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ABSTRACT 

 
This paper formally introduces the method named as RAE 
(ratio of adjacent eigenvalues) for model order selection, 
and proposes a new approach combining the recently 
developed SORTE (Second ORder sTatistic of the 
Eigenvalues) and RAE in the context for determining the 
number of sources in a linear transformation model. The 
underlying rationale for the combination discovered through 
sufficient simulations is that SORTE overestimated the true 
order in the model and RAE underestimated the true order 
when the signal to noise ratio (SNR) was low. Simulations 
further showed that after the new method, called 
RAESORTE, was optimized, the true number of sources 
was almost correctly estimated even when the SNR was -10 
dB, which is extremely difficult for any other model order 
selection methods; moreover, RAE took much less time than 
SORTE known as computational efficiency. Hence, RAE 
and RAESORTE appear promising for the real-time and real 
world signal processing.   
 

Index Terms—Linear transformation model, model 
order selection, number of sources, ratio of adjacent 
eigenvalues, signal to noise ratio  
 

1. INTRODUCTION 
 
Model order selection is an important and fundamental 
problem in a variety of applications of signal processing [1]. 
For example, the determination of the number of 
coefficients in a linear regression model [2], the selection of 
the order in time-series analysis [3], the detection of the 
number of clusters in n-way probabilistic clustering [4], the 
decision of dimensionality for principal component analysis 
(PCA) regarding dimension reduction [5], and the choice of 
the number of sources in a linear transformation model to 
separate the signal and the noise subspaces [6-9]. Generally, 
methods for model order selection may be derived from 
information theory criteria [1, 2, 10-13], Bayesian 
estimation [5, 14, 15], and based on gap in an ordered 
parameter sequence [4, 8]. Difficulties for model order 
selection originate mainly from three factors including the 

practical violation of theoretical assumptions required by a 
method [9, 13], short data [5, 16, 17], and low signal to 
noise ratio (SNR) [4, 18, 19]. This study is devoted to the 
last factor for signal processing with rich data. 

Recently, a method called SORTE (Second ORder 
sTatistic of the Eigenvalues), belonging to the gap based 
approach, has been proposed [4, 20]. Estimation by SORTE 
is correct when SNR is larger than 8 dB [4, 20]. 
Furthermore, one particular advantage of SORTE is its 
computational efficiency and its ease of implementation [4, 
20]. However, through a great deal of simulations, we found 
that SORTE often overestimated the number of sources in 
the linear transformation model when SNR was low. Also, 
we noticed that another more computationally efficient 
approach, based on the ratio of adjacent eigenvalues (RAE), 
which was mentioned by Liavas and Regalia [13], usually 
underestimated the number of sources in case SNR was low.  

It appears that RAE has not been formally presented 
before. Thus, we elaborate the algorithm of RAE in details 
here. Meanwhile, having been inspired by the characteristics 
of SORTE and RAE, we propose a new approach, 
combining RAE and SORTE, for fast and robust model 
order selection particularly when SNR is low in Section 2. 
In order to validate the effectiveness of the proposed 
approach, a few information theory criteria based methods 
are compared for model order selection in the context of 
determination of the number of sources in a linear 
transformation model. We perform the simulation based 
study for this purpose in Section 3. In previous studies, we 
found that the simulation for the problem of model order 
selection was usually ad hoc. In this study, for model order 
selection, we simulate the over-determined linear 
transformation models with the number of sources ranging 
from 10 till 100, the number of sensors ranging from 20 till 
200, and the SNR starting from -10 dB. Furthermore, 
considering real-time signal processing, we also compare 
the computing time taken by different methods. Based on 
results through sufficient simulations, we present the 
conclusions and discussion in the last section.            

