-

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by ZENODO

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

RECONFIGURABLE ARCHITECTURE OF AVC/H.264 INTEGER TRANSFORM

Adam tuczak and Martagpniewska

Division of Multimedia Telecommunications and Rasl&ctronics
Poznan University of Technology
Piotrowo 3a, 60-965 PozfmaPoland

phone: + (48) 61 6652071, fax: +(48) 61 6652292iedaluczak, mstep}@multimedia.edu.pl
web: www.multimedia.edu.pl

ABSTRACT form. For the highest profiles and levels moreceffit de-

The paper presents an original reconfigurable arch Sign is needed. Moreover, new design should suggiC

tecture of inverse integer transformation for H.eac ~ @nd especially FPGA devices. It means that propasel-

decoder. Proposed design can perform integer 4x&,#d tecture should utilize efficiently available menssi(2KB

Hadamard inverse transform including inverse quzatipn  P10cks for Xilinx FPGA family), uses only simplegi func-

process as well. The design exploits pipelined itecture  tions (available 4 input LUTs only) and design dtouse
and supports FPGA devices. Simulation result ingisahat ~ NaToOW busses and exploits local connections mostly

proposed structure is characterized by low impletaigon Efficiency of the created structure should be aeiiso
cost and high efficiency. Final synthesis and test been Other modules needs. Implemented circuit shouldwark
made for Xilinx Virtex family devices. too fast.because it generates tie-ups. Such veddtssteads to
conclusion that the considered structure shouldsrballer

1 INTRODUCTION and slower. On the other hand, it should be fasugh to

. o ~ produce in real-time luminance and chrominance &snp
H.264/AVC is the newest and the most efficient gide even for h|gh resolution image sequences.

compression standard which offers wide compressiorset Therefore, main goal is to implement reconfiguraiee
and advanced algorlthms of stream encodlng. Itd&atgned Sign as smaller (m |ogic area Sense) as possime‘qough

as a solution in area of broadcast services, trias@m in  efficiency to process transform coefficients inl teae with-
local networks, streaming services etc [1]. Congieestool  out any wait states.

set includes weighted prediction, quarter-sampleurate

motion compensation, flexible scaling algorithm a&ffitient 3. INVERSE QUANTIZATION
small block integer transform. . . .
The first issue of AVC standard [2] introduced gee H.264/AVC standard (version 3.0) introduces flesibl

4x4, and hadarmard transform only, and user-defimeight and_ efﬁ<_:ient scaling algorithm. The scaling forenglan be
scale was unavailable. The latest issue (ver. o &l€finedingeneralas follows:

AVC/H.264 standard) introduces new tools that aefwl in

high resolution profiles/levels (e.g. HD-TV). Amonmgew Sample:(fi,j OV | EquJemi,j)<<(qp_ per-Q9, @)
tools there are user-defined weight scale matnik&®8 inte-
ger tr_ansform. The me_ntlongd tools support effnclemm_— i, j — sample position,

pression of high resolution video streams and eanged in f,, — transform coefficient,

profiles known as Fidelity Range Extensions (comiymon W, — optionally user-defined weight scale,

where:

referred as FRExt). Unfortunately new features ease Ngp_rem,ij— NOrm adjust — defined by AVC standard,
coder/decoder complexity, especially its hardwamglémen- gp_rem- reminder of quantization parameter division by 6
tations. gp_per- result of quantization parameter division by 6,
Therefore in order to cover all profiles and leveith- QS- constant dependent on transform kind (is eqeal6).
out to high hardware overhead new design of regardble ) _
inverse transformation is needed. Scaling factordNy, em,jare constant and are defined by
H.264/AVC standard, for each transform indepengenithe
2 IMPLEMENTAION GOALS weight scale matrix can be defined by user in FREafiles

only. For other profiles it is implicitly equal t6. The scal-
) o _ing formula basically stays the same for differieloick sizes
AVC transform implementation issues have been disgy4 andd 8x8). The differences come from sampkitipo

cussed in [4][5]. Also in [6] the 2-bit serial afgftiure for i scaled block that can be 4x4 or 8x8 size. Thiguires
4x4 integer transform has been proposed. Givertisobiare  ifferent scaling tables marked ®%; andNy, em,; that are
appropriate for Baseline profile decoder that stida# able  ihe same size as scaled block. -

to make only inverse integer transform and Hadartrarts-


https://core.ac.uk/display/144784493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14th European Signal Processing Conference (EUSIPCO 2006), Florence,

