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Abstract—We consider the problem of “algebraic reconstruc-
tion” of linear combinations of shifts of several signals f1, . . . , fk
from the Fourier samples. For each r = 1, . . . , k we choose
sampling set Sr to be a subset of the common set of zeroes
of the Fourier transforms F(fℓ), ℓ 6= r, on which F(fr) 6= 0.

We show that in this way the reconstruction system is reduced
to k separate systems, each including only one of the signals fr .
Each of the resulting systems is of a “generalized Prony” form.
We discuss the problem of unique solvability of such systems,
and provide some examples.

I. INTRODUCTION

In this paper we consider reconstruction of signals of the

following a priori known form:

F (x) =
k

∑

j=1

qj
∑

q=1

ajqfj(x− xjq), (1.1)

with ajq ∈ R, xjq = (x1
jq , . . . , x

n
jq) ∈ R

n. We assume that

the signals f1, . . . , fk : R
n → R are known (in particular,

their Fourier transforms F(fj) are known), while ajq , xjq

are the unknown signal parameters, which we want to find

from Fourier samples of F . We explicitly assume here that

k ≥ 2. So the usual methods which allow one to solve this

problem “in closed form” in the case of shifts of a single

function (see [6], [2], [16]) are not directly applicable. Still,

we shall show that in many cases an explicit reconstruction

from a relatively small collection of Fourier samples of F
is possible. Practical importance of signals as above is well

recognized in the literature: for some discussions and similar

settings see, e.g. [6], [8], [13].

We follow a general line of the “Algebraic Sampling”

approach (see [6], [15], [3] and references therein), i.e. we

reconstruct the values of the unknown parameters, solving a

system of non-linear equations, imposed by the measurements

(system (2.1) below). The equations in this system appear as

we equate the “symbolic” expressions of the Fourier samples,

obtained from (1.1), to their actual measured values.

Our specific strategy is as follows: we choose a sampling

set Sr ⊂ R
n, r = 1, . . . , k, in a special way, in order to
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“decouple” (2.1), and to reduce it to k separate systems, each

including only one of the signals fr. To achieve this goal we

take Sr to be a subset of the common set of zeroes of the

Fourier transforms F(fℓ), ℓ 6= r.

The decoupled systems turn out to be of a “generalized

Prony” type:

N
∑

j=1

ajy
sℓ
j = mℓ, ℓ = 1, 2, . . . , sℓ ∈ S ⊂ R

n. (1.2)

The standard Prony system, where the sample set S is the

set of integer points in a cube of a prescribed size, allows

for a solution “in closed form” (see, for example, [2], [14],

[16], [17] and references therein). We are not aware of any

method for an explicit solution of generalized Prony systems.

However, “generic” solution methods can be applied. Their

robustness can be estimated via Turán-Nazarov inequality for

exponential polynomials and its discrete version ([7], [12]).

Some initial results in this direction have been presented in

[16], [2]. Below we further extend these results, restricting

ourselves to the uniqueness problem only.

II. RECONSTRUCTION SYSTEM AND ITS DECOUPLING

For F of the form (1.1) and for any s = (s1, . . . , sn) ∈ R
n

we have for the sample of the Fourier transform F(F ) at s

F(F )(s) =

∫

Rn

e−2πisxF (x)dx

=
k

∑

j=1

qj
∑

q=1

ajqe
−2πisxjqF(fj)(s).

So taking samples at the points sℓ = (s1ℓ , . . . , s
n
ℓ ) of the

sample set S = {s1, . . . , sm}, and denoting the vector

e−2πixjq = (e−2πix1
jq , . . . , e−2πixn

jq ) by yjq = (y1jq, . . . , y
n
jq)

we get our reconstruction system in the form

k
∑

j=1

qj
∑

q=1

ajqF(fj)(sℓ)y
sℓ
jq = F(F )(sℓ), ℓ = 1, . . . ,m, (2.1)

in the standard multi-index notations. In system (2.1) the right

hand sides F(F )(sℓ) are the known measurements, while the
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Fourier samples F(fj)(sℓ) are known by our assumptions. The

unknowns in (2.1) are the amplitudes ajq and the shifts xjq ,

encoded in the vectors yjq .