 
2. MODEL ORDER SELECTION  
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2.1. Linear transformation model 
Considering a multiple-input-multiple-output signal model: 
an array of ݉ observed signals ܠ ൌ ሺݔଵ,⋯ , ௠ሻ்ݔ ∈ Թ௠ൈଵ 
are from ݊ sources ܛ ൌ ሺݏଵ,⋯ , ௡ሻ்ݏ ∈ Թ௡ൈଵ	ሺ݊ ൐ 1ሻ 
through a mixing matrix	ۯ ∈ Թ௠ൈ௡, i.e.,  
ܠ                                  ൌ ܛۯ ൅ ܍ ൌ ܢ ൅       (1)                         ,܍
where  ܍ ൌ ሺ݁ଵ,⋯ , ݁௠ሻ் ∈ Թ௠ൈଵ	 is the noise vector, and 
ܢ ൌ  ۯ is the noise free model. In this problem (1), both ܛۯ
and ܛ, as well as the number of sources ݊, are unknown. The 
task in this study is to seek the number of sources from the 
observed signals. To achieve this goal, first, we make three 
assumptions [4] as the following: (i)	ۯ is a tall matrix 
(݉ ൐ ݊) and full column rank, i.e., the rank of ۯ is ݊; (ii) 
the noise signals ݁ଵ,⋯ , ݁௠ are mutually independent and 
follow the identical Gaussian distribution ܰሺ0,  ଶሻ; (iii) theߪ
noise is statistically independent with the sources ݏଵ,⋯ ,  .௡ݏ
Then, we can obtain  
ܠ۱                  ൌ ሻ்ሿݐሺܠሻݐሺܠሾܧ ൌ ۯ ∙ ܛ۱ ∙ ்ۯ ൅  ଶ۷            (2)ߪ
where, E denotes the mathematical expectation, ۷ is the 
identity matrix, and ۱ܛ ൌ  ۯ ሻ்ሿ . Since the rank ofݐሺܛሻݐሺܛሾܧ
is ݊, one can readily derive [4, 13] 
௫,ଵߣ             ൒ ⋯ ൒ ௫,௡ߣ ൐ ௫,௡ାଵߣ ൌ ⋯ ൌ ௫,௠ߣ ൌ  ଶ,       (3)ߪ

where ൛ߣ௫,௜ൟ௜ୀଵ
௠

are the eigenvalues of matrix ۱ܠ in the 

descending order, and  
௦,ଵߣ                                    ൒ ⋯ ൒  ௦,௡,                              (4)ߣ

where ൛ߣ௦,௜ൟ௜ୀଵ
௡

are the eigenvalues of matrix ۱ܛ ൌ
 .ሻ்ሿ in the descending orderݐሺܛሻݐሺܛሾܧ

Theoretically, due to the multiplicity of the smaller 
eigenvalues of covariance matrix ۱ܠ, we may obtain the 
number of sources in the model (1) through counting the 
number of larger eigenvalues. In practice we cannot gain the 
covariance matrix but the sample covariance matrix as  
ܠ܀                            ൌ ∑ ሺ݊ሻ்்ܠሺ݊ሻܠ

	௡ୀଵ ܶ⁄ ,                  
where ܶ is the number of collected samples. At smaller 
SNRs, the smaller eigenvalues of ܠ܀ can be different, which 
results in the failure to count the larger eigenvalues for 
model order selection.  

Under the context of a linear transformation model, the 
model order selection usually includes three steps [1, 4, 7]: 
1) calculating eigenvalues of the sample covariance matrix; 
2) computing the eigenspectrum based on the ordered 
eigenvalues; 3) seeking the minimum or the maximum of 
the eigenspectrum to determine the number of sources. 
Therefore, the way to derive the eigenspectrum is the key 
for model order selection. We next introduce the 
information theory criteria based methods, SORTE, 
formally define RAE, and propose a new method for model 
order selection.   
 
2.2 Information theory criteria  
In this study, the Akaike’s information criterion (AIC) [10], 
Kullback-Leibler information criterion (KIC) [12] and 
Minimum description length (MDL) [11] are used for 
comparison with the proposed approach for model order 
selection. Indeed, AIC is the minimization of the Kullback-

Leibler divergence between the true model and the fitted 
model, KIC is using a systematic Kullback-Leibler 
divergence between the true and the fitted model, and MDL 
is the minimum of the code length [9]. They were defined as 

