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ABSTRACT
In this paper, we consider the problem of Bayesian sequential

estimation on a set of time invariant parameters. At every

time instant, a new observation through a linear model is

obtained where the observations are distorted by spatially

correlated noise with unknown covariance, whereas in time,

the noise samples are independent and identically distributed.

We derive the joint posterior of the parameters of interest

and the covariance, and we propose several approximations

to make the Bayesian estimation tractable. Then we propose

a method for forming a pseudo posterior, which is suitable

for settings where estimation over networks is applied. By

computer simulations, we demonstrate that the Kullback–

Leibler divergence between the pseudo posterior and a

posterior obtained from a known covariance decreases as the

acquisition of new observations continues. We also provide

computer simulations that compare the proposed method with

the least squares method.

Index Terms— Bayesian inference, distributed estimation,

unknown covariance, pseudo posterior

1. INTRODUCTION

Estimation over cooperative networks has been widely

studied in the literature (e.g., [1, 2]), where the agents

estimate the state of nature in a distributed manner by

exchanging information with neighbors. In [3, 4, 5],

we address consensus-based distributed estimation of linear

models within the Bayesian framework.

In addressing consensus-based estimation methods over

networks, it is important to reformulate the formation of

the optimal posterior to be a function of summation of

certain statistics. In [4] and [6], it is shown that by using

this strategy, the original problem can be converted to a

problem of distributed summation, which is suitable for the

consensus method [7]. In [8], the authors consider a problem
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where the observation noises are spatially correlated with

known covariance matrix. In this paper, we are laying

the grounds for distributed estimation to scenarios where

the observation noise is spatially correlated with unknown

covariance, whereas in time, the noise is independent and

identically distributed. We focus on the required processing

by an agent at every time step and show why it cannot obtain

the exact posteriors of the unknowns. Then we resort to

a suboptimal approach that can be used to approximate the

individual agent’s belief to a suitable form. This belief can

then readily be used in settings of distributed estimation.

More specifically, we study sequential estimation where at

every time instant an agent gets observations from several

sensors about a vector of time invariant parameters through

a linear model. In order to get the posterior of the parameter

of interests, the agent needs to marginalize out the unknown

covariance. The marginalization, however, is computationally

intractable. Therefore, we define a pseudo posterior as an

approximation of the posterior and propose a method for the

agent to approximately reach the optimal Bayesian result.

This approach lends itself readily to processing over networks

of agents.

The paper is organized as follows. In the next section we

state the problem. In Section 3, we present the mathematical

development of the proposed method. With the result in

Section 3, we propose the method for estimation in Section 4.

Section 5 provides simulation results, and Section 6 contains

conclusions.

2. PROBLEM FORMULATION

We address sequential Bayesian estimation of a vector of

linear parameters θ ∈ R
K×1 by a single agent. The

solution of this problem is a key to resolving the problem

of distributed Bayesian estimation, where each agent receives

measurements from its sensors, with the measurements being

distorted by time independent but spatially correlated noise.

In Fig. 1, we display a general scenario of distributed

estimation, where each agent has M sensors providing the
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agent with spatially correlated observations. The agents

exchange information for cooperative estimation of the

unknowns of interest.

Fig. 1. A schematic diagram of a distributed system, where

An denotes the nth agent, S
(m)
n represents the mth sensor of

agent An, and y
(m)
n,t denotes the measurements provided from

S
(m)
n to An at time instant t.

Consider that at each time instant t ∈ N
+, an agent receives

data yt generated by a linear model of the form

yt = Htθ +wt, (1)

where Ht ∈ R
M×K is a matrix known by the agent, and wt

denotes the observation noise modeled as a Gaussian random

vector with zero-mean and covariance Σ ∈ R
M×M , which is

time invariant but unknown. It is also assumed that M ≥ K
and the observation noise wt is white in time.

We use the model in (1) and define the agent’s prior on Σ as

an inverse Wishart distribution, W−1(Λ0, ν), given by

p(Σ) ∝ |Σ|− ν+M+1
2 exp

(
−1

2
tr(Λ0Σ

−1)

)
, (2)

where Λ0 is a scale matrix, ν represents degrees of

freedom, and tr(·) denotes the trace of the matrix inside the

parentheses. Let the prior of θ be Gaussian denoted by

p(θ|Σ) ∝ |C−1
0 | 12 exp

(
−1

2
(θ − θ0)

�C−1
0 (θ − θ0)

)
,

(3)

where � denotes matrix transpose. We set C−1
0 =

H�
0 Σ

−1H0.

