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ABSTRACT 
In this paper we propose a locally regularized snake based 
on smoothing-spline filtering. The proposed algorithm asso-
ciates this regularization process to a force equilibrium 
scheme leading the snake’s deformation. The regularization 
level is controlled through a unique parameter that can vary 
along the contour: It provides a locally regularized smooth-
ing B-snake that offers a powerful framework to introduce 
prior knowledge. We illustrate the snake behavior on MRI 
images, with global and local regularization. 

1. INTRODUCTION 

Active contour models (or snakes) are well-adapted for 
edge detection and segmentation. Since snakes were 
introduced by Kass et al.[1], they have been widely used in 
many domains and improved using different contour 
representations and deformation algorithms. Menet et al. 
proposed the B-snakes in [2] that take advantages of the B-
spline representation: a local control of the curve continuity 
and a limited number of processed points increase the 
convergence speed and the reliability of the segmentation. 
At the same time, Cohen et al. [3] focused on external 
forces that drive the snake toward the features of interest in 
the image and proposed the balloon force, that increases 
considerably the attainability zone. Then, Xu et al. [4] 
defined another external force called GVF that bring a 
better control on the deformation directions. Beside these 
works, the multi-resolution frameworks have been 
integrated within the active contours: Wang et al. [5] used a 
B-spline representation that allows a coarse-to-fine 
evolution of the snake. Brigger et al. [6, 7] extended 
Wang’s technique with a multi-scale approach in both the 
image and parametric contour domain. Finally, Precioso et 
al. [8] proposed a region-based active contour that achieves 
the real-time computation adapted to video segmentation. 
They extended their model by applying a smoothing B-
spline filter [9, 10] on the contour. It increases considerably 
the robustness to noise without additional computation. 
Recently, new energies have been proposed by Jacob et al. 
[11] who unify the edge-based with the region-based 
scheme. 

Existing snakes suffer several limitations when a local 
regularization is wanted: with the original snake [1], a local 
regularization involves a matrix inversion step at each 

iteration. Although B-snakes [6] avoid this by implicitizing 
the internal energy, the proposed solution induced a varying 
sampling step when we need to regularize locally the snake. 
Consequently, prior knowledge will be difficult to integrate 
in the contour sampling step. The smoothing B-spline 
filtering method of [8] doesn’t deal with local 
regularization and has a strong initialization-dependent 
minimization process linked to the regularization algorithm 
proposed. 

In this paper, we propose to regularize locally a snake 
while keeping a uniform sampling step. The presented 
approach is based on smoothing-spline filtering that is 
controlled through a unique parameter �. The next section 
reminds the snake concepts and their interaction with B-
splines. Section 3 details the proposed algorithm named 
LRSB-snake that stands for Locally Regularized Smoothing 
B-snake. Section 4 presents experiments’ results on real and 
synthetic images. 

2. SNAKES AND B-SPLINES 

2.1 Snake basics. 

A snake [1] is a parametric curve g(s)=(x(s),y(s)) that 
evolves on an image I(x,y) and stops on the features of in-
terest. The snake evolution is controlled by an energy 
minimization. The curve has to go where its total energy 
Esnake, defined in equation (1), is minimal. 
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where Eint has a regularization role and is the internal 
energy that traduces shape constraints on the curve; Where 
Eext is the external energy that drives the snake toward im-
age features.  

Typically, Eext is computed from the gradient of the im-
age (Eq. 2) as the usual goal of a snake is to detect object 
boundaries. 
  2),( yxIEext ∇−=  (2) 

The variational method used in [1] to complete the 
minimization of equation (1) leads to a force balance given 
by:  
  0)()( =+⋅ kfkgA  (3) 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144784416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where A is a pentadiagonal banded matrix built from 
Eint, where g(k)=(x(k),y(k)) is the discrete version of the 
g(s) curve and where f(k)=(fx(k),fy(k)) constitutes the exter-
nal forces computed at each k snake’s point as follows: 
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Figure 1. Smoothing B-spline filtering of a para-
metric discrete signal g(k). 

The gradient descent method determines (Eq. 5) the new 
positions of the snake points (gi(k)) at each iteration. 
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where γ  is a step-size parameter and i is the iteration 
index of the gradient descent evolution.  

This method is used by Menet et al. [2] where g(s) is 
represented through B-spline. Such model offers a better 
local continuity control and a faster convergence. In [6], 
Brigger et al. show that the B-spline representation of a 
snake induces an built-in smoothness of the curve. They 
also propose a variant sample step of the curve to bring an 
implicit regularization. The internal energy and its regulari-
zation effect are implicit and the iterative process enounced 
in equation (5) is simplified to: 
  )()()( 1 kfkgkg ii ⋅−= − γ  (6) 

f(k) may be balloon forces [12], or gradient vector flow [4] 
or any other forces that lead the snake to the desired fea-
tures. 