4. INVERSE INTEGER TRANSFORMATION

AVC transforms were designed as easy to implement i
software and especially in hardware. Integer t@nsfis an
DCT approximation and has similar efficiency in qoes-
sion applications. At first the 4x4 transform haeb intro-
duced (AVC/H.264 ver. 1.0) and then to increase prest
sion in high resolution video sequences 8x8 transfbas
been added. AVC transforms are used in intra-framin-
ter-frame prediction mode. Division operations syanded
down (floor operation) that the problems with roimgdhave
been eliminated. Moreover, 16-bit accuracy of amglic is
enough to perform all calculations. Introduced getetrans-
form allows using only shifters and adders insteadhulti-
plications.

11 1 05)0091%92%90]1 1 1 o5\
- 105-1 -1(/%0%1%2%3([1 05-1 -1
BxF| ) 05 1 Cp0 Cp1 Opp Op3| 1 051 1 @)
1 -1 1 -0 1 -1 1 -0.
€30 C31 %32 @33

Equation 2 shows integer 4x4 inverse transform imatr
it is assumed that all divisions are defined agt sight.
Given transform matrices do not contain scalingfients
which are defined asNg, em,ij tables in quantiza-
tion/dequantization process. Such separation dingcéac-
tors simplifies transform matrices greatly.

©00%1%2%0| /1 1 1 1\T

1111

R ©0%1%2%3||11 11 3)
1111 11600102031 1-11
1111 1111

C30 %31 €32 33

Italy, September 4-8, 2006, copyright by EURASIP

1ool41
§ 4
0 141 1 1110
01- 0
4 450 1 4 1054 4| 7
Taxs| Gl +w 1|m
1 0151 1 1054 1
0-40
451 1 0)| 4 14 1 -0
2101
- 4 Where
matrices, w andM can be defined as follows:
0000 1000 10000 0 0 1
1000 0000 01000 0 -1 0
0000 0100 00100 1 0 0
a1 |01 00 W[ 0000 y_|0001-10 00
0000 0010 “looo110 0 0
0010 cooo 00100 -10 0
0000 0001 61000 0 1 o
0001 0000 10000 0 0 4

()

Calculations performed on even samples are the aame
1-D integer transform (it can be noticed when cormga
equation 2 and 4). Odd samples require more edionk to
carry out and these operations cannot be descabaimple
conversion of integer -D integer transform.

Given approach allows decomposing 8x8 transform int
two 4x4 transforms and designing reconfigurableiceper-
forming calculations for all AVC transforms.

5. PROPOSED ARCHITECTURE

A structure consists of two pipelines marked atirig2
as top and bottom is proposed. Such decomposgiordes-
sary to calculate 8x8 transform. Each pipeline st&sof
inverse quantization, horizontal transform, sampigger,
and vertical transform and second sample mixermpdaed

Equation 3 shows Hadamard inverse transform wisich igjrcyit performs computations of scaling and transé de-

used in Intra 16x16 prediction mode as a part efanchical
transform. To improve compression efficiency inranpre-
diction mode at plain surface the hierarchical 4fa€mm has
been introduced. At first the 4x4 transform is perfed on
16 blocks of the whole macroblock. Then the DC ficehts
of each 4x4 transform are gathered into new 4x4kond
Hadamard transform is calculated. Moreover the Hotk
with DC coefficients is scaled differently than ethblocks.

The 8x8 integer transform has been added to AV@- sta
dard for better compression of high resolution w@idse-
guences. It may be defined as a combination ofseparable
1-D 8-point transform computations: horizontallydaverti-
cally. Each one can be defined as two 1-D 4-poias-
forms: first one same as 1-D of 4x4 integer tramsfand the
second one as modified 1-D 4-point integer tramsforhe
equation 4 gives definition of 8x8 transform asumof two
operations: the first one is performed on odd sasphd the
latter is a computation carried out on even samflbs re-
sults are gathered and combined together accotdiegua-
tion 4 with given matrices at equation 5.

\

fined in AVC standard in all profiles. Modules haleen
implemented using parallel architecture using 1@&bihme-
tic accuracy.

