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ABSTRACT

We consider the problem of estimating a parameterθ of a
signals(x;θ) corrupted by noise when only 1-bit precision
samples are allowed. We propose and analyze a new estima-
tor based on dithered 1-bit samples. Our estimate is consis-
tent and satisfies an asymptotic CLT for a wide class of dither
distributions. In particular, uniformly distributed dither leads
to only a logarithmic rate loss compared to the case of full
precision samples.

1. INTRODUCTION

This paper is concerned with the problem of estimating a pa-
rameter of a signal corrupted by noise when only its 1-bit
precision samples are available. This problem is particularly
motivated by the possibilities that have opened up with the
development of miniature sensing devices which can com-
pute and communicate autonomously. Networks of such
“smart” sensors could be used for detecting and estimating
characteristics of spatio-temporal processes in several situ-
ations ([4]). When physical models for such processes are
known, these problems can often be cast as those of estima-
tion of parameters of a signal; for example, estimating the
velocity of a wave propagating through some medium. The
constraint posed by this exciting sensing technology, how-
ever, is that being miniature and low cost, a typical sensor
will be a low precision device; hence, any estimation scheme
in this context can employ only low precision, noisy mea-
surements available from each sensor.

Formally, the problem is to estimate a deterministic but
unknown parameterθ0 ∈ R of a real-valued signals(x;θ0)
corrupted with additive noise. In this paper, we consider
only one dimensional space and no time variation. We con-
sider bounded observation space:x ∈ [0,1]. Results simi-
lar to ours can be obtained for the general case with mi-
nor notational changes. To make the problem well-posed,
we assume throughout that this problem has a unique so-
lution whens(x;θ0) is observed without any noise, that is,
s(x;θ) 6= s(x;θ ′) wheneverθ 6= θ ′.

When full precision samples with i.i.d. Gaussian noise
are available atN locations, then the maximum-likelihood
(ML) estimate ofθ0 is well analyzed. Let the observations
be denoted by

Z(n) = s
( n

N
;θ0

)

+σtWt(n)

where{Wt(n),n= 1, ...,N} is the i.i.d. thermal/ambient noise
in the measurements with common distributionN (0,1).

The maximum likelihood (ML) estimator ofθ0 seeks a least-
squares fit to the observations and the ML estimate is a solu-
tion of the log-likelihood equation (see [7, pp. 187])

N

∑
n=1

s′
( n

N
;θ

)[

Z(n)−s
( n

N
;θ

)]

= 0. (1)

Under mild regularity conditions, the ML estimate is consis-
tent (in probability asN → ∞), satisfies a central limit theo-
rem (CLT), and the variance in the CLT attains the Cramer-
Rao lower bound.

In contrast when only 1-bit precision samples of obser-
vations ,i.e., sign(Z(n)), are available, the ML equation is
complicated and little is known about the performance of
the ML estimate for the general case. For example, when
s(x;θ) = θ , then in the full precision case the ML estimate
is the sample mean, but no closed form solution is known for
the ML estimate in the 1-bit sampling case. In this paper,
we employdithered1-bit sampling and propose an estimate
that requires solving an equation of the form (1). In dithered
sampling, a random noise is added toZ(n) before quantizing
it. Thus, our method leverages the idea of obtaining a low
precision measurement at each of the possibly large number
of sensors and combining them to form an estimate of the pa-
rameter1. Moreover, our estimator requires no more compu-
tation than the ML estimate in the full precision case, and for
the above example ofs(x;θ) = θ , our estimate just involves
the averaging of dithered samples. Our estimate is consistent
and asymptotically normal for a wide class of dither distri-
butions. In particular, uniform dithering leads to only a log-
arithmic rate loss compared to the full precision case. Due
to space constraint, we do not present the full mathematical
derivations in this paper (these can be found in [3]). But we
discuss the intuition behind our results with examples and
simulations.

1.1 Related Prior Work

While a theory of estimation using full precision sampling is
now well-established (see for example, [7, Section IV.E.2]),
the case of low precision sampling seems to have been con-
sidered only for particular cases. For example, the problem
of frequency estimation using 1-bit ADC has been studied
in [5], [10]. In [9], the problem of choosing the quantiza-
tion threshold for the case of signal amplitude estimation is
investigated.

