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ABSTRACT

In this paper, a class of signal-dependent noise models that
are encountered in image processing applications is consid-
ered. They are defined by the gamma exponent, which rules
the dependence on the signal of the noise, and by the vari-
ance of a stationary zero-mean random process that generates
the signal-dependent noise. An observation noise term, zero-
mean, white and independent of the signal, is also considered
to account for the electronics noise. A blind procedure is pro-
posed for reliably measuring the model parameters directly
from the noisy images irrespective of their texture content.
Such methods are iteratively based on linear regression tech-
niques applied to scatter-plots of local first-order statistics
calculated on homogeneous areas and drawn with logarith-
mic scale. Adaptive LLMMSE filtering is embedded in the
iteration stage to provide a rough estimate of noise-free im-
age texture which allows to discriminate between homoge-
neous and textured pixels. Experiments on simulated noisy
images demonstrate a high accuracy of noise assessment.

1 INTRODUCTION

In several imaging systems, the model of acquisition noise
should be considered as dependent on the sensed signal. A
first example is film-grain noise [1] that comes out when pho-
tographic supports are scanned and is due to the granularity
of photo-sensitive crystals on the film. Another example is
speckle noise, occurring in coherent imaging systems, like
Synthetic Aperture Radar (SAR) [2] and Ultrasonic Scanner
(US) [3], which is due to the random scattering of unresolv-
able objects inside the elementary resolution cell. The conse-
quence is a strongly signal-dependent granular noise whose
effects are degradation of the acquired image and reduced
performance of post-processing algorithms as well as of vi-
sual analysis. Although incoherent averaging is usually em-
ployed to provide speckle reduction with the penalty of a loss
of resolution, adaptive spatial filtering, i.e. driven by the
noise statistics, is needed especially when advanced vision
tasks are demanded [4].

A general signal-dependent noise model has been pro-
posed to deal with several different acquisition systems [1].
The model is expressed in the following for one-dimensional
signals. The two-dimensional case is straightforward. Let

������� and 	 ����� be stationary, zero-mean random processes,
with variances 
�� and 
��� , respectively. Both are indepen-
dent of the noise-less signal � ����� . The observed noisy image������� can be expressed as

��������� � ������� � ������������������� 	 �����
� � ����������������� 	 �������

(1)

Since � ����� is generally nonstationary, the signal-dependent
noise ������� will be nonstationary as well. Furthermore, if������� is non-white, ������� will be spatially auto-correlated.
The observation noise 	 ����� introduced by the electronic cir-
cuitry is stationary and usually modelled as white and zero-
mean Gaussian.

For the acquisition processes outlined above this model
has been proven to be valid for values of � within the interval !#"%$�&

. For example, the analysis of SAR images has demon-
strated that a pure multiplicative noise ( � � $

) is typical and
that the signal-independent term is negligible with respect to
the multiplicative term. Many de-specking filters rely on the
multiplicative (or fully developed) speckle model [5]. The
basic assumption that makes this model acceptable is that a
large number of scatterers exists inside the resolution cell.
In such a case, the response from single backscatters can be
considered as independent of one another, with amplitudes
belonging to the same statistical distribution and phases that
are uniformly distributed. This is not true in general, since
often the coherent radiation investigates zones of the inter-
ested area which are made up of structures comparable in
dimensions to the resolution cells.

The model (1) is also suitable for film-grain noise, typi-
cal of photographic film scanning (negative film-grain). Al-
though the � strictly depends on the ratio between the grain
size and the spot size (thickness of the illuminating beam),
values of � between

$('()
and

$('+*
are usually assumed [6].

The case of scanned half-tone prints yields negative values
of � and is referred to as positive film-grain [1]. The film-
grain noise is always accompanied by an electronics noise
whose intensity 	 ����� may be comparable to that of the sig-
nal dependent term ������� and must be taken into account for
both estimation and filtering [7]. Its variance 
,�� may be eas-
ily measured starting from a dark image, i.e. without signal,
e.g. achieved by scanning a black sheet.
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For ultrasonic image generation, no characteristic values
of � have been stated, due to the great variability of scatterer
size and the strong dependence of the model parameters on
the pre-processing stages of the acquisition system. In the
literature both the values

! � � and
$

are accepted as typical,
but experiments have revealed a larger spreading of the � .

