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ABSTRACT 

Turbo equalization and frequency-domain equalization 

(FDE) have both been proved to be effective to combat fre-

quency-selective fading channels. By combining the two 

techniques, we propose a low complexity Turbo space-

frequency equalization (TSFE) structure for single-carrier 

(SC) multiple input multiple output (MIMO) systems, which 

provides close performance to its full complexity version 

with a huge complexity reduction. It is shown that TSFE 

outperforms the previously proposed Turbo space-time 

equalization (TSTE) especially at a high delay spread, with 

much lower complexity. TSFE also provides better perform-

ance than its Turbo orthogonal frequency division multiplex-

ing (TOFDM) counterpart with the increase of the number 

of iterations, at a comparable complexity. 

1. INTRODUCTION 

Turbo (iterative) equalization has been shown to be capa-

ble of achieving a tremendous performance gain over fre-

quency selective fading channels. Originally inspired by 

Turbo codes, Turbo equalization employed the maximum a 

posteriori probability (MAP) algorithm [1] for both equaliza-

tion and decoding. To reduce the complexity, [2] proposed a 

Turbo equalization-like structure for multiuser detection of 

the coded CDMA system, where the MAP equalizer is re-

placed by a linear equalizer. Furthermore, [3] proposed a 

suboptimal linear equalizer based on the minimum mean 

square error (MMSE) criterion, whose coefficients are kept 

time-invariant within a block. 

Frequency-domain equalization (FDE) [4-5] for single 

carrier (SC) block transmission systems has been shown to 

be another effective method to combat frequency selective 

channels. Compared to orthogonal frequency division multi-

plexing (OFDM), SC-FDE has a similar structure but lower 

peak-to-average ratio (PAR) and less sensitivity to carrier 

synchronization [4]. Compared to time-domain equalization 

[6], FDE requires less complexity to achieve the same per-

formance, especially in highly dispersive channels. In [7], 

FDE was employed in a MIMO system, where a layered 

space frequency equalization structure was proposed to pro-

vide significant performance enhancement over the conven-

tional systems.  

In [8-9], Turbo equalization was incorporated with both 

SC and OFDM MIMO block transmission systems. However, 

the equalizer coefficients for the Turbo FDE in [8-9] are de-

rived in the time domain, which is a simple extension of the 

work in [3] and requires a huge computational complexity 

compared to its Turbo OFDM (TOFDM) counterpart.  

In this paper, we propose a low complexity Turbo space-

frequency equalization (TSFE) structure for SC MIMO sys-

tems with block transmission, combining the advantages of 

Turbo equalization and FDE. Our work is different from [8-9] 

in that we derive the equalizer coefficients in the frequency 

domain on each independent frequency bin, which reduces 

the computational complexity significantly.  

Simulation results show that the proposed low complex-

ity TSFE provides close performance to its full complexity 

version, with a tremendous complexity reduction that can be 

in the order of 10000 times. TSFE also provides better per-

formance than its Turbo orthogonal frequency division mul-

tiplexing (TOFDM) counterpart with the increase of the 

number of iterations, at a comparable complexity. It is also 

shown that TSFE outperforms Turbo space-time equalization 

(TSTE) which is an extension of [3] in the MIMO case, es-

pecially at a high delay spread, with much lower complexity. 

Complexity analysis and the impact of the numbers of anten-

nas on performance are also shown. 

Section 2 presents the system model. The proposed TSFE 

structure is described in Section 3. The computational com-

plexity is analyzed in Section 4. Section 5 shows the simula-

tion results and the conclusion is drawn in Section 6. 

2. SYSTEM MODEL 

We consider a MIMO system with K transmit antennas 

and L receive antennas. Let [ ]KMcccc L21=  denote 

the code bit sequences from information bit sequence b by 

the encoder for the error-correction code (ECC), 

where [ ]Q
tttt ccc L21=c . [ ]KMcccc ′′′=′ L21 , the 

interleaved sequences of c , then are passed on to the modu-

lator, which maps tc′ (t=1,…,KM) into symbol td in accor-

dance with the 2
Q
-ary symbol alphabet 

{ }Q221 ααα L=α , where [ ]Qpppp sss ,2,1, L=s  

corresponds to the bit pattern of unit-energy symbol pα . Fi-

nally, td are multiplexed into K transmission blocks, each of 

which consists of ][idk (i=0,…,M-1) to be transmitted by the 

kth (k=1,…,K) antenna. We assume the noise at each receive 

antenna is added white Gaussian noise (AWGN) with single-

sided power spectral density 0N . The overall channel mem-

ory is assumed to be N, lumping the effects of transmit filter, 

receive filter and physical channel. Each data block is ap-

pended with a cyclic prefix (CP), which is the replica of the 

last N symbols of the block. The received signals are sampled 

at integer time instants, and the CP is discarded to eliminate 

the inter-block interference (IBI) and to make the channel 

appear to be periodic with a period of M. Define 
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[ ]mx (m=0,…,M-1)as the received signal vector of antenna 