Li Tog
Pipeline samples Samples
EF mixer mixel
LN =
2 ¥
N T E
Inverse 1> 8 T! N R E L,
— quantisation gl 8 E
Cc <Zt £
R
w E 7|
Bottorr
pipeline -
=z o
F 5 5
% U
Inverse T N 3 T ;
quantisatior % L» F»l E L >
z E
g
© R

Figure 1 — Proposed architecture of reconfigurable
block of integer inverse transformation



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

a) 4x4 integer transformFhe samples appear at the in-
put of inverse quantization and after scaling thegy put into

The variable shift defined as multiplication by tteothe
power of gp_per shifted by 6 bits. Constant shift does not

1-D 4-point horizontal transform. In both pipelirtee calcu-
lations are being made for two 4-point sets attome. The
sample mixer is transparent and samples are regclaim
transposition block. Next the vertical transforroatis calcu-
lated and samples are written into a buffer.

b) Hadamard transform The calculations are mostly
the same as 4x4 integer transform. The main diftere are:
the inverse quantization block is transparent, apdonal
shifts (in 1-D 4 point transform) are disabled #mg samples
are not written into a sample buffer but into thput mem-
ory using feedback loop.

c) 8x8 transform The 8-point line is put from memory
into the inverse quantization module in both pipedi. Then
it is scaled and 1-D 8-point transform is calcudaby both
pipelines together. Top pipeline performs calcalai on
even samples and the bottom one carries out ctitmgaon
odd transform samples. Next samples are added Xermi
samples module. After samples rearrangement irspicesi-
tion module the vertical 8-point transform is cédted and
result is written into output buffer.

5.1 Inversequantization

The inverse quantization process, as shown on iequaf
requires 3 multiplications to obtain the scaled gl@nThe
last multiplication realises variable shift, antbatks design-
ing flexible circuit structure. It is also worth m@ning that
multipliers are easily synthesized as optimized ulesl on
FPGA devices (e.g. on Xilinx and Altera).

: -
qr_rem
T B

ROM
(Norm Adjus’)

Figure 2 — Proposed structure of inverse quantizati
module

Quantization parameter is divided by 6 or 4 (tramsf
size dependently), the result of this marked@agperand the
reminder is referred agp_rem The first value defines size
and direction of shift which is performed by thetlaf multi-
pliers, according to equation 6.

_ {x <<qgp_per—-QS, qgp_per=2Q_THR

T x> QS—-qgp_per, qp_per<Q_THR (6)

the variable shift is carried out as multiplication

y =[x 2-77)>> 6 )

require any logic: it is an operation made on wires

Value marked agp_remis used to index ROM with de-
fined by AVC standard norm adjust values. A user define
own scaling tables puttingi; values into weight scale mem-
ory. As mentioned, weight is implicitly equal 16hdnks to
pipelining no additional control data are necessanmpanage
the calculations.

5.2 Inverseinteger transformation

Figure 3 shows AVC transforms implementation shig
from defined in standard formula.

a)

Co——>

Cy4—>

Figure 3 — The computational trees of inverse ietdtans-
form, for a) 4 points of 1-D 4-(even)point integeansform
and for b) 4 points of 1-D 4-(odd)point integemiséorm.

Figure 3a) shows integer DCT transform or partaidf ¢
culations required to perform on 1-D 8-point evemsform
samples. Figure 3b) shows computation that nedxk tcar-
ried out on 1-D 8-point odd transform samples. $endi-
rect) implementation gives complex and big (in asease)
structure.

Therefore, the authors propose original solutionnef
verse integer transform block. The proposed cifcag been
designed using parallel architecture with two dejeeh and
reconfigurable pipelines. The first one is desigtedarry
out calculations to obtain result of 4x4 integemsform or
perform computations on even 8x8 transform samples.



