
can approximate the integral in (1) with a summation over 
small, finite-sized bins in space and time, such that 
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where r(i) denotes the ith spatial bin in the approximation, t(j) 
denotes the jth temporal bin, and the delta function with 
brackets, [ ]δ ⋅  is used to denote the Kronecker delta function 
that is equal to one when the argument is zero (to within the 
quantization error of the bins) and zero elsewhere. If the bins 
are chosen smaller than or equal to the Nyquist sampling 
interval, then the discrete approximation will be accurate. 

Next, we form a signal vector by taking all signal values 
over the discrete bins and organizing them into a vector 
according to a specific ordering; for example, 
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where Ns is the number of discrete bins covering the signal’s 
spatial volume and Nt is the number of discrete bins covering 
the signal’s temporal duration. The length of s is N = NtNs. 
The expression in (2) can then be expressed as  
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where mδ  is defined (as shown) as a row vector with zeros 
everywhere except in the entry corresponding to the 
discretized bin where the mth data sample is collected. A 
sampling matrix can then be represented as a collection of 

mδ ‘s, with each row having the ‘1’ in a different location. 
For example, if only three data samples are collected, the 
sensing matrix might look like 
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The matrix in (5) represents a “thinning” type of compression 
where the sampling kernels are still localized in space and 
time, but not all signal elements are sampled. Some radar-
specific examples of where this type of compression might 
occur include 1) some pulses in a coherent pulse train are not 
transmitted, causing gaps in the slow-time data collection, 2) 
the thinned or sparse antenna array mentioned above, and 3) 
stepped-frequency waveforms where frequency steps can be 
skipped in the data collection process [1]. In these structures, 
there will be groups of nearby samples taken at the Nyquist 
rate, followed by gaps in the sampling. Full Nyquist sampling 
can also be represented by using Φ = IN. 

On the other hand, the “thinning” type compression 
depicted in (5) is usually not a suitable representation for 
compression in the ADC process (i.e., in fast time). For the 
examples above, it is easy to envision how some samples will 
be closely spaced (for example, two pulses in a row), but 

 
Figure 1. Block diagram of sub-Nyquist, fast-time compression 
implemented at an intermediate frequency (IF). 

for fast-time compression, the thinning approach means that 
the ADC must occasionally collect samples at the full 
bandwidth of the signal. If the ADC must have the capability 
to sample at the full bandwidth, then the hardware advantages 
of compressive sampling disappear. Therefore, fast-time 
compression will typically be implemented with an ADC 
operating at a uniform sampling rate lower than the Nyquist 
rate. In order to avoid aliasing, the signal must be mixed with 
a non-localized measurement kernel before being sampled; 
therefore, this second form of compression is a “mixing” type 
compression that requires an analog multiplication. Hardware 
structures for sub-Nyquist sampling, including the random 
demodulator [2] and the modulated wideband converter [3] 
fall into this category of compression. A block diagram of an 
example RF compressive receiver is shown in Figure 1 where 
we can see the required elements including low-noise 
amplifier (LNA), downconversion from RF frequency to an 
intermediate frequency (IF) where analog multiplication with 
another wideband kernel can be performed, a lowpass filter to 
complete the projection, and finally sampling at a sub-
Nyquist rate. 

Mixing type compression can be represented in the 
projection notation above by replacing the localized delta 
sampling functions with an arbitrary measurement kernel 
according to 
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If the compression is being performed via sub-Nyquist 
sampling of the signal captured by a particular antenna 
element, then the spatial component of the measurement 
kernel can be localized such that 

 
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )( )

,

,

p p

p p
i t j

s t t d dt

t s i t j i t j

δ φ

δ φ

− ≈

 ∆ ∆ − 

∫∫
∑∑
r

r r r r

r r r r
 (7) 

where φp(t) is the temporal mixing kernel applied to the 
receiving chain of the pth antenna element. For sub-Nyquist 
sampling on multiple antenna elements, the sensing matrix 
representation will be a composite of the thinning structure 
(due to elements that may or may not be present) with a 
structure that implements the non-localized temporal kernels.  