elements at the mth time sample 

 ][][][][
1 0

mimdim
K

k

N

i
kk nhx +−= ∑∑

= =

 (1) 

where ][ikh  is the overall channel impulse response (CIR) 

with respect to ][ imdk − , and ][mn denotes the AWGN vec-

tor. The received signals are transferred into frequency-

domain, and the discrete Fourier transform (DFT) of [ ]mx is 

given by 

 [ ] [ ] [ ] [ ]mmDmm
K

k
kk NHX += ∑

=1

 (2) 

where [ ]mDk , [ ]mkH , and [ ]mN  are the DFT of [ ]idk , 

][ikh , and ][mn , respectively. 

3. TURBO SPACE–FREQUENCY EQUALIZATION 

3.1 Receiver Structure 

The block diagram of the proposed system is depicted in 

Figure 1, where the receiver consists of a soft-in soft-out 

frequency-domain equalizer using TSFE, a decoder for the 

ECC and a channel estimator. The receiver iterates the tasks 

of TSFE, decoding, and channel estimation in turn. Let 

[ ]Qi
k

i
k

i
k

i
k ccc

,2,1, L=c  denote the bit pattern of [ ]idk . 

The equalizer outputs the extrinsic LLRs ( )i,j
k

E
cL , which are 

demultiplexed and deinterleaved to ( )j
t

I
cL , and are then 

input to the decoder as its a priori information. Both the es-

timates of information bit sequence b̂  and the extrinsic 

LLRs ( )j
t

E cL  are generated by the decoder. ( )j
t

E
cL  are inter-

leaved and multiplexed to ( )i,j
k

I
cL , and are then fed back to 

the equalizer for the next iteration. To incorporate iterative 

channel estimation in Figure 1, the receiver makes hard deci-

sion on the LLRs ( )i,j
k

I cL  to compute extra training informa-

tion in the decision-directed mode, besides the known train-

ing symbols in the training mode. Due to the space limitation, 

we do not focus on channel estimation in this paper. 

Figure 2 illustrates the nth iteration of TSFE, which con-

sists of block-wise FDE, symbol-wise time domain equaliza-

tion (TDE) and Gaussian LLR estimation. After discarding 

the first received signal vectors that correspond to the CP, the 

sampled signals at each antenna are first converted from se-

rial to parallel (S/P), and then transferred into the frequency 

domain by FFT. A block-wise linear frequency-domain 

equalizer with LM inputs and KM outputs performs channel 

equalization by using the LLR ( )i,j
k

I cL  from the (n-1)th itera-

tion ( ( ) 0=i,j
k

I
cL for all i and  j for the first iteration). The 

frequency-domain equalized symbols are transferred back 

into the time domain by inverse FFT (IFFT), and are then 
converted back from parallel to serial (P/S). A symbol-wise 

feed forward filter (FFF) performs TDE over each symbol. 

Finally, the equalized symbols are input to the Gaussian LLR 

estimator to calculate ( )i,j

k

E
cL . 

b 
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Figure 1 – Block diagram of the system using TSFE at the receiver 
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Figure 2  – The nth iteration TSFE  

 

3.2 Design of the MMSE based TSFE 

The MMSE criterion is employed in our equalization al-

gorithm and all the equalization coefficients are symbol 

wised. Before the equalization, ( )i,j
k

I cL  must be known by 

the equalizer. Thus, we can compute respectively the neces-

sary mean and variance of [ ] )1,...,0;,...,1( −== MiKkidk  

as 

 [ ]( ) [ ]( )∑
∈

==
αp

pkpk idPidE
α

αα  (3) 

 [ ]( ) [ ]( )22
idEidPv kpkp

i
k

p

−== ∑
∈αα

αα  (4) 

which depend on the a priori information ( )i,j
k

I cL  

 [ ]( ) ( )( )( )∑
=

+==
Q

j

i,j
k

I
p,jpk cLsidP

1

22tanhˆ1α  (5) 

where 




=−

=

0     1

1        1
ˆ

p,j

p,j

p,j s

s
s . 