From the Bayes’ rule, the posteriors of θ and Σ can be

obtained by

p (θ,Σ|It) ∝ p (It|θ,Σ) p (θ|Σ) p (Σ) , (4)

where It refers to all the information up to time t, which

includes yτ , Hτ , for all τ ∈ {1, 2, · · · , t}. We propose that

the agent formulates its belief about θ as the marginalized

posterior of θ given by,

βt = p(θ|It)
=

∫
Σ�0

p(θ,Σ|It)dΣ, (5)

where Σ � 0 denotes that Σ is positive definite.

We also define a benchmark for this problem. We assume

that there exists a genie agent which knows both It and Σ.

Its belief is given by,

β
(opt)
t = p(θ|It,Σ). (6)

In this work, our aim is to derive expressions for sequential

update of the posterior βt and the estimate of θ.

3. MATHEMATICAL DEVELOPMENT OF THE
PROPOSED METHOD

In this section, we first derive the posterior held by the agent

and then we propose the approximations to make the problem

tractable for distributed estimation of θ.

3.1. Posterior of individual agent

Using the model in Section 2, the expression (1) suggests that

the likelihood of the data at time t can be written by

p(It|θ,Σ) ∝ |Σ|− t
2 exp

(
−1

2

t∑
τ=1

w�
τ Σ

−1wτ

)
(7)

with wτ = yτ −Hτθ denoting the observation noise.

Using the Bayes’ rule, one can show that the posterior of θ is

given by

p(θ,Σ|It) ∝ p(It|θ,Σ)p(θ|Σ)p(Σ)

= |Σ|− ν+t+M+1
2 |C0|− 1

2 exp

(
−1

2
Lt

)
, (8)

where Lt is defined by

Lt =
t∑

τ=1

w�
τ Σ

−1wτ + tr(Λ0Σ
−1)

+(θ − θ0)
�C−1

0 (θ − θ0). (9)

We show in the appendix that Lt can be reformulated into the

following quadratic form:

Lt = (θ − θ̃t)
�C−1

t (θ − θ̃t) + St (10)



with Ct and θ̃t given by

Ct =

(
t∑

τ=0

H�
τ Σ

−1Hτ

)−1

, (11)

θ̃t = C−1
t

(
t∑

τ=1

H�
τ Σ

−1yτ +C−1
0 θ0

)
, (12)

where St is defined by

St = (θ0 − μt)
�
(C0 +Mt)

−1
(θ0 − μt) + tr(Λ0Σ

−1)

+
t∑

τ=1

(yτ −Hτμt)
�Σ−1(yτ −Hτμt). (13)

In (13), μt represents the maximum likelihood estimate of θ
in the form of

μt =

(
t∑

τ=1

H�
τ Σ

−1Hτ

)−1 ( t∑
τ=1

H�
τ Σ

−1yτ

)
, (14)

and Mt denotes the covariance matrix of μt defined by,

Mt =

(
t∑

τ=1

H�
τ Σ

−1Hτ

)−1

. (15)

We write p(θ,Σ|It) = p(θ|Σ, It)p(Σ|It), and from the

expression of Lt in (10), we can get the optimal belief held by

the genie agent β
(opt)
t = p(θ|Σ, It). The belief is expressed

by a multivariate Gaussian distribution given by

β
(opt)
t = N

(
θ̃t,Ct

)
. (16)

By using (8) and (10), we can show that after integrating out

θ, the marginalized posterior of Σ has the following form:

p(Σ|It) ∝ |C0C
−1
t |− 1

2 |Σ|− ν+t+M+1
2 exp

(
−1

2
St

)
, (17)

where St is defined in (13).

3.2. Approximation of the posterior

The expression for μt in (14) suggests that μt is a function

of Σ, and thus, the posterior of Σ in (17) is not an inverse

Wishart distribution. This means that the integration

p(θ|It) =
∫
Σ�0

p(θ|Σ, It)p(Σ|It)dΣ, (18)

is not tractable.

However, from (17) and (13), Σ has an inverse Wishart

distribution if the following three approximations are valid.

First,

(C0 +Mt)
−1 ≈ C−1

0 , (19)

which is valid for large t. The reason is that when t is large,

the elements of Mt become very small in comparison to those

of C0. Second,

|C0C
−1
t | ≈ rt, ∀t ∈ N, (20)

where rt is approximately a constant. In the special case when

the Hts are identical or proportional to each other for different

ts, rt is truly a constant.

