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Abstract—To process high-dimensional big data, we assume
that sufficiently small patches (or neighborhoods) of the data are
approximately linear. These patches represent the tangent spaces
of an underlying manifold structure from which we assume
the data is sampled. We use these tangent spaces to extend
the scalar relations that are used by many kernel methods to
matrix relations, which encompass multidimensional similarities
between local neighborhoods in the data. The incorporation
of these matrix relations improves the utilization of kernel-
based data analysis methodologies. However, they also result
in a larger kernel and a higher computational cost of its
spectral decomposition. We propose a dictionary construction
that approximates the oversized kernel in this case and its
associated patch-to-tensor embedding. The performance of the
proposed dictionary construction is demonstrated on a super-
kernel example that utilizes the Diffusion Maps methodology
together with linear-projection operators between tangent spaces
in the manifold.

I. INTRODUCTION

Recent methods for massive high dimensional data analysis
utilize a manifold structure on which data points are assumed
to lie. This manifold is immersed (or submersed) in an
ambient space that is defined by observable parameters. Kernel
methods such as Diffusion Maps (DM) [1] have provided
good results in analyzing such massive high dimensional data.
These methods are based on the spectral decomposition of
a kernel designed to incorporate scalar similarities between
data points. The resulting embedding of the data points into
an Euclidean space preserves the qualities represented by the
designed kernel.

Recently, DM was extended in several different ways to
handle the orientation in local tangent spaces [2]–[4]. The
relation between two patches is described by a matrix instead
of a scalar value. The resulting kernel captures enriched sim-
ilarities between local structures in the underlying manifold.
These enriched similarities can be used to analyze local areas
around data points instead of analyzing their specific locations.

The discussed enrichments increase considerably the kernel
size, which is a limiting factor in the applicability of kernel
methods to real problems. Considerable efforts have been
invested for example in [5], [6] and others in approximating the
spectral decomposition operator to become computationally
feasible. In this paper, we combine the patch-based embedding
from [3], [4] with the dictionary construction approach in [5]
to approximate the spectral decomposition of a non-scalar
kernel that utilizes the underlying patch structure inside the
ambient space.

II. PROBLEM SETUP

LetM be a d dimensional manifold that lies in the ambient
space Rm, where d � m, and let M ⊆ Rm be a set of n
points sampled from it. Each point x ∈M has a d-dimensional
tangent space Tx(M), which is a subspace of Rm. Let Ox ∈
R
m×d, x ∈ M , be a matrix whose columns o1x, . . . , o

d
x ∈

R
m form an orthonormal basis of Tx(M). If the manifold

is densely sampled, Tx(M) can be approximated by a small
enough patch N(x) ⊆M around x ∈M . We will assume that
o1x, . . . , o

d
x are the principal directions of N(x) and vectors in

Tx(M) are expressed according to this basis.

A. Diffusion Maps
The original diffusion maps method [1] is based on defining

an isotropic kernel K as k(x, y) , e−
‖x−y‖
ε , for every x, y ∈

M, where ε is a meta-parameter of the algorithm. This kernel
represents the affinities between points on the manifold. The
kernel is normalized with the degrees q(x) ,

∫
y∈M

k(x, y),

x ∈ M to produce a stochastic transition operator P , with
p(x, y) = k(x,y)

q(x) , which defines a Markov process (i.e., a
diffusion process) over the manifold M. Its symmetric con-
jugate A, where a(x, y) =

√
q(x)p(x, y) 1√

q(y)
= k(x,y)√

q(x)q(y)
,

defines the diffusion affinities between data-points. Spectral
analysis of the diffusion affinity kernel A yields the eigen-
values 1 = σ0 ≥ σ1 ≥ . . . and their corresponding eigen-
vectors ψ0, ψ1, . . ., which are used to construct the desired
map that embeds each data point x ∈ M onto the point
Ψ(x) = (σiψi(x))δi=0 for a sufficiently small δ, which is the
dimension of the embedded space and depends on the decay
of the spectrum of A.

