
International Journal of Engineering Research and Modern Education (IJERME) 

Impact Factor: 6.525, ISSN (Online): 2455 - 4200 

(www.rdmodernresearch.com) Volume 2, Issue 1, 2017 

108 

 

A MATHEMATICAL MODEL TO STUDY THE SIMILARITIES 

OF BLOOD FLUID MODELS THROUGH INCLINED MULTI-

STENOSED ARTERY 

Sapna Ratan Shah*, S. U. Siddiqui** & Anuradha Singh** 
* School of Computational and Integrative Sciences, Jawaharlal Nehru University,  

New Delhi 

** Department of Mathematics, Harcourt Butler Technical University, Kanpur,  

                                        Uttar Pradesh  

Cite This Article: Sapna Ratan Shah, S. U. Siddiqui & Anuradha Singh, “A Mathematical Model to Study the 

Similarities of Blood Fluid Models Through Inclined Multi-Stenosed Artery”, International Journal of 

Engineering Research and Modern Education, Volume 2, Issue 1, Page Number 108-115, 2017. 

Copy Right: © IJERME, 2017 (All Rights Reserved). This is an Open Access Article distributed under the 

Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original work is properly cited.                                                                                                          

Abstract: 

A mathematical model is presented to comparative steady of the flow behavior of Casson’s and 

Bingham Plastic fluid model through an inclined tube of non-uniform cross-section with multiple stenoses. The 

equation describing the flow has been solved and the expressions parameters on flow variables have been 

studied. The present study may be helpful for better understanding the flow characteristics of blood having 

multiple stenoses. The graphical representations have been made to validate the analytical findings with a view 

of its applicability to stenotic diseases. It is found that the flow of resistance increases with the height of the 

stenosis but decreases with the angle of inclination. The flow characteristics namely, velocity, pressure gradient, 

flow rate, resistance to flow have been derived. It is shown that the resistance to flow increases with the height 

of the secondary stenosis as well as with the yield stress. The results are compared with the available data 

presented by previous researchers. 

Key Words: Blood Flow, Blood Vessels, Axially Symmetric Stenosis, Casson’s Fluid Model, Bingham Fluid 
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Introduction:  

In medicine, one of the major health hazards is atherosclerosis, which is the leading cause of death in 

many countries. Atherosclerosis or stenosis is a cardiovascular disease, which refers to the narrowing of arterial 

lumen. i.e. the inner open space or cavity of an artery due to deposition of fatty substances. Stenosis leads to an 

increase in the resistance to the flow and associated reduction in blood supply in the downstream which causes 

hypertension, myocardial infarction and cerebral strokes etc. (Biswas and Ali [3], Kumar and Diwakar [7]). 

Hence it is essential to study the blood flow through a stenosed artery to prevent the arterial diseases. 

  

 
Figure 1: An inclined Blood vessel with multiple stenosis 

 

In view of this, several theoretical and mathematical models (Agarwal and Varshney [1], Ellahi 

Rahman et al. [5]) have been developed to study the blood flow characteristics due to the presence of stenosis in 

the lumen of the blood vessel. Mohan et al. [10] studied the effect of paired stenosis through small artery. 

Bhatnagar et al. [2] studied the effects of an overlapping stenosis on blood flow characteristics in a narrow 

artery. All these investigations have considered the effects of stenosis through a tube of uniform cross-section. 

