
RECONFIGURABLE ARCHITECTURE OF AVC/H.264 INTEGER TRANSFORM

Adam Łuczak and Marta Stępniewska

Division of Multimedia Telecommunications and Radioelectronics
Poznan University of Technology

Piotrowo 3a, 60-965 Poznań, Poland

phone: + (48) 61 6652071, fax: +(48) 61 6652292, email: {aluczak, mstep}@multimedia.edu.pl
web: www.multimedia.edu.pl

ABSTRACT

 The paper presents an original reconfigurable archi-
tecture of inverse integer transformation for H.264/AVC
decoder. Proposed design can perform integer 4x4, 8x8 and
Hadamard inverse transform including inverse quantization
process as well. The design exploits pipelined architecture
and supports FPGA devices. Simulation result indicates that
proposed structure is characterized by low implementation
cost and high efficiency. Final synthesis and test has been
made for Xilinx Virtex family devices.

1. INTRODUCTION

H.264/AVC is the newest and the most efficient video
compression standard which offers wide compression tool set
and advanced algorithms of stream encoding. It was designed
as a solution in area of broadcast services, transmission in
local networks, streaming services etc [1]. Compression tool
set includes weighted prediction, quarter-sample accurate
motion compensation, flexible scaling algorithm and efficient
small block integer transform.

The first issue of AVC standard [2] introduced integer
4x4, and hadarmard transform only, and user-defined weight
scale was unavailable. The latest issue (ver. 2.0 of
AVC/H.264 standard) introduces new tools that are useful in
high resolution profiles/levels (e.g. HD-TV). Among new
tools there are user-defined weight scale matrix and 8x8 inte-
ger transform. The mentioned tools support efficient com-
pression of high resolution video streams and can be used in
profiles known as Fidelity Range Extensions (commonly
referred as FRExt). Unfortunately new features increase
coder/decoder complexity, especially its hardware implemen-
tations.

Therefore in order to cover all profiles and levels with-
out to high hardware overhead new design of reconfigurable
inverse transformation is needed.

2. IMPLEMENTAION GOALS

AVC transform implementation issues have been dis-

cussed in [4][5]. Also in [6] the 2-bit serial architecture for
4x4 integer transform has been proposed. Given solutions are
appropriate for Baseline profile decoder that should be able
to make only inverse integer transform and Hadamard trans-

form. For the highest profiles and levels more efficient de-
sign is needed. Moreover, new design should support ASIC
and especially FPGA devices. It means that proposed archi-
tecture should utilize efficiently available memories (2KB
blocks for Xilinx FPGA family), uses only simple logic func-
tions (available 4 input LUTs only) and design should use
narrow busses and exploits local connections mostly.

Efficiency of the created structure should be adjusted to
other modules needs. Implemented circuit should not work
too fast because it generates tie-ups. Such wait states leads to
conclusion that the considered structure should be smaller
and slower. On the other hand, it should be fast enough to
produce in real-time luminance and chrominance samples
even for high resolution image sequences.

Therefore, main goal is to implement reconfigurable de-
sign as smaller (in logic area sense) as possible with enough
efficiency to process transform coefficients in real time with-
out any wait states.

3. INVERSE QUANTIZATION

H.264/AVC standard (version 3.0) introduces flexible
and efficient scaling algorithm. The scaling formula can be
defined in general as follows:

(1)

where:
i, j – sample position,
fi,j – transform coefficient,
Wi,j – optionally user-defined weight scale,
Nqp_rem,i,j – norm adjust – defined by AVC standard,
qp_rem – reminder of quantization parameter division by 6,
qp_per - result of quantization parameter division by 6,
QS – constant dependent on transform kind (is equal 4 or 6).

Scaling factors Nqp_rem,i,j are constant and are defined by

H.264/AVC standard, for each transform independently. The
weight scale matrix can be defined by user in FRExt profiles
only. For other profiles it is implicitly equal to 16. The scal-
ing formula basically stays the same for different block sizes
(4x4 andd 8x8). The differences come from sample position
in scaled block that can be 4x4 or 8x8 size. This requires
different scaling tables marked as Wi,j and Nqp_rem,i,j, that are
the same size as scaled block.