In the case k = 1 we could divide the equations in (2.1) by

F(f1)(sℓ) and obtain directly a Prony-like system. However,

for k ≥ 2 this transformation usually is not applicable.

Instead we “decouple” system (2.1) with respect to the signals

f1, . . . , fk using the freedom in the choice of the sample set

S. Let

Zℓ =
{

x ∈ R
n, F(fℓ)(x) = 0

}

denote the set of zeroes of the Fourier transform F(fℓ). For

each r = 1, . . . , k we take the sampling set Sr to be a subset

of the set

Wr = (
⋂

ℓ 6=r

Zℓ) \ Zr

of common zeroes of the Fourier transforms F(fℓ), ℓ 6= r, but

not of F(fr). For such Sr all the equations in (2.1) vanish,

besides those with j = r. Hence we obtain:

Proposition 2.1: Let for each r = 1, . . . , k the sampling set

Sr satisfy

Sr = {sr1, . . . , srmr
} ⊂ Wr.

Then for each r the corresponding system (2.1) on the sample

set Sr takes the form

qr
∑

q=1

arqy
srℓ
rq = crℓ(F ), ℓ = 1, . . . ,mr, (2.2)

where crℓ(F ) = F(F )(srℓ)/F(fr)(srℓ). �

So (2.1) is decoupled into k generalized Prony systems

(2.2), each relating to the shifts of the only signal fr. The

problem is that some (or all) of the sets Wr may be too

small, and the resulting systems (2.2) will not allow us to

reconstruct the unknowns arq and yrq. Another problem is

instability of zero finding, which may lead to only approximate

zeroes of Fourier transforms. We have at present only initial

results outlying applicability of the Fourier decoupling method

([16]). In a “good” case where the zero sets Zℓ of the

Fourier transforms F(fℓ), ℓ = 1, . . . , k, are nonempty n− 1-

dimensional hypersurfaces meeting one another transversally,

still for k > n + 1 the intersection of Zℓ, ℓ 6= r, is empty.

So the resulting systems (2.2) contain no equations. Hence we

can apply the above decoupling only for k ≤ n+ 1.

Some specific examples, as well as investigation of the

conditions on f1, . . . , fk which provide solvability of sys-

tems (2.2) were presented in [16]. In one-dimensional case

(n = 1, k = 2) these conditions can be given explicitly.

In this case W1 = W1(f1, f2) consists of zeroes of F(f2)
which are not zeroes of F(f1), and W2 = W2(f1, f2) consists

of zeroes of F(f1) which are not zeroes of F(f2). The

following result has been proved (for real Prony systems) in

[16]. Here we extend it to the case of system (2.2) which has

purely imaginary exponents. The constant 2N below is sharp,

in contrast with the constant C(n, d) in (multidimensional)

Theorem 4.1 below.

Let in (1.1) n = 1, k = 2, and let q1 = q2 = N . Assume

that for the signals f1, f2 in (1.1) each of the sets W1 and W2

contains at least 2N elements. Let Dj , j = 1, 2, be the length

of the shortest interval ∆j such that Sj = ∆j ∩Wj contains

exactly 2N elements, and let ρj =
1
Dj

.

Theorem 2.1: For shifts xjq in the interval [0, ρj), j =
1, 2, systems (2.2) with the sampling sets S1, S2 are uniquely

solvable.

Proof: Let us fix j = 1. The proof for j = 2 is the

same. Substituting y1q = e−2πix1q associates to a solution

(a1q, y1q), q = 1, . . . , N, of (2.2) an exponential polynomial

H(s) =
∑N

q=1 a1qe
−2πix1qs with purely imaginary exponents.