But, it is known that many ducts in physiological systems are not horizontal but have some inclination to the 

axis. Sankar et al. [13] studied the flow of Herschel-Bulkely fluid through an inclined tube of non-uniform cross 

section with multiple stenosis. Biswas and Chakraborty [4] have analysed mathematical models by considering 
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blood as a Herschel-Bulkley type non- Newtonian fluid. In a recent paper Liepsch [8] have presented a 

mathematical model to show the effect of stenoses on Casson flow of blood. A mathematical model of blood 

flow through an irregular arterial mild stenoses is developed by Karimi [6] and studied that if the viscosity of 

fluid increases the velocity of fluid decreases in the presence of stenoses. Mekheimer and Elkot [9] developed a 

mathematical model for studying blood flow through a narrow artery with multiple stenoses and they have 

observed that stenoses height and axial velocity of flow very much influence the shear stress in a stenosed 

artery. In the present study we propose to discuss the effects of inclined multi-stenoses arteries on blood flow 

characteristics using Casson’s and Bingham plastic fluid model. Results have been comparing for the both fluid 

model. Mathematical equations have been solved with the help of numerical technique.   

Formulation of the Problem:  

Let us consider an axially symmetric, laminar, fully develop flow of the blood through a tube of non-

uniform cross-section and with two stenoses (fig.1).  

                     r 
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Figure 2: Geometry of an inclined tube with multiple stenosis 

 

The momentum equation is given by 

                                                           
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) = −

𝜕𝑝

𝜕𝑧
+

𝑠𝑖𝑛𝛼

𝐹
,                                                                            (1)  

                                                           𝐹 =
𝜇𝑈𝑛

𝜌𝑔𝑅0
𝑛+1           (2) 

Where 𝜏𝑟𝑧 is the shear stress for the fluid, 

The Casson Fluid model: 

                                                          𝜏𝑟𝑧

1

2 = [−𝜇
𝜕𝑢

𝜕𝑟
]

1

2
+ 𝜏0

1

2,       𝜏𝑟𝑧 > 𝜏0                                                                (3) 

                                                          
𝜕𝑢

𝜕𝑟
= 0, 𝜏𝑟𝑧 ˂ 𝜏0,                                                                                          (4) 

The Bingham Plastic Fluid model: 

                                                         𝜏𝑟𝑧 = −𝜇
𝜕𝑢

𝜕𝑟
+ 𝜏0,             𝜏𝑟𝑧 > 𝜏0                                                                (5) 

                                                         
𝜕𝑢

𝜕𝑟
= 0,  𝜏𝑟𝑧 ˂ 𝜏0,                                                                                          (6) 

Here u is the axial velocity, p is the pressure, 𝜏0  is the yield stress, μ is the fluid viscosity, U is some 

characteristic velocity, ρ is the density, g is the acceleration due to gravity and 𝑅0 is the radius of the tube. When 
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𝜏𝑟𝑧 < 𝜏0 i.e. the shear stress is less than the yield stress, there is a core region which flows as a plug (Fig. 1), and 

Eq. (2.4), (2.6) corresponds to vanishing velocity gradient in that region. However, the fluid behavior is 

indicated whenever  𝜏𝑟𝑧 > 𝜏0.  

The boundary conditions are: 

                                      τ is finite at r=0,                                                                                                               (7) 

                                      u=0 at r=h(z).                                                                                                                   (8) 

For the analysis presented in the sequel, we use the following non-dimensional variable 

                              𝑧 =
𝑧

𝐿
, 𝛿 =

𝛿

𝑅0
, 𝑅(𝑧) =

𝑅(𝑧)

𝑅0
, 𝑃 =

𝑝

(
𝜇𝑈𝐿

𝑅0
2 )

, 𝜏0 =
𝜏0

𝜇(
𝑈

𝑅0
)
, 𝜏𝑟𝑧 =

𝜏𝑟𝑧

𝜇(
𝑈

𝑅0
)
, 𝑄 =

𝑄

𝜋𝑅0
2   𝐹 =

𝐹

𝜇𝑈𝜆
              (9) 

The geometry of the stenoses in non-dimensional form is given by 

                      h = R(z) = 

{
 
 
 
 
 

 
 
 
 
 