()),_(,,_,, QSperqpNWfsample jiremqpjiji −<<⋅⋅=

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144784493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4. INVERSE INTEGER TRANSFORMATION

AVC transforms were designed as easy to implement in
software and especially in hardware. Integer transform is an
DCT approximation and has similar efficiency in compres-
sion applications. At first the 4x4 transform has been intro-
duced (AVC/H.264 ver. 1.0) and then to increase compres-
sion in high resolution video sequences 8x8 transform has
been added. AVC transforms are used in intra-frame and in-
ter-frame prediction mode. Division operations are rounded
down (floor operation) that the problems with rounding have
been eliminated. Moreover, 16-bit accuracy of arithmetic is
enough to perform all calculations. Introduced integer trans-
form allows using only shifters and adders instead of multi-
plications.

 (2)

Equation 2 shows integer 4x4 inverse transform matrix,

it is assumed that all divisions are defined as shift right.
Given transform matrices do not contain scaling coefficients
which are defined as Nqp_rem,i,j tables in quantiza-
tion/dequantization process. Such separation of scaling fac-
tors simplifies transform matrices greatly.

(3)

Equation 3 shows Hadamard inverse transform which is

used in Intra 16x16 prediction mode as a part of hierarchical
transform. To improve compression efficiency in intra pre-
diction mode at plain surface the hierarchical transform has
been introduced. At first the 4x4 transform is performed on
16 blocks of the whole macroblock. Then the DC coefficients
of each 4x4 transform are gathered into new 4x4 block and
Hadamard transform is calculated. Moreover the 4x4 block
with DC coefficients is scaled differently than other blocks.

The 8x8 integer transform has been added to AVC stan-
dard for better compression of high resolution video se-
quences. It may be defined as a combination of two separable
1-D 8-point transform computations: horizontally and verti-
cally. Each one can be defined as two 1-D 4-point trans-
forms: first one same as 1-D of 4x4 integer transform and the
second one as modified 1-D 4-point integer transform. The
equation 4 gives definition of 8x8 transform as a sum of two
operations: the first one is performed on odd samples and the
latter is a computation carried out on even samples. The re-
sults are gathered and combined together according to equa-
tion 4 with given matrices at equation 5.

\

 (4)

Where

matrices q, w and M can be defined as follows:

q1

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

























w1

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

























M

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

0

1−

1

0

0

0

0

0

1

0

0

1−

0

0

0

1−

0

0

0

0

1

0

1

0

0

0

0

0

0

1−























 (5)

Calculations performed on even samples are the same as

1-D integer transform (it can be noticed when comparing
equation 2 and 4). Odd samples require more calculations to
carry out and these operations cannot be described as simple
conversion of integer -D integer transform.

Given approach allows decomposing 8x8 transform into
two 4x4 transforms and designing reconfigurable device per-
forming calculations for all AVC transforms.

5. PROPOSED ARCHITECTURE

A structure consists of two pipelines marked at figure 2
as top and bottom is proposed. Such decomposition is neces-
sary to calculate 8x8 transform. Each pipeline consists of
inverse quantization, horizontal transform, samples mixer,
and vertical transform and second sample mixer. Proposed
circuit performs computations of scaling and transforms de-
fined in AVC standard in all profiles. Modules have been
implemented using parallel architecture using 16 bit arithme-
tic accuracy.

T
R
A
N
S
P
O
S
IT
IO
N

T
R
A
N
S
P
O
S
IT
IO
N

Figure 1 – Proposed architecture of reconfigurable
block of integer inverse transformation