To the best of our knowledge, the problem of estimat-
ing θ0 for a general signals(x;θ0) with only 1-bit ADC has

1We do not discuss strategies for distributed implementation of this
scheme in this paper.
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not been addressed before in the literature. However, a con-
sistent estimator using only 1-bit ADC can be derived from
reference [6], which addresses the problem of estimating the
signals(x;θ0) from the observations{sign(Z(n))}. Our es-
timator is an improvement over this estimator: a) it requires
less computation, and b) it has a better rate for the CLT (see
Section 3.1 for a discussion).

A key element in our results is dithering. Dithering has
been used previously by several researchers in different con-
texts; for example, [6] uses it to estimate a smooth signal us-
ing only 1-bit ADC, [2] employs a deterministic dither signal
and oversampling to recover a band-limited function from fi-
nite precision samples. However, in the context of signal
parameter estimation, dithering does not seem to have been
exploited before.

2. OBSERVATION MODEL AND ASSUMPTIONS

The observations{Y(n), n = 1, ...,N} are given by

Y(n) = sign(s(Xn;θ0)+σtWt(n)+a(N)Wd(n)) (2)

The random variables{Wd(n)} constitute the dither signal,
while {Xn} are the sampling locations. We estimateθ0 by
solvingTN(θ) = 0, where,

TN(θ) =
1
N

N

∑
n=1

s′ (Xn;θ) [cd(N)Y(n)−s(Xn;θ) .] (3)

The value ofcd(N) depends on the distribution of the dither
and is specified below. Recall thatN denotes the number of
space samples or simply the number of sensors. Below we
collect together most of the assumptions we need for analyz-
ing the estimator and we also discuss their implications.
Noise: The usual assumption about the noise is:

GN) {Wt(n),n≥ 1} are i.i.d.N (0,1).
We assume that the observation noise is dominated by the
thermal noise in the sensor circuitry which justifies our i.i.d.
noise assumption. (If the noise at different sensors is cor-
related, then the situation is best modeled as estimation of
parameter of a stochastic process. This is a tough problem
that we do not address here.)
Signal: The signal is assumed to satisfy the following regu-
larity constraints.

A1) The signals(x;θ) is thrice differentiable inθ and once in
x.

A2) The signal|s(x;θ)| ≤ b < ∞ for all x ∈ [0,1] and θ ∈
Θ. Similarly, its three derivatives w.r.t.θ and the one
derivative w.r.t.x are bounded by a constant that does not
depend onx andθ .

A3) The function

J(θ ;θ0) :=
∫ 1

0
s′(x;θ)[s(x;θ0)−s(x;θ)]dx

has a unique zero-crossing atθ = θ0.
The assumption A3) ensures that the parameter estimation
problem is well-posed. It basically says that

∫ 1

0
[s(x;θ0)−s(x;θ)]2dx

has a unique minimum atθ0, that is, if there is no noise and
we collect full precision data over the entire space[0,1], then

we can estimate the parameter uniquely. For example, when
s(x;θ) = θ p(x), thenJ(θ ;θ0) = (θ0−θ)

∫ 1
0 p2(x)dxand A3)

is seen to be satisfied.
Sampling: Our results can be established for deterministic as
well as random spatial sampling. Here we report our results
only under:

DS) Uniform deterministic sampling:Xn = n/N, 1≤ n≤ N.
Other sampling designs are also of importance and can also
be accommodated. If a non-uniform deterministic sampling
is given byXn = B(n/N), whereB : [0,1] → [0,1], then our
results under DS) can be applied by redefining the signal to
bes(B(x);θ).
Dithering: For the dither signal, we present results under the
following two assumptions.

UD) The dither signal{Wd(n),1 ≤ n ≤ N} is i.i.d. with uni-
form distribution on[−1,1] and it is independent of the
thermal noise{Wt(n),1≤ n≤ N}. The dither magnitude
is taken to be

a(N) = β (log(N))(1+η)/2 for someβ > 0,η > 0

The constantcd(N) in (3) is taken to bea(N).
NUD) The dither signal{Wd(n),1 ≤ n ≤ N} is i.i.d. with dis-

tribution F(t) and it is independent of the thermal noise
{Wt(n),1 ≤ n ≤ N}. The distributionF(t) has the fol-
lowing expansion for someε > 0, |t| < ε and some
q∈ {2,3, ...}

F(t) =
1
2

+
b1

2
t +

bq

2
tq +R(t)

whereb1 6= 0, bq 6= 0, and|R(t)| ≤ constant· |t|q+1 for
|t|< ε. The dither magnitudea(N)→ ∞ anda2(N)/N →
0 asN → ∞. The constantcd(N) in (3) is taken to be
a(N)/b1.