III. SUPER-KERNEL

For x, y ∈ M , let Oxy = OTxOy ∈ Rd×d, where Ox
and Oy represent bases of the tangent spaces Tx(M) and
Ty(M), respectively. The matrix Oxy represents a linear-
projection between these tangent spaces, and, in some sense,
the similarity between them. We will refer to it as a tangent
similarity matrix. We use the diffusion affinity kernel A and
the tangent similarity matrices Oxy to define the following
super-kernel:

Definition 1. A super-kernel is a block matrix G ∈ Rnd×nd
with n × n blocks and each block in it is a d × d ma-
trix. Each block Gxy ∈ Rd×d of a Linear-Projection Dif-
fusion Super-kernel is defined as Gxy , a(x, y)Oxy =
a(x, y)OTxOy, x, y ∈ M and represents the affinity between
the patches N(x) and N(y).
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We will use spectral decomposition for analyzing a super-
kernel G, and utilize it to embed the patches N(x) of the
manifold (for x ∈ M ) into a tensor space. Let |λ1| ≥ |λ2| ≥
. . . ≥ |λ`| be the ` most significant eigenvalues of G and let
φ1, φ2, . . . , φ` be their corresponding eigenvectors. According
to the spectral theorem, if ` is greater than the numerical rank
of G, then G ≈

∑`
i=1 λiφiφ

T
i , where the eigenvectors are

treated as column vectors.
Each eigenvector φi, i = 1, . . . , `, is a vector of length

nd. We denote each of its elements as φi(ojx) where x ∈ M
and j = 1, . . . , d. An eigenvector φi can also be regarded as a
vector of n sections, each of which is a vector of length d that
corresponds to a point x ∈ M on the manifold. To express
this notion we use the notation ϕji (x) = φi(o

j
x) (for x ∈

M, i = 1, . . . , `, j = 1, . . . , d). Thus, the section in φi, which
corresponds to x ∈M , is the vector (ϕ1

i (x), . . . , ϕdi (x))T .
We use the eigenvalues and eigenvectors of G to construct

a spectral map whose definition is similar to the standard (i.e.,
classic) diffusion map: Φ(ojx) = (λ1φ1(ojx), . . . , λ`φ`(o

j
x))T .

By using this construction, we get nd vectors of length `.
Each x ∈ M corresponds to d of these vectors, i.e., Φ(ojx),
j = 1, . . . , d. We use these vectors to construct the tensor
Tx ∈ R`⊗Rd for each x ∈M , whose coordinates are [Tx]ij =
λiϕ

j
i (x), x ∈ M, i = 1, . . . , `, j = 1, . . . , d. Each tensor Tx

represents an embedding of the patch N(x), x ∈M , into the
tensor space R` ⊗Rd.

A. Mathematical properties

1) Spectral properties: The linear-projection operators,
which define the tangent similarity matrices by a LPD super-
kernel, express some important properties of the manifold
structure, e.g., curvatures between patches and differences in
orientation. While there might be other ways to construct
a super-kernel that expresses these properties, LPD super-
kernels do have an important property, which is given by the
following theorem:

Theorem 1. A LPD super-kernel G is positive definite and its
operator norm satisfies ‖G‖ ≤ 1.

Proof. Theorem 3.1 from [3] shows that linear-projection
super-kernels have a non-negative spectrum that is bounded
from above by the spectral norm of the used scalar affinities.
Following the footsteps of that proof in our case, with the
diffusion affinity kernel, which is positive definite and whose
spectral norm is one, yields the result in the theorem.

The patch-to-tensor embedding that is achieved by the LPD
super-kernel is defined by the spectral analysis of this super-
kernel. Therefore, the spectral properties of this super-kernel,
which are shown in Theorem 1, are crucial for the patch-based
data analysis that utilizes this embedding.

2) Embedded distances: The classical diffusion map pro-
vides an embedded space in which the Euclidean distance
between data points is equal to a diffusion distance in the
original ambient space. This diffusion distance measures the
distance between two diffusion “bumps” a(x, ·) and a(y, ·),

each of which is a row in the symmetric diffusion kernel that
defines the diffusion map. From a technical point of view,
this relation means that the Euclidean distance between two
arbitrary points in the range of a diffusion map is equal to
the Euclidean distances between the corresponding rows of
its symmetric diffusion kernel. The following theorem (whose
proof appears in [3]) shows a similar property of the LPD-
based patch-to-tensor embedding:

Theorem 2. Let x, y ∈ M be two points on the manifold
and let Tx and Ty be their embedded tensors, then ‖Tx −

Ty‖2F =
∑
z∈M

d∑
j=1

‖(a(x, z)OTx − a(y, z)OTy )ojz‖2, where the

tensors are treated as matrices (i.e., their coordinate matrices)
when computing the Frobenius distance between them.