H

1

1

1

1

1

1

1−

1−

1

1−

1−

1

1

1−

1

1−















c00

c10

c20

c30

c01

c11

c21

c31

c02

c12

c22

c32

c30

c13

c23

c33

















⋅

1

1

1

1

1

1

1−

1−

1

1−

1−

1

1

1−

1

1−















T

⋅

T8x8 q1

0

1−

1

1.5−

1

1.5−

0

1

1−

0

1.5

1

1.5

1

1

0













⋅

1

0

0

1

4

0

1

1

4

1

0

1

4

1−

0

1−
4

0

0

1























⋅ q1T⋅ w1

1

1

1

1

1

0.5

0.5−

1−

1

1−

1−

1

0.5

1−

1

0.5−













⋅ w1
T⋅+























M⋅

DCT4x4

1

1

1

1

1

0.5

0.5−

1−

1

1−

1−

1

0.5

1−

1

0.5−













c00

c10

c20

c30

c01

c11

c21

c31

c02

c12

c22

c32

c30

c13

c23

c33

















⋅

1

1

1

1

1

0.5

0.5−

1−

1

1−

1−

1

0.5

1−

1

0.5−













T

⋅

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

a) 4x4 integer transform - The samples appear at the in-
put of inverse quantization and after scaling they are put into
1-D 4-point horizontal transform. In both pipelines the calcu-
lations are being made for two 4-point sets at one time. The
sample mixer is transparent and samples are rearranged in
transposition block. Next the vertical transformation is calcu-
lated and samples are written into a buffer.

b) Hadamard transform - The calculations are mostly
the same as 4x4 integer transform. The main differences are:
the inverse quantization block is transparent, the optional
shifts (in 1-D 4 point transform) are disabled and the samples
are not written into a sample buffer but into the input mem-
ory using feedback loop.

c) 8x8 transform - The 8-point line is put from memory
into the inverse quantization module in both pipelines. Then
it is scaled and 1-D 8-point transform is calculated by both
pipelines together. Top pipeline performs calculations on
even samples and the bottom one carries out calculations on
odd transform samples. Next samples are added in mixer
samples module. After samples rearrangement in transposi-
tion module the vertical 8-point transform is calculated and
result is written into output buffer.

5.1 Inverse quantization

The inverse quantization process, as shown on equation 1,
requires 3 multiplications to obtain the scaled sample. The
last multiplication realises variable shift, and allows design-
ing flexible circuit structure. It is also worth mentioning that
multipliers are easily synthesized as optimized modules on
FPGA devices (e.g. on Xilinx and Altera).

Figure 2 – Proposed structure of inverse quantization
module

Quantization parameter is divided by 6 or 4 (transform

size dependently), the result of this marked as qp_per and the
reminder is referred as qp_rem. The first value defines size
and direction of shift which is performed by the last of multi-
pliers, according to equation 6.

 (6)

the variable shift is carried out as multiplication:

The variable shift defined as multiplication by two to the
power of qp_per shifted by 6 bits. Constant shift does not
require any logic: it is an operation made on wires.

Value marked as qp_rem is used to index ROM with de-
fined by AVC standard norm adjust values. A user can define
own scaling tables putting Wi,j values into weight scale mem-
ory. As mentioned, weight is implicitly equal 16. Thanks to
pipelining no additional control data are necessary to manage
the calculations.

5.2 Inverse integer transformation

Figure 3 shows AVC transforms implementation straight
from defined in standard formula.

a)

b)

Figure 3 – The computational trees of inverse integer trans-
form, for a) 4 points of 1-D 4-(even)point integer transform
and for b) 4 points of 1-D 4-(odd)point integer transform.

Figure 3a) shows integer DCT transform or part of cal-

culations required to perform on 1-D 8-point even transform
samples. Figure 3b) shows computation that need to be car-
ried out on 1-D 8-point odd transform samples. Simple (di-
rect) implementation gives complex and big (in area sense)
structure.

Therefore, the authors propose original solution of in-
verse integer transform block. The proposed circuit has been
designed using parallel architecture with two dependent and
reconfigurable pipelines. The first one is designed to carry
out calculations to obtain result of 4x4 integer transform or
perform computations on even 8x8 transform samples.