The third approximation is that when t is large, the estimate

of Σ held by an agent becomes close to the true value of Σ.

Then, in (14), we substitute Σ with Σ̂t−1, and we have the

approximation μt ≈ μ̂t where

μ̂t =

(
t∑

τ=1

H�
τ Σ̂

−1

t−1Hτ

)−1 ( t∑
τ=1

H�
τ Σ̂

−1

t−1yτ

)
, (21)

which means the agent can be viewed as if it knows the true

value of Σ in calculating μt.

Even with these approximations, the joint posterior of θ and

Σ is not a Normal Inverse Wishart distribution. Then we

propose that the agent uses an additional approximation for

generating its pseudo-posterior, i.e.,p(θ|It) ≈ β̂t, where

β̂t = p(θ|It,Σ = Σ̂t), (22)

and where Σ̂t denotes the latest estimate of Σ held by the

agent at time instant t, which can be, e.g., be the maximum

likelihood estimate. However, in this paper, we propose that

the agent uses the MMSE estimate. This estimate is the mean

of the marginalized posterior of Σ, i.e.,

Σ̂MMSE,t =

∫
Σ�0

Σ p(Σ|It) dΣ. (23)

With the above three assumptions, we can analytically solve

the integration in (23) and obtain Σ̂t by

Σ̂t =
1

νt −M − 1

( t∑
τ=1

(yτ −Hτ μ̂t)(yτ −Hτ μ̂t)
�

+Λ0 +H0(θ0 − μ̂t)(θ0 − μ̂t)
�H�

0

)
, (24)

where νt = ν+ t and μ̂t is defined in (21). Furthermore, this

estimate approaches Σ̂MMSE,t with time.

The expressions (16) and (22) show that the pseudo posterior

of agent An of θ has the following form:

β̂t = N
(
θ̂t, Ĉt

)
, (25)

where

Ĉt =

(
t∑

τ=0

H�
τ Σ̂

−1

t Hτ

)−1

, (26)

θ̂t = Ĉ−1
t

(
t∑

τ=1

H�
τ Σ̂

−1

t yτ + Ĉ−1
0 θ0

)
, (27)



with Σ̂t being defined in (24).

4. THE PROPOSED METHOD

In this section, we summarize the method for updating the

pseudo posterior of θ employed by the agent. At each time

instant t, it implements the following steps:

Initialization: At t = 0, the agent forms its prior by (2) and

(3), and initializes Σ̂0 by Σ̂0 = Λ0

ν−M−1 . The steps below

describe the tth recursion.

Step 1 The agent receives the data yt and the regressors Ht

from the sensors and calculates μ̂t by (21).

Step 2 With μ̂t and (24), the agent updates its estimate Σ̂t.

Step 3 The agent forms its pseudo posterior β̂t as a

Gaussian distribution with a mean θ̂t and covariance Σ̂t

defined in (26) and (27).

We point out that since an agent approximates its belief by a

Gaussian distribution, the distributed estimation problem can

be converted to a distributed summation problem [6].

5. SIMULATION

In this section, we provide computer simulations that show

the performance of our method in terms of convergence and

numerical comparisons with the least squares (LS) method.

We performed two experiments. In the first experiment, we

implemented the proposed and the LS methods with identical

random data in 1000 realizations. In each of the trials, θ =
[3, 3, 2, 2]�, M = 10, K = 4, t ∈ {1, 2, · · · , 200}. We

set the elements of Ht ∈ R
M×K to be independent random

variables uniformly distributed on [3, 5]. Also, in every trial,

we drew Σ from its prior, an inverse Wishart distribution

with Λ0 = 10IM (with IM ∈ R
M×M denoting the identity

matrix) and ν = 12. We also set θ0 = [0, 0, 0, 0]� and

generated H0 in the same way as we did Ht, t > 0.

As a performance metric for the different methods, we used

the mean square deviation at time t, MSD(t), defined as

the average value of ‖θ̂t − θ‖2 over 1000 implementations.

To demonstrate the advantage of the proposed method, we

compared the MSD of the proposed method with that of the

LS method and of the genie agent. The LS estimate of θ at

time instant t is given by

θ̂
(LS)

t =

(
t∑

τ=1

H�
τ Hτ

)−1 ( t∑
τ=1

H�
τ yτ

)
. (28)

The MSD of the genie agent served as a benchmark. We note

that the estimate of θ of the genie agent is θ̃t given by (12).