The assumption UD) is of special importance because it leads
to best rates in the CLT for the parameter estimate. In prac-
tice, uniformly distributed dithering can be implemented by
varying the threshold of the quantizer by a sawtooth wave.
As long as the phases of the sawtooth wave at the differ-
ent sampling locations are independent and uniformly dis-
tributed, the i.i.d. random dither assumption is justified.

3. MAIN RESULTS

3.1 Consistency and CLT for the Estimate Under Uni-
form Dithering

Our first main result is the following.

Theorem 1 Suppose the observations are as in(2) and the
conditions GN), A1)-A3), DS), UD) are satisfied. Then as
N → ∞, there exists a sequence of estimates{θ̂N} such that

1. P(TN(θ̂N) = 0) → 1;

2. the estimatêθN → θ0 almost surely;
3. the following CLT holds

√

N
(logN)(1+η) (θ̂N−θ0) =⇒ N

(

0, β2
∫ 1
0 (s′(x;θ))2dx

)

where =⇒ denotes convergence in distribution.
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Figure 1: 1-bit quantization with uniform dithering leads to only logarithmic rate loss.

The proof uses elementary facts from probability theory
to first establish the almost sure convergence ofTN(θ) to
J(θ ;θ0). The consistency and CLT is then established us-
ing techniques similar to those in the analysis of ML esti-
mators for i.i.d. observations (see [7, Chapter IV]). We do
not present the proof here due to space constraints; it can
be found in the longer version [3]. However, we discuss the
intuition behind this result and present simulation results be-
low.

The main conclusion of the above theorem is that our es-
timator only leads to logarithmic loss with respect to the best
possible rate of 1/N. In other words, there is little loss in
performance with respect to full precision samples. We are
not aware of any work where an estimator ofθ0 under a gen-
eral signal model based on 1-bit precision samples is ana-
lyzed. Hence, we compare our result with an estimator that
can be derived from the results in [6]. In [6], an estimator of
the signals(x;θ0) based on{Y(n)} with a(N) = 0 are given.
The estimate of the signal is obtained by local linear filter-
ing of the observations followed by a memoryless non-linear
transformation. An estimate ofθ0 may be obtained from the
signal estimate using a least-squares fit. Note that this is the
same as solving (3) but using the signal estimate in place
of {cdY(n)}. It can be shown (using a proof similar to that
of Theorem 1) that such an estimate is consistent (in prob-
ability) and a CLT holds. The variance in the CLT decays
like 1/N2/3, which is a significant loss compared with the
rate 1/N for the full precision case. In comparison, we see
that our estimator requires less computation and by choosing
uniformly distributed dither, only a logarithmic rate lossis

incurred.
The reason for the success of our estimator is not immedi-

ately clear. To obtain more insight, consider the simple case
when the observation noise is absent (σt = 0), s(x;θ) = θ ,
andθ ∈ [−0.5,0.5]. In the absence of dithering, 1-bit quanti-
zation gives only one observation value sign(θ0) and we can
do no better than estimating the sign ofθ0. However, with
dithering (choosinga(N) = 1) the estimate is given by

θ̂N =
1
N

N

∑
n=1

Y(n) =
1
N

N

∑
n=1

sign(θ0 +Wd(n)) .

Since{Wd(n)} are i.i.d. uniform on[−1,1], by the law of
large numbers we get thatθ̂N → θ0 almost surely and a CLT
also holds. In other words, due to dithering, we get a look
at θ0 from a family of 1-bit quantizers and this ‘diversity’
helps in obtaining consistency. In the general case, the di-
versity provided by dithering causesTN(θ) to converge to
J(θ ;θ0) (as is the case for full precision samples). But from
assumption A3), we know thatJ(θ ;θ0) = 0 has a unique zero
crossing atθ = θ0. This leads to existence and consistency
of the estimate. The increasing dither magnitudea(N) is re-
quired to remove bias introduced in the estimate by the ther-
mal noise. We do not present a proof of the main result due to
space constraints, but we illustrate it in Figure 1 with the help
of a simulation. In Figure 1, we plot the mean-square esti-
mation error as a function ofN for the case whens(x;θ) = θ
andσ2

t = 1. The consistency as well as the logarithmic rate
loss compared to full precision case are evident.
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We have not been able to obtain the best possible rate in
the CLT for uniform dither in the general case. However, for
a specific example, we identify the rate below.