If (2.2) has two different solutions, the corresponding ex-

ponential polynomials H1(s) and H2(s) are equal for each

s ∈ S1. Hence S1 is a set of zeroes of H2(s) − H1(s),
which is an exponential polynomial of the order at most 2N .

On the other hand, by Langer’s lemma (Lemma 1.3 in [12])

such polynomial can have in each interval of length D at

most 2N − 1 + ρD
2π zeroes, where ρ is the maximum of the

absolute values of the exponents. In our case D = D1 and

ρ < 2πρ1 = 2π
Dj

. Hence ρD
2π is strictly less than 1, and so

the number of zeroes of H2 − H1 is at most 2N − 1, in

contradiction with the assumptions. �

III. EXAMPLES

Some examples of Fourier decoupling have been presented

in [16]. In these examples the sets Wr are “large enough” to

reduce the problem (with the number of allowed shifts fixed

but arbitrarily large) to a set of decoupled standard Prony

systems.

In dimension one we can take, for example, f1 to be the

characteristic function of the interval [−1, 1], while f2(x) =
δ(x− 1) + δ(x+ 1). So we consider signals of the form

F (x) =

N
∑

q=1

[a1qf1(x − x1q) + a2qf2(x− x2q)]. (3.1)

Easy computations show that

F(f1)(s) =

√

2

π

sin s

s

and

F(f2)(s) =

√

2

π
cos s.

So the zeros of the Fourier transform of f1 are the points

πn, n ∈ Z\{0} and those of f2 are the points (12 +n)π, n ∈
Z. These sets do not intersect, so W1 = {πn}, and W2 =
{(12 +n)π}. Since W1 and W2 are just shifted integers Z, the

generalized Prony systems in (2.2) are actually the standard

ones. For f2 the system (2.2) takes the form

F(F )(πn)
√

2
π
(−1)n

=

N
∑

q=1

a2q(y2q)
πn, n ∈ Z.
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If we denote Mn = F(F )(πn)√
2
π
(−1)n

, Aq = a2q(y2q)
π and ηq =

(y2q)
π we get the usual Prony system

Mn =

N
∑

q=0

Aqη
n
q , n ∈ Z.

For f1 we get

F(F )((12 + n)π)
√

2
π

(−1)n+1

( 1
2+n)π

=

N
∑

q=1

a1q(y1q)
( 1
2+n)π , n ∈ Z.

In this case we denote µn =
F(F )(( 1

2+n)π)√
2
π

(−1)n+1

( 1
2
+n)π

, αq = a1q(y1q)
π
2

and ξq = (y1q)
π and we get again the usual Prony system

µn =
N
∑

q=1

αqξ
n
q , n ∈ Z.

Solving these two systems by any standard method will give us

the translations and amplitudes of the functions f1, f2. Notice

that a possible non-uniqueness of the solutions is imposed here

by the substitutions ηq = (y2q)
π and ξq = (y1q)

π.

In dimension two we can take, in particular, f1, f2, f3 to

be the characteristic functions of the three squares: Q1 =
[−3, 3]2, Q2 = [−5, 5]2, and Q3 which is the rotation of

the square [−
√
2,
√
2]2 by π

4 . So we put

χj(x) =

{

1 x ∈ Qj

0 x 6∈ Qj
(3.2)

and consider signals of the form

F (x) =

3
∑

j=1

qj
∑

q=1

ajqχj(x− xjq), with ajq ∈ R, xjq ∈ R
3.

(3.3)

The following result is proved in [16]:

Proposition 3.1: The zero sets Z1, Z2 and Z3 of the Fourier

transforms of the three functions χ1, χ2 and χ3 intersect each

other in such a way that the decoupling procedure based on

the sets W1 = (Z2 ∩ Z3) \ Z1,W2 = (Z3 ∩ Z1) \ Z2 and

W3 = (Z1 ∩ Z2) \ Z3 provides three standard Prony systems

for the shifts of each of the functions.