2 NOISE MODEL ASSESSMENT

Since the signal-dependent model (1) has a wide applicabil-
ity, an iterative procedure to estimate the parameter � and 
,�
is proposed. The algorithm utilizes an adaptive filter driven
by the estimated noise model parameters to yield a more and
more accurate estimate of the noise-free image that is ex-
ploited for a finer and finer estimation of the noise model
parameters.

Since � ����� is independent of ������� , the mean of (1) is�  ������� & � �  � ����� & � (2)

The variance 
 �� ����� of (1) is given by


��� ������� �  � � ����� &�� �  ������� & �
� �  ��� ����� & � �  ��� � ����� & �  � � ����� & � �  	 � ����� &

� * �  � ����� ����� & �  ������� & � * �  � ����� & �  	 ����� &
� * �  � � ����� & �  ������� & �  	 ����� &	� �  � ����� & �

� 
��
 ������� �  ��� ������� & � 
�� � 
���
(3)

thanks to (2) and to the fact that � and 	 are zero-mean and
independent of each other and of � .

In order to evaluate
�  ��� � ����� & , a Taylor’s series expansion

of the function � � � is used. A
*
nd order expansion of � � �

around ��� yields

� � �� � � �� � � ��� �� � ���� 
�� � � � ��� �(� � � ��� �� � � ���� 
�� � � � ��� � �* � (4)

Evaluating this expression around the mean of � , i.e. ��� ��  � ����� & , and taking the expectation of the result, we have�  ��� � &  �����  � & � � ��� 
����� 
 ��� ��� 
! � � � �  � & �
�"� �#
����� 
 � ��� ��� 
! %$ 
'& ��� 
! (��� )

� �  � & � � � � � * � � $ � �  � & � � & � 
 �

(5)

where we have dropped the argument � for simplicity of

notation.
�*� � 
����� 
 ��� ��� 
! � � � �  � & � ) � !

by definition of

mean.

Substituting (5) into (3) yields+
��� �����-, 
��� ����� � 
��� 
��
 �����/. $ � � � * � � $ � �  � ����� & � � & � � 
��10
� �  � ����� & � ��� 
��

(6)
where

+
��� ����� can be obtained from the observed image and
from the knowledge of 
��� .

It can be easily verified from (6) that the Taylor approxi-
mation is exact for � equal to

!
,
! � � and

$
, and approximate

otherwise. The above relationship also highlights that
+
 �� �����

is composed by two terms. The former is a texture contribu-
tion proportional to 
��
 ����� , whereas the latter is proportional
to
�  � ����� & � � and is the unique term in homogeneous areas,

where 
��
 ����� � !
. If we used only homogeneous areas to es-

timate the parameters of the model,
+
��� ����� could be expressed

as +
 �� ����� � �  � ����� & � � � 
 � � �  ������� & � � � 
 � (7)

thanks to (2). By taking the logarithm of both sides of (7),
an affine relationship between

�  ������� & and
+
��� ����� is obtained

through � and 2 3�4 � 
  � :2 3�4  +
 � ����� & � � � 2 3�4 . �  ������� & 0 � 2 3�4 � 
  ��� (8)

Eq. (8) states that the logarithms of the ensemble statis-
tics of ������� calculated on homogeneous pixels are aligned
along a straight line having � as slope and 2 3�4 � 
  � as inter-
cept. In practice, for each pixel of the image, a point in the
plane � 2 3�4 . �  ������� & 0 " 2 3�4  +
 � ����� & � may be plotted. The out-
come cloud of points is called a scatter-plot. If only pixels
belonging to homogeneous areas were used, the scatter plot
should be clustered along its regression line, whose param-
eters would yield estimates of � (slope) and 2 3�4 � 
  � (inter-
cept). Conversely, evaluation of (6) in highly textured areas
results in a sparse cloud.