Until a technology exists to implement the temporal 
modulation component of the measurement kernel directly at 
the antenna (using, for example, current distributions on an 
antenna element varying at the bandwidth of the incoming 
signal), the fast-time compression must be implemented with 
hardware such as analog multipliers, mixers, and filters as 
 

Proceedings of the 10th International Conference on Sampling Theory and Applications

50



 

depicted in Figure 1. There are two implications of the 
architecture in Figure 1. First, because the compression is 
performed after the signal has entered the receiver, additive 
receiver noise must be applied to the signal prior to the 
compression operation, which leads to noise folding [4], or 
more generally a loss in signal-to-noise ratio (SNR). Second, 
the time duration over which the signal is integrated (and, 
therefore, the length of any single projection) is determined 
by the time support of the lowpass filter’s impulse response. 
Each successive sample taken by the ADC will be the result 
of integrating approximately Tc seconds of multiplier output 
where Tc is the approximate duration of the filter’s impulse 
response. If the ADC sampling interval, TADC, is less than Tc, 
then successive samples will be partially correlated due to 
overlapping integration periods. Typically, we will set TADC = 
Tc such that each sample is a result of an adjacent, and 
approximately non-overlapping, integration period. 

Considering the above statements, (7) can be modified as 
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which introduces a precise structure to the sensing matrix for 
each antenna element. This structure, which is depicted in 
Figure 2 (right panel) for compression down to eight ADC 
samples on a single antenna element, is a combination of the 
mixing kernel (left panel) and the LPF’s impulse response 
shifted to implement the correct convolution output at the 
ADC sample times (middle panel). The discrete sensing 
model is then 

 ( )p p p p= +y Φ s n  (9) 

where sp is the temporally varying signal incident on the pth 
antenna, np is the additive noise on the pth receiving channel, 
and Φp is the fast-time sensing matrix for the pth channel in 
the structure shown in Figure 2 according to the ADC rate, 
filter impulse response, and pth channel’s mixing kernel φp(t). 
An overall space-time sensing matrix can then be expressed 
by concatenating the sensing matrices for individual channels 
according to a pattern along the lines of  
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where blocks of columns containing all zeros are due to 
missing antenna elements that have been thinned from the 
system. The resulting measurements are 

 ( )= +y Φ s n  (11) 

where s and n have been formed by concatenating the signal 
and noise vectors for all antenna elements, including elements 
not sampled by the sensing matrix.  

The model in (11) shows noise added prior to application 
of the sensing matrix (pre-projection noise model) for many 
reasons. First, even though the zero columns of the sensing 
matrix may result in a larger representation than necessary, 
the full representation reinforces the true input dimensionality 
of the space-time, Nyquist-sampled signal. Second, as 
described earlier, pre-projection noise is the correct 
representation for mixing-type compression implemented in 
analog hardware. Third, while faithfully representing mixing-
type compression, the full representation also encompasses 
thinning-type compression as a special case. The sensing 
model in (11) can be expressed as 

 ˆ= + = +y Φs Φn Φs n  (12) 

where the post-projection noise covariance matrix can be 
easily calculated from the pre-projection covariance and the 
sensing matrix. Therefore, the post-projection additive noise 
model used in some of the RF CS literature is valid in certain 
situations, but (12) explicitly shows that care must be taken in 
considering the post-projection noise statistics. If the input 
noise is uncorrelated and the rows of Φ are orthogonal, then it 
is valid to go directly to a post-projection uncorrelated 
additive noise model, but in general, post-projection noise 
skips over a more fundamental starting point that may be 
helpful for proper treatment of system constraints and noise 
statistics. Finally, the full representation admits interpretation 



=

Figure 2. Structure of a sensing matrix for fast-time compression using analog multiplication followed by lowpass filtering. 
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of SNR loss due to compression as a loss in collected signal 
energy, as a noise folding behavior, or both. From the zero 
columns in (10), it is easy to see that for every measurement 
that is removed, collected signal energy is lowered. Radar 
systems are typically limited in transmit power and can’t 
arbitrarily transmit additional power to make up for fewer 
samples. It is easy to ignore this loss or model it improperly 
when starting from a post-projection additive noise model. 