The equalized symbol [ ]idk

~
 is given by 

 [ ] [ ] [ ] [ ]  
1~ *2

1

0

ibemm
M

id k
Mmij

M

m

Hi
kk −= ∑

−

=

πXW  (6) 

where [ ]mi
kW (m=0,…,M-1) denotes the FDE weight vector 

of size 1×L  with respect to the mth frequency tone, and 

[ ]ibk denotes the symbol-wise feedback filter (FBF) weight. 

( )H
. and ( )*. denote the complex-conjugate transpose of a ma-

trix/ or a vector and the complex-conjugate of a scalar, re-

spectively.  

The equalization coefficients are determined to minimize 

the MSE cost function as follows 

 [ ] [ ]  
~ 2

ididEJ kk
i
k −=  (7) 

We define i

k
U  as the overall FDE weight vector: 
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Let 

 [ ] [ ] [ ] ( )[ ]TMMmjT
k

MmjT
kk eMem 1202 1ˆ0ˆ −−= ππ HHf L (9) 

where [ ]mkĤ denotes the estimate of [ ]mkH . 

Using the standard minimization technique, the optimized 

weights are as follows  

 [ ] i
kk

ii
k v0

1
fΩU

−
=  (10) 

 [ ] [ ]( )idE
M

ib k
i
k

Hi
k

*1
−= UΦ  (11) 

where 

 [ ] [ ] IffΩ 0
1

1

0

1
Nvmm

M

K

k

M

m

mi
k

H
kk

i += ∑ ∑
=

−

=

−  (12) 

In order to guarantee the perfect convergence behavior for 

Turbo equalization, we set ( ) 0=i,j
k

I cL  for all j, leading to 

[ ]( ) 0=idE k and 1=i
kv . Thus, 

i
kU  can be defined by us-

ing matrix inversion lemma 

 [ ] [ ] [ ]000
1

1
1

1

1

k
i

k
iH

k

i
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k
M

v
fΩfΩfU

−

−
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 −
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3.3 Low Complexity TSFE 

Note that the equalization coefficients in Section 3.2 are 

symbol wised, which requires a huge computational com-

plexity. To reduce the computation burden required for each 

symbol, a direct and effective approach is to make i
Ω  inde-

pendent of the time index i. This can be achieved by replac-

ing i
kv  in (10), (12) and (13) by 

 ∑
−

=

=
1

0

1 M

j

j
kk  v

M
v  (14) 

for all )1,...,0(  −= Mii . Therefore, i
Ω  reduces to 

 [ ] [ ] IffΩ 0

1

0

1
Nvmm

M k

M

m
k

H
kk += ∑ ∑

−

=

 (15) 

As a result, 
i
kU  becomes independent of the time index i as 

 [ ] [ ][ ]TT
k

T
kk M 10 −= WWU L  (16) 

Furthermore, we note that Ω  is a block diagonal matrix as 

 

[ ]

[ ]















−

=
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00

MR

R

Ω
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MOM
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where 

  [ ] [ ] [ ] IHHR 0
ˆˆ Nmmvm

k

H
kkk +=∑  (18) 

As have been assumed in [2], the 

PDFs [ ] [ ]( ) [ ]( )p
i
kkpkk idPididP sc ===

~~
α  are Gaussian 

with the mean [ ] [ ]( )pkk
pi

k ididE αµ ==
~,

and the vari-

ance [ ] [ ] [ ]( )pkkk
pi

k idididCov ασ ==
~

,
~2,

. The statistics with 

respect to [ ]idk  can be computed as 

 [ ] pk
H
k

pi
k

M
αµ 0

1,
fU=  (19) 
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Then, with
[ ]

2,

2
,

,

~

pi
k

pi
kkpi

k

id

σ

µ
ρ

−
= , LLR ( )i,j

k
E cL  can be  

computed as 
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4. COMPLEXITY ANALYSIS 

We investigate the complexity of the proposed TSFE 

compared to its TOFDM and TSTE counterparts, in terms of 

the number of complex multiplications. TSTE is the MIMO 

extension of the work in [3]. Without taking decoding into 

consideration, the computational complexity consists of 4 

parts: 1) complexity of FFT/IFFT; 2) complexity of the solu-

tion of equalization coefficients; 3) complexity of the equali-

zation and 4) complexity of calculating statistics in associa-

tion with LLR ( )i,j
kcL , mean, and variance.  