Therefore, the main problem becomes finding a method to
discriminate between homogeneous and textured areas. This
is not an immediate task especially when the image is noisy.
A way to select homogeneous pixels in which (8) holds is
searching for those pixels for which the term proportional to

��
 in (6) is negligible with respect to the term

�  � ����� & � ��� 
�� ;
in other words, finding those pixels for which the following
condition holds �  � ����� & � � � 
��


 �
 �����/. $ � � � * � � $ � �  � ����� & � � & � � 
 � ����� 06587 (9)

where 7 is a constant threshold empirically chosen.
The homogeneity ratio (9) is a function of the unknown pa-

rameters � and 
  as well as of the variance of the noiseless
image. Since an accurate estimation of 
��
 ����� is not required
-we need to search for pixels where the denominator in (9) is
negligible with respect to the numerator- the following itera-
tive algorithm is proposed to estimate the � and 
,� .
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Step 1 Calculate the logarithmic scatter-plot relative to the
whole set of pixels and compute an initial rough esti-
mate of � and 
  (

�� $ � ( and
�
 $ � ( ) from a linear best-fit

of the measured data. Set iteration step
� � !

and a
homogeneity threshold 7 .

Step 2 Find an approximation of 
��
 ����� (
�
��
 ����� $ � ( ) by using a

parametric filter (see Sect. 3) driven by
�� $ � ( , �
 $ � ( and


��� (assumed to be known a priori).

Step 3 Substitute
�
��
 ����� $ � ( , �� $ � ( and

�
 $ � ( into (9) and find ho-
mogeneous pixels.

Step 4 Set
� � � � $

. Calculate a new log scatter-plot compris-
ing only those pixels for which the homogeneity condi-
tion (9) holds. Compute the parameters

�� $ � ( and
�
 $ � ( of

the linear regression fitting the new set of points.

Step 5 Repeat Steps
*

to � until a stop criterion is met.

3 SIGNAL-DEPENDENT NOISE FILTERING

This section describes a parametric filter to be used in the
iterative estimation algorithm introduced in Sect. 2. The fil-
ter should be as much insensitive as possible to inaccuracies
in parameters estimation. Thus, the filtered image will con-
verge to the optimally de-noised one while the values of the
estimated parameter � and 
  will approach more and more
closely those of the true ones.

3.1 MMSE Noise Filtering

Let � , � and � denote the ideal noise-less sampled signal,
the observed noisy signal and the additive noise, possibly
signal-dependent, all arranged as 1-D vectors of size � . The
MMSE estimate of � is its expectation conditional to the ob-
served signal, i.e.

��
	�	��� � �  ��� � & , which, however, would
require the knowledge of the nonstationary signal PDF’s of
any order. By taking a fist-order Taylor development of the
MMSE solution around the unconstrained value

�  � & , the lin-
ear MMSE (LMMSE) estimator [8] requiring only signal and
noise statistics up to the

*
nd order will be given by

��
��	�	��� � �  � & ����� ��� &��� �  � � � � � � & (10)

in which the ����� matrices ��� � and ��� are the cross-
covariance between � and � and the auto-covariance of � ,
respectively. Eq. (10) imposes a global MSE minimization
over the whole image, within the constraint of a linear solu-
tion, which is optimum if the joint PDFs of � are multivariate
Gaussian.

If we assume that � is spatially uncorrelated, i.e. � � �� .  � � � � � � &� � � � � � � &"! 0 is a diagonal matrix -which means
that the spatial correlation of � is conveyed by its space-
varying mean

�  � & only- and that the noise � is zero-mean
and uncorrelated as well, the global minimization (10) cor-
responds to a local minimization in a neighborhood of each
sample. In fact, let 
��
 ����� and 
��# ����� denote the ensemble

variance of � and � at the � th sample position. If
�  � & �%$! ,

the covariance matrices ��� � and ��� in (10) become diagonal

��� �'&�(*) 4  
��� � $ � " 
��� � * � " �%�%� " 
��� � � � & "
��� � �+��� �'&�(*) 4  
��
 � $ � " 
��
 � * � " �%�%� " 
��
 � � � & � (11)

By replacing (11) into (10), the local LMMSE (LLMMSE)
estimate of � ����� is obtained as [9]