III. QUADRATURE COMPRESSION 
Many RF receivers implement quadrature reception where 

the down-conversion from RF (or IF) to baseband results in 
an in-phase (I) branch and a quadrature (Q) branch. These 
branches are 90 degrees out of phase with respect to each 
other such that signals with a random phase component are 
captured by one of the branches or a combination of the two. 
In this section we consider I/Q compression and its impact on 
the relationship between the I and Q signals. 

A narrowband bandpass signal can be represented as  

 ( ) ( ) ( )( )0 0cos 2s t a t F t tπ θ θ= + +  (13) 

where a(t) and θ(t) are amplitude and phase modulations, 
respectively, with modulation bandwidths, B, much smaller 
than the carrier frequency F0. The signal is assumed to have 
an unknown global phase θ0. Without knowledge of θ0, if we 
demodulate with only the cosine of the carrier, we risk 
demodulating with a carrier term that is out of phase with the 
received carrier, and the signal will be lost. Therefore, 
quadrature receivers demodulate against quadrature 
components of the carrier, guaranteeing signal capture 
regardless of global phase. However, because the receiver has 
I and Q branches, compression should be performed in each.  

Figure 3 shows a potential architecture for a compressive 
quadrature receiver (hardware considerations may mean that 
the best design is a two-stage downconversion, but the format 
in Figure 3 is sufficient for the sampling analysis considered 
here). The incoming signal is split into two branches. The in-
phase branch is demodulated with a cosine of the carrier and 
the quadrature branch is demodulated with a sine of the 
carrier. The first LPF in each branch has cutoff frequency at 
or above B/2 where B is the signal’s bandpass bandwidth and 
is meant to reject all but the baseband copy of the signal. 
Next, the signal is mixed with a compression kernel, which 
might be a different kernel for the I and Q brances, followed 
by a LPF that completes the projection. The second LPF’s in 
each branch have the same cutoff frequency, which is related 
to the sub-Nyquist sampling rate. 

After passing the signal in (13) through the first 
mixer/LPF pair (downconversion step), the resulting signals 
are 

 ( ) ( ) ( )( )0
1 cos
2Is t a t tθ θ= +  (14) 

and 

 ( ) ( ) ( )( )0
1 sin
2Qs t a t tθ θ= +  (15) 

 
Figure 3. Compressive I/Q receiver architecture. 

in the I and Q branches, respectively. These signals are then 
separately compressed by passing them through the second 
multiplier/LPF pair corresponding to the compression kernels 
in each branch, ( )I tφ  and ( )Q tφ . Letting the matrix-vector 
representations of (14) and (15) be Is  and Qs , respectively, 
the compressed data samples for the two branches are 

 ( )I I I I= +y Φ s n   (16) 

and 

 ( )Q Q Q Q= +y Φ s n  . (17) 

In the absence of compression, the outputs of the two 
branches are typically treated as orthogonal and placed as the 
real and imaginary components of complex-valued data 
samples. Compression, however, decreases the distance 
between the two components. Therefore, the fundamental I/Q 
relationship may be altered, which may impact traditional 
processing steps such as envelope detection. Appropriate 
detectors and estimators for compressive quadrature receivers 
have yet to be fully developed in the literature. 

IV. CONCLUSIONS 
We have consider several aspects of compressive RF 

sensing, including appropriate signal and noise models for 
compression in different dimensions (slow time, fast time, 
spatial) and corresponding constraints on sensing matrices. 
We have also begun to consider a compressive version of the 
traditional quadrature receiver and the impacts that 
compression of in-phase and quadrature components may 
have on subsequent processing algorithms. 
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