In the second experiment, we repeated everything except that

we generated Σ with another scale matrix Q2, where Q ∈
R

M×M was with elements that were independent random

variables uniformly distributed on [0, 5]. The intention of

this experiment was to show the performance of the proposed

method with highly correlated data.
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Fig. 2. Asymptotical performance of the proposed method.

The results of the two experiments are shown in Fig. 2 (on

the left of experiment 1, and on the right of experiment 2),

where we plotted the MSDs of the different methods. It can

be seen that the proposed method shows a faster convergence

than the LS method in terms of MSD. This difference is even

more obvious when processing data with a higher correlation

(as in experiment two).
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Fig. 3. The evolution of KL divergence.

In Fig. 3, we plotted the Kullback–Leibler (KL) divergence,

DKL(β
(opt)
t ||β̂t)), between the belief of the genie agent and

the belief of the agent that employs the proposed method.



From the figure, it can be seen that the KL divergence keeps

decreasing as time evolves, but it does it rather slowly.

6. CONCLUSION

In this paper, we considered Bayesian estimation in the

presence of Gaussian noise with unknown covariance but

that is independent in time. We first derived the posterior

of the agent and then based on that we proposed three

approximations that allow for a closed form solution for the

belief update. We also presented an approach for recursive

estimation of the parameter vector of interest. This result

can be used in parameter estimation over networks. By

computer simulations, we showed that the proposed method

outperformed the least squares method in terms of mean

square deviation.

7. APPENDIX

Here we show the derivation from (9) to (15). First by

expanding the square terms in (9), we have

Lt =
t∑

τ=0

θ�H�
τ Σ

−1Hτθ

+

t∑
τ=1

y�
τ Σ

−1yτ + θ�
0 C

−1
0 θ0 + tr(Λ0Σ

−1)

−2θ�(
t∑

τ=1

H�
τ Σ

−1yτ +C−1
0 θ0). (29)

From (12), we have C−1
t θ̂t =

∑t
τ=1 H

�
τ Σ

−1yτ + C−1
0 θ0,

which implies that if we add and subtract θ̂
�
t C

−1
t θ̂t in the

above equation, it will become

Lt = (θ − θ̂t)
�C−1

t (θ − θ̂t)− θ̂
�
t C

−1
t θ̂t

+

t∑
τ=1

y�
τ Σ

−1yτ + θ�
0 C

−1
0 θ0 + tr(Λ0Σ

−1). (30)

With the above equation, we can write

St =

t∑
τ=1

y�
τ Σ

−1yτ + θ�
0 C

−1
0 θ0 + tr(Λ0Σ

−1)

−θ̂
�
t C

−1
t θ̂t. (31)

Next, let S
(1)
t =

∑t
τ=1 y

�
τ Σ

−1yτ − μ�
t M

−1
t μt with Mt

being defined in (15). From (14) and (15), we have

μ�
t M

−1
t μt = μ�

t

t∑
τ=1

H�
τ Σ

−1yτ , (32)

which implies

S
(1)
t =

t∑
τ=1

(yτ −Hτμτ )
�Σ−1(yτ −Hτμτ ). (33)

Similarly, we can define S
(2)
t = θ�

0 C
−1
0 θ0 + μ�

t M
−1
t μt −

θ̂
�
t C

−1
t θ̂t, where the last term can be expanded as

θ̂
�
t C

−1
t θ̂t = (C−1

0 θ0 +M−1
t μt)

�(C−1
0 +M−1

t )−1

×(C−1
0 θ0 +M−1

t μt)

= μ�
t M

−1
t (C−1

0 +M−1
t )−1M−1

t μt

+θ�
0 C

−1
0 (C−1

0 +M−1
t )−1C−1

0 θ0

−2μ�
t M

−1
t (C−1

0 +M−1
t )−1C−1

0 θ0. (34)

With the result in (34), one can show that S
(2)
t can be

reformulated as

S
(2)
t = (θ0 − μt)

� (
C−1

0 (C−1
0 +M−1

t )−1M−1
t

)
× (θ0 − μt)

= (θ0 − μt)
�
(C0 +Mt)

−1
(θ0 − μt) . (35)

Noting that St = S
(1)
t +S

(2)
t + tr(Λ0Σ

−1), by (33) and (35)

we have shown that the equation (10) holds.
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[3] P. M. Djurić and Y. Wang, “Distributed Bayesian learning

in multiagent systems: Improving our understanding of

its capabilities and limitations,” IEEE Signal Processing
Magazine, vol. 29, no. 2, pp. 65–76, 2012.
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