The vectors ojz in Theorem 2 are unit vectors that form an
orthonormal basis of the tangent space Tx(M) at the point z ∈
M . For each point z ∈M , the matrix [a(x, z)OTx −a(y, z)OTy ]
is applied to each of these unit vectors and the squared lengths
of the resulting vectors are summed. These terms can be seen
as extensions of the terms (a(x, z)−a(y, z)) of the original dif-
fusion distance, which only consider the differences between
scalar affinities. Further explanations about the meaning of the
extended diffusion distance can be found in [3].

IV. OUT-OF-SAMPLE EXTENSION FOR VECTOR FIELDS

The presented patch-to-tensor embedding is based on the
spectral analysis of a large super-kernel G. In order to ap-
proximate this spectral decomposition, we will use a dictionary
(i.e., a set of representatives) and extend its results (using an
out-of-sample extension) to the entire dataset. This extension
method can also be utilized to extend this decomposition
either from the dictionary or from the dataset to new data
points. The super-kernel G can be regarded as an operator on
tangent vector fields of the manifoldM restricted to a dataset
M . Therefore, the spectral decomposition of G consists of
eigenvector fields that span the range of G. Hence, an out-of-
sample extension of the eigenvector fields is equivalent to the
out-of-sample extension of vector fields in the range of G.

Out-of-sample extension of vector fields assumes an a priori
knowledge of a set of data points M and a corresponding
vector field where each vector lies on the respective local
tangent space. Consider a tangent vector field ~v : M → R

d

such that ~v(x) ∈ Tx(M) for all x ∈M . Then, the given data
points are used to construct the super-kernel G. Since G is
positive definite (see Theorem 1), it is also invertible and its
range consists of all these vector fields.

The out-of-sample extension of a new data point under the
PTE settings aims to find the new corresponding vector in the
local tangent space of the new point. The extension coefficients
~u are designed to minimize ‖G~u− ~v‖2 over the given set of
training data points. These coefficients, which minimize the
l2 norm, are computed by using the inverse of G such that
~u = G−1~v.

The coefficient vector ~u can be interpreted as a vector field
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~u : M → Rd over the set of training points or, equivalently,

~v(x) =
∑
y∈M

G(x,y)~u(y), x ∈M, (1)

where ~u(y), y ∈ M , are considered as the coefficients of the
vector field ~v according to the super-kernel G. Consider a new
data point x′ ∈ M\M with the matrix Ox′ whose columns
o1x′ , . . . , o

d
x′ form an orthonormal basis for the tangent space

Tx′(M). We can extend the vector field to a new data point
x′ by setting the value ~v(x′) to be

~v(x′) ,
∑
y∈M

G̃(x′,y)~u(y), (2)

where G̃(x′,y) = p̄(x′, y)OTx′Oy , y ∈ M , are the non-scalar
affinity blocks between the new data point and the data points
in the dataset. The extension in Eq. 2 is consistent with the
values ~v(x), x ∈M , in Eq. 1.

While the new affinity blocks in Eq. 2 are not known in
advance as part of the super-kernel, they are easily computed
for any new data point. This approximation only considers
values of the vector field ~u for the data points in M , which
can be computed in advance by using the pseudo inverse of
the super-kernel G. This computation is not complicated, but
it is beyond the scope of this paper since it is not essential for
the presented dictionary construction. Therefore, this provides
a feasible out-of-sample extension of a vector field, which is
similar to the methods shown in [7], [8] for the scalar case.

The extension in Eq. 2 can be interpreted geometrically by
separately considering the projections and the scalar weights
in the affinity blocks of the super-kernel. First, the extension
projects the coefficient vector field ~u from the manifold M
to the tangent space Tx′(M) of the new data point x′. This
projection expresses the coefficient vectors in local terms of
the manifold around x′. Then, the value of the vector field ~v
at x′ is computed by using a weighted sum of the projected
coefficient vectors on the tangent space Tx′(M).