𝑅0                                              ∶ 0 ≤ 𝑧 ≤ 𝑑1,

𝑅0 −
𝛿1

2
(1 + cos

2𝜋

𝐿1
(𝑧 − 𝑑1 −

𝐿1

2
))           ∶  𝑑1 ≤ 𝑧 ≤ 𝐿1,                      

𝑅0                                                                      ∶  𝑑1 + 𝐿1 ≤ 𝑧 ≤ 𝐵1 −
𝐿2

2
,

𝑅0 −
𝛿1

𝐿2
(1 + cos

2𝜋

𝐿2
(𝑧 − 𝐵1))         ∶  𝐵1 −

𝐿2

2
≤ 𝑧 ≤ 𝐵1 ,

𝑅∗(𝑧) −
𝛿1

2
(1 + cos

2𝜋

𝐿2
(𝑧 − 𝐵1))      ∶  𝐵1 ≤ 𝑧 ≤ 𝐵1 +

𝐿2

2
,

𝑅∗(𝑧)                                                       ∶  𝐵1 +
𝐿2

2
≤ 𝑧 ≤ 𝐵,

                    (10) 

The following restrictions for mild stenoses are supposed to be satisfied: 

𝛿𝑖 ≪ min(𝑅0, 𝑅out), 
𝛿𝑖 ≪ 𝐿𝑖 ,   where Rout = R(z) at z = B. 

Here 𝐿𝑖 and 𝛿𝑖 are the lengths and maximum heights of two stenoses. 

Analytical Solution of the Problem: 
Solving Eqs. (1),(3) and (5) under the boundary conditions (7) and (8), we obtain the velocity, when 

𝑃 = −
𝜕𝑝

𝜕𝑧
, and f =

sinα

F
. 

                                   𝑢 =
(𝑃+𝑓)

𝜇
[
𝑟2−ℎ2

4
+

𝜏0

(𝑃+ℎ)
(𝑟 − ℎ) −

2 √2
2

3
(𝑟3/2 − ℎ3/2)(

𝜏0

(𝑃+𝑓)
)1/2]                              (11) 

                                    𝑢 =
(𝑃+𝑓)

𝜇
[
𝑟2−ℎ2

4
+

𝜏0

(𝑃+ℎ)
(𝑟 − ℎ)]   for 𝑟0 ≤ 𝑟 ≤ ℎ                                   (12)                                                                                                                   

Velocity for the Casson’s fluid model is given by Eq. (11) and the velocity for the Bingham Plastic fluid model 

is given by Eq. (12). Using the condition (14) and (16), we finally get the upper limit of the plug flow region (i.e 

the region between r = 0 and r = r0 for which |𝜏𝑟𝑧| < 𝜏0) as 

                                                                         𝑟0 =
2𝜏0

(𝑃+𝑓)
                                                                                    (13)       

And using the condition 𝜏𝑟𝑧 = 𝜏ℎ at r = h, we obtain 

                                                                   
𝑟0

ℎ
=

𝜏0

𝜏ℎ
= 𝜏 ,        0 < τ < 1.                                                               (14)  

Taking r = r0 in Eqs. (3.1), (3.2) we get the plug core velocity as 

                                𝑢𝑝 = 
(𝑃+𝑓)

𝜇
[
𝑟0
2

12
−

ℎ𝑟0

2
+

2

3
ℎ3/2𝑟0

1/2
−

ℎ2

4
]               for        0 ≤ 𝑟 ≤ 𝑟0.                               (15) 

                                𝑢𝑝 = 
(𝑃+𝑓)ℎ2

𝜇
[
1

4
+

𝜏0
2

2
−

𝜏0

2
]                                 for 0 ≤ 𝑟 ≤ 𝑟0.                                          (16) 

Plug core velocity for the Casson’s fluid model is given by Eq. (15) and the plug core velocity for the Bingham 

Plastic fluid model is given by Eq. (16).  