2.2 Regularization through Smoothing B-spline filtering 

Although variant sample step enables regularization, the 
lack of information under the snake at low resolution may 
make difficult the incorporation of prior knowledge in an 
initial model. Precioso et al. [8] propose the use of a low-
pass IIR filter on each parametric components of the curve 
to regularize the snake. This filter is the smoothing B-spline 
filter described in [10]. It computes a more or less smooth 
approximation �(k) of a finite set of points g(k), where the 
continuous representation �(s) of �(k) minimizes the fol-
lowing functional: 
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where � is the parameter that tunes the smoothness con-
straint of �(k). 

Figure 1 shows the filtering process involved in [8]. It is 
based on the filtering of a parametric signal by the  SB� fil-
ter which cut-off frequency is controlled by � (Figure 2). 

Nevertheless, the way of using the smoothing B-spline 
filter in the Precioso’s algorithm has some drawbacks. In-

deed, the regularization amount increases as the iterations 
and consequently the final snake smoothness is dependent 
on the initial one. Precioso et al. [8] gives empiric values of 
suitable � in their algorithm (� can take value in [0.1,1]) to 
avoid these problems. 
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Figure 2: Frequency response of the smoothing-
spline filter SBλ for different values of λ. 

We propose in the next section another algorithm that 
regularizes a snake with a smoothing B-spline filter, with-
out the drawbacks mentioned above and without any � re-
striction. In this algorithm, the regularization may be either 
global or local.  

3. LOCALLY REGULARIZED SMOOTHING 
BSNAKE 

An overview of the proposed LRSB-snake is given Figure 
3. From an initial contour �0(k)  and the image to segment, 
we compute the deformation forces (see §3.1). The regu-
larization is done by smoothing the deformation forces. We 
can apply a global regularization (§3.2) or a local one 
(§3.3). The contour is then moved by applying the regular-
ized deformation forces. To enforce a similar behavior of 
the smoothing process at each iteration, the contour may be 
resampled. If the contour is stabilized, the iterative process 
is stopped. 

3.1 Deformation force computation 

The external forces are directly derived from the image to 
segment. They guide the snake to the desired features. 
Within our LRSB-snake algorithm any type of external 
forces may be used, such as Xu et al. Gradient Vector Flow 
[4] that computes a diffusion of the image gradient or 
Cohen et al. balloon forces [12] that simulates a pressure 
force and makes the snake swelled. The sum of every 
considered forces gives the deformation vector di(k) at each 
point k and at each iteration i. Without doing any 
regularization (i.e. λ=0), we obtain a deformation equation 
(Eq. 8) that minimizes the external energy represented by 
the image forces. Note that this deformation equation is 
similar to the one of [8] (region-based deformation). 
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Figure 3: Flow-chart of the locally regularized 
smoothing B-snake algorithm. 

 
where i is the iteration index, g(k) are the snake points, 

di(k) are the deformation vectors i.e the external forces and 
γ is the step-size involved in the variational method of the 
original snake.  

This equation is similar to the original snake's one (Eq.5) 
with: 
  ))(),(())(),(()( kfkfkdkdkd yxyx ==  (9) 

where f is defined in (Eq.4). 

3.2 Global regularization process through deformation 
force smoothing 

Regularization of the deformable model is essential to 
ensure a good robustness to noise of such segmentation 
approach. As in [8], we choose to constrain the curvature of 
the contour with a smoothing B-spline filter that minimizes 
the curvature optimally [9] according to a single parameter 
λ. 

Equation (10) gives the snake regularized by the SBλ 
approximation filter at iteration i. 
  )()()(ˆ kgksbkg ii ∗= λ  (10) 

From equations (8) and (10), we obtain equation (11) 
that yields the deformation and motion steps of the algo-
rithm (Figure 3). 
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Finally, from equation (11) and using the Z transform, 

we obtain:  
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Figure 4. Spatially-variant smoothing-spline 
filtering. The input signal is the thin noisy circle. 
This signal is filtered through a smoothing-spline 
filter where the smoothing parameter λ varies 
along the contour. The resulting signal is 
represented in bold 

 
It is clear in equation (11) that we realize the snake 
regularization by a smoothing filtering of the deformation 
forces (Figure 3). Consequently (Eq. 12), an infinite 
iterative process does not lead to an infinite successive 
convolution of di. Compared to [8], the regularization does 
not depend on the number of iterations. It allows λ to 
control the cut-off frequency of the SBλ approximation filter 
-and thus the regularization level- by taking any real 
positive value. As the regularization is done by a digital 
filtering, it preserves the processing speed mentioned in [8].  