E୅୍େሺ݇ሻ ൌ െ2Lሺx|Θ௞ሻ ൅ 2GሺΘ௞ሻ 
E୏୍େሺ݇ሻ ൌ െ2Lሺx|Θ௞ሻ ൅ 3GሺΘ௞ሻ 

E୑ୈ୐ሺ݇ሻ ൌ െLሺx|Θ௞ሻ ൅
1
2
GሺΘ௞ሻlogܶ 

Lሺx|Θ௞ሻ ൌ
ܶ
2
logቌ

∏ λ୶,௜
ଵ ௠ି௞⁄௠

௜ୀ௞ାଵ

1
݉ െ ݇∑ λ୶,௜௠

௜ୀ௞ାଵ

ቍ

௠ି௞

 

GሺΘ௞ሻ ൌ 1 ൅݉݇ െ
1
2
݇ሺ݇ െ 1ሻ 

where, ܶ is the number of samples, Lሺx|Θ௞ሻ is the maximum 
log-likelihood of the observation based on the model 
parameter set Θ௞ of the ݇୲୦	order and GሺΘ௞ሻ is the penalty 
for model complexity given by the total number of the free 
parameters in Θ௞. 
 
2.3 Second ORder sTatistic of the Eigenvalues (SORTE) 
In order to identify the parameter ݊ by searching the gap 
between ߣ௫,௡ and ߣ௫,௡ାଵ in (3), a gap measure called 
SORTE [4] has been defined 

SORTEሺ݌ሻ ൌ

ە
۔

ۓ
௩௔௥ቒ൛׏ఒೣ,೔ൟ೔స೛శభ

೘షభ
ቓ

௩௔௥ቒ൛׏ఒೣ,೔ൟ೔స೛
೘షభ

ቓ
, ݎܽݒ ቒ൛ߣ׏௫,௜ൟ௜ୀ௣

௠ିଵ
ቓ ് 0

൅∞ ݎܽݒ ቒ൛ߣ׏௫,௜ൟ௜ୀ௣
௠ିଵ

ቓ ൌ 0

,			(5)     

where ݌ ൌ 1,⋯ , ሺ݉ െ 2ሻ and   

ݎܽݒ ቒ൛ߣ׏௫,௜ൟ௜ୀ௣
௠ିଵ

ቓ ൌ
ଵ

௠ି௣
∑ ቀߣ׏௫,௜ െ

ଵ

௠ି௣
∑ ௫,௜ߣ׏
௠ିଵ
௜ୀ௣ ቁ

ଶ
௠ିଵ
௜ୀ௣     

                                                                          (6) 

denotes the sample variance of the sequence  ൛ߣ׏௫,௜ൟ௜ୀ௣
௠ିଵ

 , 

and ߣ׏௫,௜ ൌ ௫,௜ߣ െ ,௫,௜ାଵߣ ݅ ൌ 1,⋯ , ሺ݉ െ 1ሻ. Then, we 
determine the number of sources by the criterion: 

ො݊ ൌ ݃ݎܽ
1, ,( 2)
min

p m 
SORTEሺ݌ሻ.                   (7) 

 
2.4 Ratio of adjacent eigenvalues (RAE) 
RAE can be defined as  

                     RAEሺ݌ሻ ൌ
ఒೣ,೛
ఒೣ,೛శభ

, ݌ ൌ 1,⋯ , ሺ݉ െ 1).           (8) 

Equivalently, we can define  

RAEሺ݌ሻ ൌ ݈݊൫ߣ௫,௣൯ െ ݈݊൫ߣ௫,௣ାଵ൯ ൌ ݈݊
ఒೣ,೛
ఒೣ,೛శభ

൒ 0,	      

where ݈݊ሺ∙ሻ is the natural logarithm and ݌ ൌ 1,⋯ , ሺ݉ െ 1). 
Through enough simulations, we found that if ߣ௦,௡ ൐  ௫,௡ାଵߣ
we may obtain the number of sources with probability 1 by 

ො݊ ൌ ݃ݎܽ
1, ,( 1)
max

p m 
RAEሺ݌ሻ.                   (9) 

Therefore, in contrast to Eq. (5), Eq. (8) indicates that RAE 
is computationally more efficient than SORTE, obviously as 
well as, AIC, KIC, MDL.  
        Furthermore, we found that when ߣ௦,௡ ≪  ௫,௡ାଵ, andߣ
provided that RAEሺ݇ሻ is the maximum of ሼRAEሺ݌ሻሽ௣ୀଵ

௠ିଵ,  
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the estimated ݇ is usually smaller than ݊, i.e., RAE gives 
underestimation. 
 