Sketch of the proof: Simple calculation gives

F(χ1)(ω, ρ) = 4 sin 3ω
ω

· sin 3ρ
ρ

F(χ2)(ω, ρ) = 4 sin 5ω
ω

· sin 5ρ
ρ

F(χ3)(ω, ρ) = 8
sin ω+ρ

2
ω+ρ
2

· sin ω−ρ
2

ω−ρ
2

.

(3.4)

So Z1 is the union of horizontal or vertical lines crossing the

Fourier plane’s axes at (0, nπ
3 ) or (nπ3 , 0) respectively, for all

non zero integer n. Similarly for Z2, with the only difference

that the lines cross the axes at (0, nπ5 ) or (nπ5 , 0).
Z3 is the union of lines with slopes 1 or −1 crossing the ω axis

at 2πn for some non zero integer n. Hence for any two integers

n and m we have (1+5n
5 , 1+5n

5 ) ∈ S1, (
1+3m

3 , 1+3m
3 ) ∈ S2

and since 1+3m
3 ± 1+5n

5 is not an integer, (1+3m
3 , 1+5n

5 ) ∈ S3.

These three points form a triangle which repeats itself as a

periodic pattern. Appropriate transformations now bring the

decoupled systems (2.2) to the form of the standard two-

dimensional Prony system. See [16], [2] for a new approach

to solving such systems and for the results of numerical

simulations. �

IV. UNIQUENESS OF RECONSTRUCTION

Application of Proposition 2.1 prescribes the choice of

sample points from the common zeroes of the Fourier trans-

forms F(fj). So the geometry of the sample sets Sr may be

complicated, and the known results on unique solvability of

the standard Prony system ([2], [4], [14], [17]) are not directly

applicable. Non-Uniform Sampling in Prony-type systems is

also essential in other problems of algebraic signal recon-

struction. In particular, recently it appeared as a key point

in a proof of the Eckhoff conjecture, related to the accuracy

of reconstruction of piecewise-smooth functions from their

Fourier samples ([1]).

There are results on a behavior of exponential polynomials

on arbitrary sets, which can provide important information on

unique solvability and robustness of the generalized Prony

system. In particular, this concerns the Turan-Nazarov in-

equality ([12]), and its extension to discrete sets obtained

in [7]. In this last paper for each set S a quantity ωD(S)
has been introduced, measuring, essentially, the robustness of

solvability of a generalized Prony system with the sample

points sℓ ∈ S. Here D comprises the “discrete” parameters

of the Prony system to be solved. ωD(S) can be explicitly

estimated in terms of the metric entropy of S (see below), and

we expect that in many important cases the quantity ωD(Wr)
for the zeroes sets Wr of the Fourier transforms F(fj) can

be effectively bounded from below. Some initial results and

discussions in this direction, mainly in dimension one, are

presented in [16], [3]. In the present paper we do not consider

robustness of the Prony system, but provide a new multi-

dimensional result on the uniqueness of solutions, in the lines

of [16], [7] and Theorem 2.1 above.

Let us recall that for Z a bounded subset of R
n, and for

ǫ > 0 the covering number M(ǫ, Z) is the minimal number

of ǫ-balls in R
n, covering Z . The ǫ-entropy H(ǫ, Z) is the

binary logarithm of M(ǫ, Z).

Let H(s) =
∑d

j=1 aje
λj ·s, with aj ∈ R, λj =

(λj1, . . . , λjn) ∈ R
n, be a real exponential polynomial in

s ∈ R
n. Denote Z(H) the set of zeroes of H in R

n, and

let Qn
R be the cube in R

n with the edge R. The following

result is a special case of Lemma 3.3 proved in [7]:

Proposition 4.1: For each R > 0, and ǫ with R > ǫ > 0
we have M(ǫ, Z(H) ∩Qn

R) ≤ C(d, n)(R
ǫ
)n−1. �

The explicit expression for C(d, n) is given in [7], via

Khovanski’s bound ([9]) for “fewnomial” systems. Consider

now a generalized Prony system (1.2) with a finite set S of

samples allowed:
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N
∑

j=1

ajy
sℓ
j = mℓ, sℓ ∈ S = {s1, . . . , sm} ⊂ R

n. (4.1)

We shall consider only real solutions of (4.1) with yj having

all its coordinates positive.