Note that a 1-D filter is usually applied on a uniformly 
sampled signal. As we want to keep the same filter 
frequency response which is λ-dependent, we enforce a 
uniform sampling of the contour in our algorithm. 

3.3 Local regularization process 

In our regularization process, λ value is not constraint to be 
globally set. Consequently, λ can differ from node to node 
in order to provide a local regularization. From the 
regularization term of equation (11), one can write the 
following equation: 
  )()()(ˆ zDzSBzD ii ⋅= λ  (13) 

Where 
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with λ⋅+= 364a , λ⋅−= 241b  and λ⋅= 6c .  
It appears in equation (14) that the filter coefficients a, b 

and c are λ-dependent. We propose to make SBλ 
space-varying by making λ dependent on k, the contour 
point number. Thus, a, b and c become 
 kka λ⋅+= 364 , kkb λ⋅−= 241 , kkc λ⋅= 6  (15) 

and equation (14) becomes: 
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a) b) 
Figure 5: MRI image of a guinea-pig knee and an 
initial 67-points snake. Segmentation results with 
a) λ = 1000, 630 iterations and b) λ=71, 1280 
iterations. 

 
Consequently, each node of the snake has its own 

regularization rate. We are able to affect different values of 
λ along the contour (Figure 4) according to local image 
information or prior knowledge introduced in the initial 
model. 

4. RESULTS 

This section gives results obtained with the proposed 
LRSB-snake algorithm. First the global regularization mode 
is illustrated on MRI images. Then, the LRSB-snake is 
applied on an angio-MRI image to illustrate the advantage 
of a local regularization. All these results have been 
obtained with the following external forces: Laplacian 
vectors of a Gaussian-blurred version of the image 
combined with a balloon force to increase the convergence 
speed. 

4.1 Global regularization 

Figure 5-a shows an MR image of a guinea pig knee and an 
initial smoothing B-snake. The feature to detect is the 
femoral border. With a too low λ value (λ=71), the final 
result obtained after 1280 iterations is corrupted by a local 
minimum (Figure 5-b). We set a larger λ value (λ=1000) to 
avoid this artifact (Figure 5-c). The final result obtained 
after 630 iterations is close to the wanted femoral border. 

4.2 Local regularization 

Figure 6 shows the drawbacks of a globally-set 
regularization. This deformed circle comprises 3 parts, each 
having a different amount of local curvature. With a low 
global λ (Figure 6-a), the snake is not able to find any true 
boundaries. With a high global λ, an approximated 
boundary of the object is found (Figure 6-b). But if the 
different part are known, an adapted local λ gives to the 
snake a good behaviour and each part are well segmented. 

Figure 7 illustrates the behavior of the LRSB-snake on a 
angio-MRI. On Figure 7-a, a high regularization rate does 
not allow the snake to outline the true boundary. Figure 7-b 
shows the result with a small value, where the balloon 
forces induce a leak of the snake. The LRSB-Snake is then 
applied on this image (Figure 7-c). A λ map gives the λ 
values at each image position. In this example, the λ map is 

manually defined, with values empirically determined as 
follows. Positions where the contour is well visible take a 
small λ value (λ=1), and positions where the contour tends 
to disappear take with a high λ value (λ=300). One can 
observe on Figure 7-d that such a local regularization 
prevents the leak, manages correctly the ghost gradient and 
stops the swell at the top. 

 

a) b)

c) d)

a) b)

c) d)
 

Figure 6: Constant and locally regularized 100-points smoothing 
B-snake on a synthesis image. a) Noisy object with the reference 
contour in white. b) Final segmentation with global low λ (λ=1). 
Local minima are too attractive. c) Global high λ (λ=100). The 
object is localized but not precisely outlined. d) Locally 
regularized smoothing b-snake. I: λ = 1. II: λ = 10, III: λ = 100. 
 

5. CONCLUSIONS 

In this paper, we propose a Locally Regularized Smoothing 
B-snake algorithm. The regularization process uses an 
approximating smoothing-spline filter applied directly on 
the snake node displacement. This algorithm conserves the 
advantages of snake algorithms and offers a local control of 
the regularization through the λ value defined at each snake 
nodes. As the regularization is implemented through a 
recursive implementation of a digital filter, this algorithm is 
fast. 

This algorithm associated to pertinent local λ definition 
offers a powerful tool for introducing prior knowledge and 
consequently makes the segmentation process more robust. 
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a) b) c) 

Figure 7: a) Final segmentation using λ=300, 250 iterations. b) 
Final segmentation using λ=1, 310 iterations. c) Final 
segmentation using local λ values (black for λ=300, white for 
λ=1), 330 iterations. 
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