V. CONSTRUCTIVE PATCH SAMPLING

According to Lemma 3.3 in [3], the sum in Eq. 1 can be
rephrased in terms of the embedded tensors x ∈M to be

~v(x) =
∑
y∈M
T Tx Ty~u(y). (3)

However, due to linear dependencies between the embedded
tensors, this sum may contain redundant elements. Indeed, if
Tz =

∑
z 6=y∈M czyTy for some scalar coefficients czy ∈ R, z 6=

y ∈ M , then Eq. 3 becomes ~v(x) =
∑
z 6=y∈M T Tx Ty(~u(y) +

czy~u(z)). This enables us to eliminate the redundant tensors and
by applying an iterative approach, we obtain a small subset
linearly independent tensors that are sufficient for computing
Eqs. 1 and 2.

Similarly, we can use matrix coefficients instead of scalar
ones to incorporate reacher relations between tensors. There-
fore, Tz is tensorialy dependent in {Ty}z 6=y∈M if Tz =∑
z 6=y∈M TyCzy for some matrix coefficients Czy ∈ Rd×d,

z 6= y ∈ M . This dependency expresses more redundancies

than the standard linear dependency. As a result, we obtain a
sparser set of tensorialy independent tensors that enables us
to efficiently compute Eqs. 1 and 2. This set of representative
tensors constitutes a dictionary that compactly represents the
embedded tensor space.

A. Dictionary Construction

We use an iterative approach to construct the described
dictionary by a sequential scan of the data points in M . In
the first iteration, we define the scanned set X1 = {x1} and
the dictionary D1 = {x1}. At each iteration s = 2, . . . , n,
we have a new data point xs, the scanned set Xs−1 =
{x1, . . . , xs−1} from the previous iteration and the dictionary
Ds−1 that represents Xs−1. The dictionary Ds−1 is in fact
a subset of ηs−1 data points from Xs−1 that are sufficient
to represent its embedded tensors. We define the scanned set
Xs = Xs−1 ∪ {xs}. Our goal is to define the dictionary Ds

of Xs, based on the dictionary Ds−1 with the new data point
xs. To do this, a dependency criterion has to be established. If
this criterion is satisfied, then the dictionary remains the same
such that Ds = Ds−1. Otherwise, it is updated to include the
new data point Ds = Ds−1 ∪ {xs}.

We use a dependency criterion that is similar to the approx-
imated linear dependency (ALD) criterion from [5]. The ALD
measures the distance between vector candidates and the span
by the dictionary vectors. In our case, we want to approximate
the tensorial dependency of Txs on the tensors in the dictionary
Ds−1. Therefore, we define the distance of Txs from the dictio-
nary Ds−1 as δs , minC1,...,Cηs−1

∥∥∑ηs−1

j=1 TyjCj − Txs
∥∥2
F

,
where ‖·‖F denotes the Frobenius norm, and C1, . . . , Cηs−1

∈
R
d×d are matrix coefficients. The approximated tensorial

dependency (ATD) criterion is defined as δs ≤ µ, for some
accuracy threshold µ > 0. If the ATD criterion is satisfied, then
the tensor Txs can be approximated by the dictionary Ds−1,
using the matrix coefficients Cs1 , . . . , C

s
ηs−1

of δs. Otherwise,
the dictionary has to be updated by adding xs to it. Lemma 3
(whose proof appears in [9]) shows that δs and the dictionary-
based approximation can be expressed in terms of the super-
kernel and without requiring knowledge of the embedded
tensors the embedded tensors.

Lemma 3. Let Ĝs−1 ∈ Rdηs−1×dηs−1 be the super-kernel
of the data points in Ds−1, and let Hs ∈ Rdηs−1×d be a
ηs−1 × 1 block matrix whose j-th d × d block is G(yj ,xs),
j = 1, . . . , ηs−1. Then, the optimal matrix coefficients in δs
are the ηs−1 blocks, of size d× d, in Ĝ−1s−1Hs. The achieved
δs satisfies δs = tr[G(xs,xs) −HT

s Ĝ
−1
s−1Hs].