��-,�,/.0.0132 ����� � �  � ����� & � 
��
 �����

 �� ����� � .%������� � �  ������� & 0 � (12)

Eqs. (2) and (6) allows to derive the variance of the noise-
free image as a function of the first-order statistics of the ob-
served image and of the noise model parameters


 �
 ����� � 
��� ����� � �  ������� & � ��� 
�� � 
���$ � � � * � � $ � �  ������� & � � & � � 
 � � (13)

By replacing (13) in (12), the LLMMSE estimator, namely�� ����� , may be specified to the noise model (1) as
�� ����� � �  ������� & � .%������� � �  ������� & 0

�
$ � . �  ������� & � ��� 
�� � 
��� 0 ' 
��� �����$ � � � * � � $ � �  ������� & � � & � � 
 � � (14)

The LLMMSE solution contains first-order ensemble
statistics of the observed image, which are usually not avail-
able. The LLMMSE estimator can be reformulated by intro-
ducing local approximations of the nonstationary mean and
variance of the observed image calculated as�  ������� &54�76������� � $

*/8 � $
9:
� ; & 9 ����� � � � (15)


 �� ����� 4� 6� � ����� � 6� � ����� � $
*/8

9:
� ; & 9  ����� � � � � 6������� & �

(16)
where

*/8 � $
is the size of the local window. To prevent the

estimated value for
�  ������� & � � � 
 � � 
 �� from being larger

than that of 
��� ����� in (14), the difference is clipped above
zero after substitutions of (15) and (16) in (14). An assump-
tion of local ergodicity is also introduced to allow estimation
of local mean and variance from a neighbourhood.

4 EXPERIMENTAL RESULTS

The performance of the proposed method has been assessed
by using images degraded by synthetic signal-dependent
noise. The test images Shapes, Peppers and Lenna shown
in Fig. 1 have been corrupted with additive signal-dependent
noise according (1), with different values of the parameter �
and values of 
  adjusted to yield <=�?> � 6
��
 ' 6
��# � )A@CB

.
Zero-mean white Gaussian random processes have been used
for both � and the electronics noise 	 , which is assumed to
be known a priori ( 
 � � $ $ � D/E/F , i.e 
��� is

$ !G@CB
lower than
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(a) (b) (c)

Figure 1: Test set of grey-scale images: (a) synthetic ray-
tracing noise-free image Shapes; (b) Lenna; (c) Peppers.

Table 1: True and estimated noise parameters for different
values of � , at fixed <=�?> � 6
��
 ' 6
��# � ) @CB

.

� 0.0 0.25 0.5 0.75 1.0�� (Shapes) 0.0017 0.2390 0.4933 0.7296 0.9641��� (Shapes) 36.964 13.232 4.3824 1.3782 0.4189���� (Shapes) 36.811 13.896 4.5369 1.5166 0.4989��� (Shapes) 36.977 36.977 36.912 36.925 36.855���� (Shapes) 37.147 37.087 37.052 36.886 36.943�� (Peepers) -0.0013 0.2410 0.4902 0.7320 0.9703�� (Lenna) -0.0208 0.2259 0.4702 0.7077 0.9333

6
��# ). Table 1 reports true and estimated noise parameters (de-
noted with a tilde). Fig. 2 shows log scatter-plots of noisy
Lenna ( � � ! � � , <=�?> � ) @CB

) calculated on all pixels and
only on pixels recognized as homogeneous by the iterative
procedure. As it appears, in the former case the � (slope) is
under-estimated, while 2 3�4 � 
  � (intercept) is over-estimated
because of textures.

5 CONCLUSIONS

A blind iterative procedure to assess a variety of signal-
dependent noise models corrupting digital imagery has been
proposed. The estimation relies on a general parametric
model for the additive noise and utilizes LLMMSE filtering
adjusted to the generalized noise model and embedded into
the iteration stage to provide an estimate of the noise-free
texture. Results show accuracy of joint estimation of the two
unknown model parameters for a wide choice of values. Al-
though only uncorrelated noise was considered in the exper-
iments, all scatter-plot based methods, including the present
one, allow to tackle correlated noise as well.
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