<−>>
≥−<<

=
THRQperqpperqpQSx

THRQperqpQSperqpx
y

__,_

__,_

() 62* _ >>= perqpxy (7)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Figure 4 – Structure of computational block of 1-D 4-point
inverse integer transform

a) 1-D 4 point integer transform for even 8x8 samples or

4x4 transform – Top pipeline

Transform module implemented in top pipeline is

showed on figure 4. The scaling module puts samples into
memory. If suitable sample block is fulfilled the calculations
may start. Samples are taken from memory one by one and
put into one of two shift registers. After loading of all sam-
ples the first sum is made and sample is put into small mem-
ory to rearrange samples. Next samples are read and put at
the input of one of shift registers. After sum, they are buff-
ered in register for one clock tick.

b) 1-D 4 point integer transform for even 8x8 samples or

4x4 transform – Bottom pipeline

The second processing path is similar to the first
one. It is designed to carry out calculations both 1-D 4-point
and 8-point transform samples. The module has been shown
at figure 5. The circuit has two outputs marked as B1 and B2.
The first one is the output of integer 1-D 4-point transform or
the first part of even samples calculations. The B2 output
gives a result of the second part of computation carried out
on odd 8 transform samples. The first sum (fig.5 - grey
marked part) performs integer multiplication by 1.5.

Figure 5 – Structure of computational block of 1-D 4-pel
integer transform and odd samples of 8-point integer trans-

form.

 c) sample mixer

 Samples mixer was introduced in order to finish
computations of 1-D 8-point transform. In the case of 1-D
4-point transforms mode (also Hadamard) this module pass
the results unchanged to the next block (of vertical trans-
form).

Figure 6 – Samples mixing – 8x8 transform only

The advantage of such a structure is the possibility
of performing both 1-D 4-point and 8-point transform using
one module. Moreover, circuit arrangement is regular and
easy to implement. Transform module produces always two
transform samples per clock tick. It is also worth mentioning
that marked part of the circuit shown at figure 5 is used only
when 1-D 8-point transform is being calculated.

Moreover, management unit for described structure is
quite easy to implement. For example, transposition is made
by simple bits’ rearrangement in sample position without
using any logic. Most of the control data, which are passed
along the processing path, can be derived form sample posi-
tion.

6. SIMULATION AND PERFOMANCE RESULTS

The presented architecture has been implemented with

Verilog hardware description language. Simulations and test
with real data from reference encoder indicate that imple-
mented design works properly.

Figure 7 shows timing analysis of both (top and bottom)
pipeline performance.

Figure 7 – Timing diagram

Two full inverse transforms are done during 48 clock tics.
Samples can be loaded into the pipes without any wait-states.
It means that design throughput is 2 samples per clock and
delay of result is 48 clock ticks.

7. CONCLUSIONS

Original efficient architecture of (3 types of) inverse in-
teger transform has been proposed.

Proposed architecture is fully pipelined and enables per-
forming computation of AVC integer transforms both for
4:2:0 and 4:2:2 resolution systems, producing 2 samples per
clock tick. It means that inverse transformation process can
be done with clock frequency close to the sampling fre-
quency (13.5 MHz for SDTV resolution 720x576).

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Moreover, resulting structure of inverse transform block
is compact and suitable for FPGA devices what was proved
by synthesis results.

Efficiency measured by calculating cost factor (work-
ing-time/wait-time and utilization of design structure) is
about 90% for 4x4 inverse transform (fig.5 greyed part inac-
tive only) and 100% for 8x8 inverse transform. Such result of
a device utilizing is excellent.

8. ACKNOWLEDGMENT

The work was supported by the public founds as a re-

search project.

REFERENCES

[1] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra,

Overview of the H.264/avc video coding standard. IEEE
Trans. on Circuits and Systems for Video Technology,
vol. 13, pp. 560–576, July 2003.

[2] ISO/IEC 14496 10 Advanced Video Coding, 3rd ed.,
ISO/IEC JTC1/SC29/WG11, Redmond, July 2003.

[3] JVT of ISO/IEC MPEG & ITU-T VCEG Text of ISO/IEC
14496 10 Advanced Video Coding 3rd Edition, ISO/IEC
JTC1/SC29/WG11, Redmond, July 2004.

[4] A. M. Patiño, M. M. Peiró, F. Ballester, and G. Payá, 2D-
DCT on FPGA by polynomial transformation in two di-
mensions, ISCAS 2004

[5] R. C. Kordasiewicz, S. Shirani, “ASIC and FPGA imple-
mentations of H.264 DCT AND quantization blocks“,
2005

[6] P. Garstecki and A. Łuczak, A flexible architecture for
image reconstruction in h.264/avc decoders, in Proc. of
ECCTD 2005, Cork,Ireland, August 2005.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