2.5 Proposed approach  
The proposed approach is to combine RAE and SORTE 
together as the following. 
                             ො݊ ൌ ωଵ ො݊ୖ୅୉ ൅ ωଶ ො݊ୗ୓ୖ୘୉,  and           (10) 
                                  ωଵ ൅ ωଶ ൌ 1,                                 (11) 

where ො݊ୖ୅୉ and ො݊ୗ୓ୖ୘୉ denote the estimated orders of the 
model  by RAE and SORTE, and the coefficients  ωଵ and 
ωଶ ranging between 0 and 1 are the weights for the two 
methods, respectively. Here, the rational to combine RAE 
and SORTE is that when SNR is low, RAE often 
underestimates the number of sources and SORTE usually 
overestimates the number of sources; hence, their average 
may reduce the error of estimation.  In this study, we define 
ωଵ ൌ ωଶ ൌ 0.5 for RAESORTE-1, and ωଵ ൌ 0.65, and 
ωଶ ൌ 0.35 for RAESORTE-2 which is the optimized 
RAESORTE here. The selection for the optimal coefficients 
was based on the visual inspection of the results of RAE and 
SORTE in the sufficient simulations of this study.  
 

3. SIMULATIONS  
 
In the simulations, except for the generally defined signal to 
noise ratio (SNR) as 10logଵ଴ሺ∑ z୧

ଶ୫
୧ୀଵ ∑ e୧

ଶ୫
୧ୀଵ⁄ ሻ, in order to 

reveal the relationship between the sources and the noise in 
the linear transformation model, we define a source to noise 
ratio (SoNR) as 10logଵ଴ሾሺ∑ s୧

ଶ୬
୧ୀଵ n⁄ ሻ ሺ∑ e୧

ଶ୫
୧ୀଵ m⁄ ሻ⁄ ሿ. The 

error of the estimation can be defined as  

ሺ%ሻݎ݋ݎݎ݁ ൌ 	
ො݊ െ ݊
݊

ൈ 100 

where, ݊ is the number of sources, and ො݊ is the estimated 
number of sources. Since the number of sensors in the 
simulation of this study may sometimes be more than 
several times of the number of sources, the estimated 
number of sources can be a few times of the number of 
sources if any method overestimates it. As a result, the error 
may be over 100 percent. As mentioned in the 
‘Introduction’, we do not discuss the problem of short data. 
The procedure of the simulation can be illustrated by the 
pseudo MATLAB code in Fig. 1 
 

 
Fig. 1. Simulation procedure 

        In the simulations, the sources with unit variance in (1) 
were all of the uniform distribution and were generated by 
the MATLAB command ‘rand’; noise in (1) was of the 
Gaussian distribution and was produced by the MATLAB 
command ‘randn’, and for different sensors, the variance of 
noise was kept identical. The variance of noise was 
determined by the pre-defined SNR. The mixing matrix in 
(1) was produced according to MATLAB function ‘rand’, 
and the mixing coefficients followed the uniform 
distribution between -1 to 1.  Here, the relationship between 
SoNR and SNR was not determined, but it was definite that 
SNR was larger than SoNR. It should be noted that final 
results for the estimation of the number of sources were the 
averaged over 600 runs including the loop of 10 runs of the 
number of sources, 6 runs of the number of samples, and 10 
runs of the number of sensors as shown in Fig.1.  
        For demonstrations of RAE, we first generated 10 
sources and 30 observed signals through the model (1) with 
the SoNR equal to 3.1 dB and the SNR equal to 8.2 dB.  Fig.  
2 shows the eigenvalues of the sample covariance matrices 
of the observed signals (ܠ܀) and the standard deviations of 
the signal and noise, the natural logarithm of those 
parameters, and the eigenspectrum of the sample covariance 
matrix of observed signals, i.e., the ratio of adjacent 
eigenvalued as defined by (8). It is evident that the natural 
logarithm of the eigenvalues revealed that the greatest gap 
appeared between the 10th and the 11th eigenvalues of the 
sample covariance matrix of observed signals here. After 
maximizing the eigenspectrum, we find that the number of 
sources estimated by RAE was 10 which was the true 
number of sources. In this example, the SNR was high and 
the signal at any sensor had larger energy than the 
corresponding noise due to three reasons: 1) the elements of 
the mixing matrix in this study conformed to the uniform 
distribution between -1 and 1, 2) the energy of sources was 
invariable, and 3) the energy of noise was identical among 
different sensors.   
 