The above complexity analysis is summarized in Table I, 

where 2
Q
-ary modulation is employed, and 1* and R* denote 

the computational complexity for the first iteration and each 

of the remaining iterations, respectively. 

A numerical example of complexity is also provided in 

Table II, where TSFE, TOFDM, and TSTE all have the same 

configuration with the overall channel memory N = 6, K =4 

transmit antennas, L=4 receive antennas and QPSK modula-

tion. TSFE and TOFDM both have M = 64 data symbols for 

each block, while TSTE has M = 128 data symbols for each 

block. This is to guarantee that the three structures achieve 

the same spectral efficiency, taking into account that TSFE, 

TOFDM and TSTE have a CP of length N for each block, 

and TSTE has the extra N symbols for filtering use. Based on 

Table II, we can observe that the low complexity TSFE and 

TOFDM require a comparable complexity, which is much 

lower than the exact TSFE and TSTE. 

5. SIMULATION RESULTS 

We use simulation results to show the performance of the 

proposed TSFE, in comparison with its TSTE and TOFDM 

counterparts. We choose a rate R = 1/2, memory 2 recursive 

systematic convolutional (RSC) encoder with generator

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



TABLE I. Computational Complexity in Terms of Complex Multiplications 

(P = 2
Q
, )(log5.0 21 MKMC = , )(log5.0 22 MLMC = ) 

 

 Receiver FFT/IFFT Coefficients Equalization Statistics 

1* 21 CC +   MKLML 23 23/ +  KLM  KKPKMPKLM +++  low  

complexity 

TSFE 
R* 12C  KMKLMMKLML +++ 23 23/  KLM2  KKPKMP ++  

1* 21 CC +   MKLML 23 23/ +  KLM  KKPKMPKLM +++  
exact TSFE 

R* 1C  KMKLMMKLML +++ 23243
223/  ( ) KLMMLK ++ 21  KMKMP +2  

1* 2C   MKLML 23 23/ +  KLM  KMKMPKLM ++ 2  
TOFDM  

R* 0 KMKLMMKLML +++ 23 23/  KLM2  KMKMP +2  

1* 0 ( ) ( ) 2333
123/1 KLNLN +++  ( )KLMN 1+  ( ) KKPKMPKLN ++++1  

TSTE 

R* 0 ( ) ( ) ( ) KMKLNKLNLN ++++++ 1123/1
2333

 ( ) ( )MNKLN ++12  KKPKMP ++  

 
TABLE II. Normalized Computational Complexity  

(K=4, L=4, P=4, N=6, M=64 for TSFE and TOFDM, M=128 for TSTE) 

 

Receiver 1 iteration 2  iterations 5 iterations 

low complexity 

TSFE 
100% 209% 536% 

exact TSFE 100% 2761400% 11045000% 

TOFDM 103% 211% 532% 

TSTE 478% 1069% 2844% 

 

( )22 1,1 DDD +++  to generate the error correcting code 

(ECC) bits, the permuted bits of which are modulated to 

QPSK symbols and are then multiplexed into K transmit 

blocks. With a symbol rate of BaudM  25.1  (i.e., a symbol 

period of T = 0.8µs), each data block consists of M = 64 

QPSK symbols for TSFE and TOFDM systems, and M = 

128 QPSK symbols for the transmission system of TSTE, to 

guarantee that all the three transmission systems achieve the 

same bandwidth efficiency. Both the transmit and receive 

filters use a raised-cosine pulse with a roll-off factor of 0.35. 

The physical channel is modelled by following the exponen-

tial power delay profile [10] with a root mean squared (RMS) 

delay spread of σ. The overall channel is of memory N = 6. 

We assume perfect channel state information at the receiver 

in this paper. The SNR is defined as the spatial average ratio 

of the received signal power to noise power. TSTE has fil-

ters of length (N+1) with a decision delay of 5. 

In Figure 3, we demonstrate the performance of the low 

complexity TSFE, compared to the exact TSFE, and its low 

complexity counterparts TOFDM and TSTE. A MIMO sys-

tem with K=4 transmit antennas and L=4 receive antennas is 

considered, with an RMS delay spread of σ=1.25T. It can be 

observed that the low complexity TSFE provides close per-

formance to the exact TSFE, with a huge complexity reduc-

tion as shown in Table II. Thus, in the following, we focus on 

the low complexity TSFE which is denoted by TSFE for 

simplicity. Compared to TSTE, TSFE provides better per-

formance at much lower complexity, though the performance 

gap decreases with the increase of the number of iterations. 