Proposition 1 Consider the problem of estimatingθ0 ∈
(0,1] using samples{Y(n), 1≤ n≤ N} where,

Y(n) = sign(θ0 +a(N)Wd(n)+σtWt(n))

{Wd(n)} and {Wt(n)} are as in Theorem 1 above. We note
that in this case TN(θ) = 0 has a unique solution for every N
given by,

θ̂N =
a(N)

N

N

∑
n=1

Y(n).

If a(N) → ∞ and a2(N)/N → 0, thenθ̂N → θ0 in m.s.s. The
best possible rate for the decay of the mean-square error is
obtained by choosing a(N) such that

lim
N→∞

N
a2(N)

exp

(

− (a(N)−θ0)
2

σ2
t

)

= 1. (4)

and in this case
√

N
a(N)

(

θ̂N −θ0
)

=⇒ N (µ ,σ2)

for constantsµ 6= 0 andσ2.

We omit the proof here. We, however, note that for a
choice ofa(N) as in Theorem 1, the limit in (4) is zero. Thus
the rate in Proposition 1 is strictly better than that in Theorem
1.

3.2 Optimality of Uniform Dithering

Now we address the question of whether a different dither
distribution can improve the rate of convergence even fur-
ther. Theorem 2 shows that we cannot do better than uniform
dithering for a class of distributions.

Theorem 2 Suppose the conditions GN), A1)-A3), DS) and
NUD) are true. Then there exists{θ̂N} such that as N→ ∞
1. P(TN(θ̂N) = 0) → 1;
2. the estimatêθN → θ0 in probability;
3. the following CLT holds

• If a(N) = βN1/(2q), then,

√
N

a(N)

(

θ̂N −θ0
)

=⇒ N (µ ,σ2)

whereµ andσ2 are specified in [3].
• If a(N)N−1/(2q) → 0, then

(a(N))q−1(

θ̂N −θ0
)

=⇒ δµ

which is the unit mass atµ .
• If a(N)N−1/(2q) → ∞, then

√
N

a(N)

(

θ̂N −θ0
)

=⇒ N (0,σ2).

The main idea in the proof is similar to that in the proof of
Theorem 1. We do not give the proof here.

We see that the best rate in the CLT is obtained in the
first case. In this case the variance in the CLT behaves like
1/N(q−1)/q which is strictly worse than the rate in Theorem 1.
In particular, if the Gaussian dither is chosen, thenq = 3 and
we get the rate isN−2/3. The higher the value ofq, the better
is the rate. Note thatq→ ∞ implies that the dither distribu-
tion is getting closer to the uniform distribution. However,
the case of uniform distribution is not covered by Theorem
2.

The existence of an optimal rate for the variance in part 3)
of Theorem 2 is a consequence of a basic principle: increas-
inga(N) increases variance but decreases bias. By increasing
a(N), we are expanding the family of 1-bit quantizers being
used for observations and this diversity helps in reducing the
bias. However, dithering also makes the observations more
noisy and the variance of the estimate increases asa(N) in-
creases. Hence there is an optimum rate fora(N), where the
gains of diversity due to dithering, and the ill effects of the
noise due to dithering are balanced.

4. CONCLUSIONS

We proposed a parameter estimate for a general signal model
based on dithered 1-bit samples. This estimator is motivated
by the need to design low cost low precision sensors and
possibility of combining measurements from a multitude of
such sensors. The main idea is that the full precision samples
can be replaced by suitably scaled 1-bit dithered samples and
hence the estimate needs no more computation than the ML
estimate in the full precision case. The estimate is consistent
for a wide class of dither distributions. But the uniform dis-
tribution leads to the best rate in the CLT amongst a broad
class of dither distributions. Several other properties ofthe
estimate are also established in a longer version of this pa-
per ([3]). In particular, due to the hard-limiting operation
involved in 1-bit sampling, the estimate is also robust and re-
mains consistent even for noise with infinite variance. We
have also analyzed the effect of random sampling, inaccurate
knowledge of sampling locations, and unreliable communi-
cation of observations in [3].
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