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

MEN

Figure 4 — Structure of computational block of ¥point
inverse integer transform

a) 1-D 4 point integer transform for even 8x8 saspir
4x4 transform — Top pipeline

>

Figure 6 — Samples mixing — 8x8 transform only

The advantage of such a structure is the posgibilit

of performing both 1-D 4-point and 8-point transfousing

Transform module implemented in top pipeline isone module. Moreover, circuit arrangement is regalad

showed on figure 4. The scaling module puts samples
memory. If suitable sample block is fulfilled thalaulations
may start. Samples are taken from memory one byaode
put into one of two shift registers. After loadinfall sam-

ples the first sum is made and sample is put imtallsmem-

ory to rearrange samples. Next samples are reaganat

the input of one of shift registers. After sum,tltare buff-

ered in register for one clock tick.

b) 1-D 4 point integer transform for even 8x8 sagspir
4x4 transform — Bottom pipeline

easy to implement. Transform module produces alvwaygs
transform samples per clock tick. It is also wartntioning
that marked part of the circuit shown at figuresused only
when 1-D 8-point transform is being calculated.

Moreover, management unit for described structare i

quite easy to implement. For example, transposisamade
by simple bits’ rearrangement in sample positiotheuit
using any logic. Most of the control data, whick gassed
along the processing path, can be derived form Eapysi-
tion.

6. SIMULATION AND PERFOMANCE RESULTS

The second processing path is similar to the first

one. It is designed to carry out calculations Hofh 4-point
and 8-point transform samples. The module has beewn
at figure 5. The circuit has two outputs marke@aand B.

The first one is the output of integer 1-D 4-pdmansform or
the first part of even samples calculations. TheoBtput
gives a result of the second part of computatianiezh out
on odd 8 transform samples. The first sum (fig.Grey
marked part) performs integer multiplication by.1.5

MEM

]
L]
‘o

Figure 5 — Structure of computational block of “pel
integer transform and odd samples of 8-point intégeas-
form.

¢) sample mixer

The presented architecture has been implementéd wit

Verilog hardware description language. Simulatiand test
with real data from reference encoder indicate thrgdle-
mented design works properly.

Figure 7 shows timing analysis of both (top anddij
pipeline performance.
A

10 (vertical)

A 4

lU(horizona)l 4 ’

v

4 8 X 3%
Figure 7 — Timing diagram

Two full inverse transforms are done during 48 kldics.
Samples can be loaded into the pipes without aritysiates.
It means that design throughput is 2 samples pekchnd
delay of result is 48 clock ticks.

7. CONCLUSIONS

Original efficient architecture of (3 types of) enge in-

Samples mixer was introduced in order to finishteger transform has been proposed.

computations of 1-D 8-point transform. In the ca$el-D
4-point transforms mode (also Hadamard) this mogales
the results unchanged to the next block (of verti@ns-
form).

Proposed architecture is fully pipelined and erapler-
forming computation of AVC integer transforms bdtr
4:2:0 and 4:2:2 resolution systems, producing 2psasrper
clock tick. It means that inverse transformationgesss can
be done with clock frequency close to the sampfiry
qguency (13.5 MHz for SDTV resolution 720x576).



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Moreover, resulting structure of inverse transfdaiack
is compact and suitable for FPGA devices what wasqul
by synthesis results.

Efficiency measured by calculating cost factor (kvor
ing-time/wait-time and utilization of design struct) is
about 90% for 4x4 inverse transform (fig.5 greyedt [nac-
tive only) and 100% for 8x8 inverse transform. Stesult of
a device utilizing is excellent.

8. ACKNOWLEDGMENT

The work was supported by the public founds as-a re
search project.

REFERENCES

[1] T. Wiegand, G. Sullivan, G. Bjgntegaard, andLAithra,
Overview of the H.264/avc video coding stand#eEE
Trans. on Circuits and Systems for Video Technaglogy
vol. 13, pp. 560-576, July 2003.

[2] ISO/IEC 14496 10Advanced Video Coding3rd ed.,
ISO/IEC JTC1/SC29/WG11, Redmond, July 2003.

[3] IVT of ISO/IEC MPEG & ITU-T VCEGText of ISO/IEC
14496 10 Advanced Video Coding 3rd EditithQ/IEC
JTC1/SC29/WG11, Redmond, July 2004.

[4] A. M. Patifio, M. M. Peir6, F. Ballester, and Faya2D-
DCT on FPGA by polynomial transformation in two di-
mensionsISCAS 2004

[5] R. C. Kordasiewicz, S. ShiraniASIC and FPGA imple-
mentations of H.264 DCT AND quantization bldcks
2005

[6] P. Garstecki and A. tuczald flexible architecture for
image reconstruction in h.264/avc decodensProc. of
ECCTD 2005, Cork,Ireland, August 2005.