The FDE-based TSFE also outperforms TOFDM with a rela-

tively large number of iterations, due to the frequency diver-

sity achieved by the a priori information ( )i,j
k

I
cL  in (21). The 

performance advantage with 5 iterations is over 1dB at BER 

= 1e-5. 

Figure 4 shows the impact of the RMS delay spread on 

peformance of TSFE, TOFDM and TSTE with K=4 transmit 

antennas and L=4 receive antennas, at a fixed SNR=7dB. 

With the same number or iterations, all the three structures 

achieve similar performance at a small RMS delay spread 

(i.e., σ<0.25T). With a relatively high delay spread (i.e., in a 

highly dispersive channel), however, TSFE outperforms 

TOFDM and TSTE. This is because TSFE can capture the 

most multipath channel energy among the three equalization 

methods when channels are highly dispersive. Capable of 

achieving frequency diversity, TSFE also provides better 

performance in frequency-selective fading channels than in 

flat fading channels, especially at a high RMS delay spread. 

With 5 iterations, the BER of TSFE at an RMS delay spread 

of σ=2T is around 17 times lower than its BER for flat fading. 

TOFDM, on the other hand, remains a relatively stable per-

formance over different RMS delay spreads, which achieves 

BER improvement of only 2 times at  σ=2T  compared to the 

flat fading case with 5 iterations. Meanwhile, TSTE suffers 

from performance degradation over highly dispersive chan-

nels with σ > T. Referring to the BER results in Figure 3, we 

observe that when the channels are highly dispersive, the 

performance gap between TSFE and TOFDM, and the per-

formance gap between TSFE and TSTE become larger, if the 

fixed SNR is set higher. We choose an intermediate SNR of 7 

dB, because the BER for TSFE is very low and its accuracy 

is hard to be guaranteed by simulation at a higher SNR. 

Figure 5 shows the impact of the numbers of transmit an-

tennas and receive antennas on performance of TSFE, with 

K=L=4, K=L=2, and K=L=1, respectively. We assume an 

RMS delay spread of σ=1.25T. It is of interest to notice that 

the bigger K and L are, the better the performance of TSFE is. 

When the number of transmit antennas and the number or 

receive antennas are equal, traditional equalizations methods 
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generally suffer from performance degradation with more 

antennas used, due to the interference between substreams 

from different transmit antennas. With Turbo equalization, 

however, the performance mainly depends on the total length 

of the code bit sequences c, which implies that TSFE for 

MIMO systems can introduce more benefits than defects due 

to the interference between substreams. In particular, only 

with the first iteration can the SISO case (K=L=1) of TSFE 

outperform the MIMO cases (K=L=2 and K=L=4), since 

equally likely code bits are assumed. With the increase of the 

number of iterations, however, TSFE with K=L=4 signifi-

cantly outperforms TSFE with K=L=2 and K=L=1. Numeri-

cally, with 5 iterations, TSFE with K=L=4 achieves a per-

formance gain of 1.5 dB over TSFE with K=L=2 at BER=1e-

3, and a gain of 2.6 dB over TSFE with K=L= 2 at BER = 

1e-2, respectively. It can be observed that the length of code 

bit sequences c of TSFE is proportional to the number of 

transmit antennas K. Therefore, the performance of TSFE 

can be enhanced by increasing the number of transmit anten-

nas while the spatial diversity (i.e., the number of receive 

antennas) increases correspondingly.  

6. CONCLUSION 

We have proposed a low complexity TSFE approach for 

SC MIMO systems over frequency-selective fading channels, 

which provides close performance to its full complexity ver-

sion, with a tremendous complexity reduction (around 20000 

times with 5 iterations). TSFE also provides better perform-

ance than its TOFDM counterpart with the increase of the 

number of iterations, at a comparable complexity. It outper-

forms its TSTE counterpart especially at a high delay spread, 

with much lower complexity. Given that the number of 

transmit antennas is equal to the number of receive antennas, 

it is demonstrated that the more antennas, the better the per-

formance of TSFE due to the increase spatial diversity. 
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Figure 3 - Performance of TSFE, TOFDM, and TSTE with K=4, L=4 RMS 

delay of σ = 1.25T, and perfect CSI 
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Figure 4 - Impact of RMS delay spread on performance of TSFE, TOFDM, 

and TSTE with K=4, L=4, SNR=7dB 
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Figure 5 - Impact of the numbers of transmit antennas and receive 

antennas on performance of TSFE with an RMS delay σ = 1.25T 
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