Theorem 4.1: Let S = {s1, . . . , sm} ⊂ Qn
R be given, such

that for a certain ǫ > 0 we have M(ǫ, S) > C(2N,n)(R
ǫ
)n−1.

Then system (4.1) has at most one solution.

Proof: Associate to a solution (aj , yj), j = 1, . . . , N, of

(4.1) an exponential polynomial H(s) =
∑N

j=1 aje
λj ·s, where

yj = eλj , λj ∈ R
n. If (4.1) has two different solutions, the

corresponding exponential polynomials H1(s) and H2(s) are

equal for each s = sℓ ∈ S. Hence S is a set of zeroes

of H2(s) − H1(s), which is an exponential polynomial of

order at most 2N . By Proposition 4.1 we have M(ǫ, S) ≤
C(2N,n)(R

ǫ
)n−1 for each ǫ > 0, in contradiction with the

assumptions of the theorem. �

Informally, Theorem 4.1 claims that finite sets S which

cover (in a “resolution ǫ”, for some ǫ > 0), a significant part

of the cube Qn
R, are uniqueness sets of the Prony system. The

condition of Theorem 4.1 on the sampling set S is quite robust

with respect to the geometry of S, so we can explicitly verify

it in many cases. In particular, for non-regular lattices we get

the following result:

Definition 4.1: For fixed positive α < 1
2 and h > 0, a set

Z ′ ⊂ R
n is called an (α, h)-net if it possesses the following

property: there exists a regular grid Z with the step h in R
n

such that for each z′ ∈ Z ′ there is z ∈ Z with ||z′−z|| ≤ αh,
and for each z ∈ Z there is z′ ∈ Z ′ with ||z′ − z|| ≤ αh.

Corollary 4.1: Let Z ′ ⊂ R
n be an (α, h)-net. Then for

R > C(2N)h(1−2α)1−n the set S = Z∩Qn
R is a uniqueness

set of the Prony system (4.1).

Proof: By definition, for each z ∈ Z we can find z′ ∈ Z ′

inside the αh-ball around z. Clearly, any two such points

are h′ = (1 − 2α)h-separated. So for each ǫ < h′ we have

M(ǫ, S) ≥ |Z∩Qn
R| = (R

h
)n. We conclude that the inequality

(R
h
)n > C(2N)( R

h′
)n−1, or R > C(2N)h(1−2α)1−n implies

the condition of Theorem 4.1. �

The condition of Theorem 4.1 can be verified in many other

situations, under natural assumptions on the sample set S.

In particular, using integral-geometric methods developed in

[5], it can be checked for the zero sets of Fourier transforms

of various types of signals. We plan to present these results

separately.

Remark The restriction to only positive solutions of Prony

system is very essential for the result of Theorem 4.1. Indeed,

consider the Prony system

a1x
k
1 + a2x

k
2 = mk, k = 0, 1, . . . . (4.2)

If we put a1 = 1, x1 = 1, a2 = −1, x2 = −1, then mk =
1k − (−1)k = 0 for each even k. So the regular grid of even

integers is not a uniqueness set for system (4.2). This fact is

closely related to the classical Skolem-Mahler-Lech Theorem

(see [10], [11], [18] and references therein) which says that

the integer zeros of an exponential polynomial are the union

of complete arithmetic progressions and a finite number of

exceptional zeros. So such sets may be non-uniqueness sample

sets for complex Prony systems.

The proof of the Skolem-Mahler-Lech Theorem is relied on

non-effective arithmetic considerations. Recently the problem

of obtaining effective such theorem was discussed in [18].

This problem may turn to be important for understanding of

complex solutions of Prony systems. One can wonder whether

the methods of Khovanskii ([9]) and Nazarov ([12]), as well

as their combination in [7], can be applied here.
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