 
 

Fig. 2. Demostrations for RAE 
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Fig. 3. Estimation for model order selection 
 

 
 

Fig. 4. Time taken by different methods 
 
Fig. 3 shows the percentage error of the estimation by 

different methods for model order selection in the 
simulations. The optimized RAESORTE-2 outperformed 
any other method when SNR was low, and it even estimated 
the number of sources without significant errors when SNR 
was -10 dB, which is greatly desired in the real world signal 
processing. Regarding SORTE, the error rate was even more 
than 100% when SNR was very low. For MDL and RAE, 
when SNR was close to -10dB, they suggest there were only 
few sources in the noisy data.  

Furthermore, Fig. 4 tells that the time taken by SORTE 
was about half of time that AIC, KIC and MDL required, 
and RAE was even more computationally efficient and the 
time taken by RAE was almost negligible in contrast to 
other methods. Hence, the proposed RAESORTE is also 
computationally efficient and time taken by RAESORTE is 
almost identical to that by SORTE, which is very useful in 
the real-time signal processing.    

 

4. CONCLUSION AND DISCUSSION 
 
The proposed model order selection method through 
combing the ratio of adjacent eigenvalues (RAE) and the 
SORTE together can accurately estimate the number of 
sources in a linear transformation model when SNR is as 

low as -10 dB. Furthermore, the proposed method is gap 
based and is computationally efficient and easy to 
implement. Especially for RAE, when the SNR is greater 
than 10 dB, it can correctly estimate the number of sources 
and takes little time. Hence, it is very promising to apply 
RAE and the proposed RAESORTE in the real-time and real 
word signal processing for model order selection.  

As mentioned in the Introduction, RAE has been 
mentioned in the previous publication [13], and it was not 
formally defined in [13]. In another previous publication 
[21], a method called effective channel order determination 
(ECOD) was proposed to determine the number of channels 
in single-input/multi-output channel identification. If the 
assumptions of ECOD were considered, ECOD would just 
be the reciprocal of RAE. However, ECOD assumes the 
covariance matrix of sources is an identical matrix and the 
ratio of adjacent ordered eigenvalues is more than three 
times [21]. Without these assumptions, ECOD would not be 
derived. Instead, RAE does not require such assumptions. 
Furthermore, in the simulation of ECOD [21], the lower 
bound of SNR was 30 dB, and in this study, the upper bound 
is 30dB. Moreover, ECOD and RAE are actually designed 
for different problems which are single-input/multi-output 
and multiple-input/multi-output, respectively. Hence, we 
think ECOD and RAE are systematically different.  
         In simulations of this study, the energy of different 
sources kept identical, and the energy of noise at different 
sensors also remained invariable. Indeed, this is for the 
convenience to calculate the SNR. In practice, the energy of 
different sources can be different, and the energy of noise at 
different sensors in different locations can be variable too, 
furthermore, the distributions of noise may not be white 
Gaussian, and some of sources might be correlated with 
each, for example, in the EEG data recorded along the scalp, 
in the fMRI data collected in different scans, and in the 
acoustic data by a microphone array. Hence, in order to 
investigate model order selection in the context of 
determining the number of sources for a specific problem, it 
is necessary to properly design the simulation for a practical 
application. This will be our future research topic.    

For model order selection, the short data problem is 
very challenging. However, for the application of 
independent component analysis (ICA) [6, 8, 9] to brain 
signals, the number of samples usually is rich. Hence, 
discussing the model order selection in the rich data is still 
practical and significant because if the number of sources 
was not correctly chosen, the model of ICA would not 
match the data and then the analysis based on the estimation 
by ICA would be incorrect. Another two topics which are 
needed to be discussed further are about the optimization of 
the weights for RAE and SORTE in (10) and the theoretical 
interpretation of the rational why the RAE and SORTE 
respectively under- and over-estimate the number of sources 
when SNR is low in the linear transformation model. We 
will perform more simulations on the short data problem 
and address the two topics in the future. 
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