Essentially, this lemma eliminates the need for prior knowl-
edge of the embedded tensors during the dictionary construc-
tion. At each iteration s, the criterion δs < µ is considered.
Based on this condition, we decide whether to add xs to the
dictionary or just approximate its tensor. The threshold µ is
given in advance as a meta-parameter and δs can be computed
by using Lemma 3. Therefore, the dictionary construction
process only requires knowledge of a relatively limited number
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of super-kernel blocks, which is determined by the size of the
dictionary and not by the size of the dataset.

VI. EXAMPLE: MNIST HANDWRITTEN DIGIT
CLASSIFICATION USING PATCH-BASED ANALYSIS

The patch-based methodology provides a general framework
that can be utilized to a wide spectrum of data analysis
tasks such as clustering, classification, anomaly detection and
related manifold learning tasks. In this section, we demonstrate
its utilization of the task of MNIST Handwritten digit classi-
fication. This experiment was done utilizing an of-the-shelve
computer with a I7 − 2600 quad core CPU and a 16GB of
DDR3 memory.

The MNIST database of handwritten digits [10] (available
from http://yann.lecun.com/exdb/mnist/) consists of a training
set of 60, 000 examples and a test set of 10, 000 examples.
Each digit example is given as a grey levels 28 × 28 image.
The digit images were centered by computing the center of
mass of the pixels, and a translation operation was preformed
to position this point at the center of the 28×28 field. MNIST
is a subset of a larger set available from NIST. Many machine
learning methods have been tested on this data set, hence
the recognition performance is highly competitive. Currently,
convolutional networks show a state-of-the-art recognition
accuracy with an error of 0.23% [11]. For our purpose, the
MNIST dataset provides a dataset of 70, 000 data points of
very high dimensional measurements of size 728 pixels per a
measured digit. In our experiments, we used the images as is.

The dictionary approximated patch-based embedding was
utilized to embed the MNIST dataset of 70, 000 examples by
the following steps. First, in each data point we identified the
150 nearest neighbors and computed the corresponding local
PCA. For each local tangent space, we kept the 3 significant
eigenvectors. Secondly, the diffusion affinities were computed
with ε = 105 (see Section II-A), which is the Euclidean
distance mean of all pairwise data points. The proposed dictio-
nary construction with ATD threshold µ = 0.0001 identified
93 important patches and their corresponding local tangent
spaces. Finally, the approximated tensors were constructed
utilizing ` = 30. The labeling of each test data-point was esti-
mated using the label of the nearest training data-point, where
the pairwise distance was computed as the Frobenius norm of
the difference between the corresponding embedded tensors.
The resulting labeling error of the patch-based recognition
method is 5.8%. Table I compares the computational costs
of the straightforward implementation of the PTE algorithm
from [3] and the presented dictionary-based algorithm on the
MNIST dataset.

Size SVD Cost - Full G Dict. Size SVD Cost - Approx. G
70, 000 O

(
70, 0003 × 33

)
93 O (70, 000× 77, 841)

TABLE I
COMPUTATIONAL COST OF THE SVD STEP IN THE DICTIONARY

APPROXIMATED PTE (SVD Cost - Approx. G) VS. THE FULL SVD OF THE
SUPER-KERNEL (SVD Cost - Approx. G) OF THE NIST DATASET.

Although we are not far away from the state-of-the-art
in digit recognition, the proposed method has the following
advantages: 1. It shows that patch processing can be practically
utilized for recognition and data analysis tasks. 2. Big high-
dimensional datasets can be processed on “cheap” hardware
such as in our case where the algorithm ran on less than 1000$
worth of hardware.

VII. CONCLUSIONS

The proposed construction in the paper extends the dic-
tionary construction in [5] by using the LPD super-kernel
from [3], [4]. This is done by an efficient dictionary-based
construction that assumes the data is sampled from an un-
derlying manifold while utilizing the non-scalar relations be-
tween manifold patches instead of considering individual data-
points. The constructed dictionary contains patches from the
underlying manifold, which are represented by the embedded
tensors from [3], instead of individual data points. Therefore,
it encompasses multidimensional similarities between local
areas of the data. The patch-based dictionary reduces the
computational costs of the spectral analysis in comparison to
the PTE [3], hence, it enables us to apply this patch processing
approach for datasets that were impractical to process and
embed before.
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