The volumetric flow rate is defined by 

                                                                       𝑄 = 2𝑟 [∫ 𝑢𝑝𝑟𝑑𝑟 + ∫ 𝑢𝑟𝑑𝑟
ℎ

𝑟0

𝑟0
0

]                                                   (17) 

Substituting Eq. (11, 12) and Eq. (15, 16) in Eq. (17) and integrating, we finally get 

𝑄 =  
ℎ3

2𝜇
(𝑃 + 𝑓) [−

1

12ℎ
(𝜏0
2 + 1) + 𝜏0

5

2ℎ (4 − 𝜏0

1

2) +
𝜏0

(𝑃+𝑓)
(
4

3
(1 − 𝜏0

3) −  2(1 − 𝜏0
2)) −  

√2
2

3
(

𝜏0

(𝑃+𝑓)
)

1

2
ℎ
1

2 (
1

7
(1 −

𝜏0

7

2) −
1

4
(1 − 𝜏0

2))]                                                                                                                                              (18) 

           𝑄 =  
ℎ3

𝜇
(𝑃 + 𝑓) [𝜏0

2ℎ (
1

4
+

1

4
𝜏0
2 −

𝜏0

2
) +

ℎ

4(1−𝜏0)
−

ℎ

8
(1 − 𝜏0

4) +
2𝜏0

(𝑃+𝑓)
(
1

3
(1 − 𝜏0

3) −
1

2
(1 − 𝜏0

2))]          (19) 

The volume flow rate for the Casson’s fluid model is given by Eq. (18) and the volume flow rate for the 

Bingham Plastic fluid model is given by Eq. (19).  
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Using Eq. (18): 

 
𝑑𝑝

𝑑𝑧
=

[
 
 
 
 

(
√2
2

3
(𝜏0ℎ)

1

2 (
1

7
(1 − 𝜏0

7

2) −
1

4
(1 − 𝜏0

2)) + (
2

9
𝜏0ℎ (

1

7
(1 − 𝜏0

7

2) −  
1

4
(1 − 𝜏0

2))

2

− 4(−
1

12ℎ
(𝜏0
2 + 1) +

𝜏0

3

2ℎ(4 − 𝜏0)) (
𝜏0

2
(
4

3
(1 −  𝜏0

3) − 2(1 − 𝜏0
2)) −

2𝜇𝑄

ℎ3
))

1

2

)/(−
1

6ℎ
(𝜏0
2 + 1) + 𝜏0

3

2 ℎ

2
(4 −  𝜏0))

]
 
 
 
 
2

− 𝑓                                                              

                                                                                                                                                                             (20) 

The pressure drop ∆p  across the stenosis between the cross-sections z = ± L/2 can be obtained by integrating 

Eq. (20) as 

∆𝑝 = −∫ (

[
 
 
 
 

(
√2
2

3
(𝜏0ℎ)

1

2 (
1

7
(1 − 𝜏0

7

2) −
1

4
(1 − 𝜏0

2)) + (
2

9
𝜏0ℎ (

1

7
(1 − 𝜏0

7

2) −
1

4
(1 − 𝜏0

2))

2

− 4(−
1

12ℎ
(𝜏0
2 +

𝐿/2

−𝐿/2

1) + 𝜏0

3

2ℎ(4 − 𝜏0)) (
𝜏0

2
(
4

3
(1 −   𝜏0

3) − 2(1 − 𝜏0
2)) −

2𝜇𝑄

ℎ3
))

1

2

)/(−
1

6ℎ
(𝜏0
2 + 1) + 𝜏0

3

2 ℎ

2
(4 −   𝜏0))

]
 
 
 
 
2

− 𝑓 )𝑑𝑧                                                                         

                                                                                                                                                                             (21) 

Using non-dimensional scheme in Eq. (21) 

  ∆𝑝 = −∫ (

[
 
 
 
 

(
√2
2

3
(𝜏0ℎ)

1

2 (
1

7
(1 − 𝜏0

7

2) −
1

4
(1 − 𝜏0

2)) + (
2

9
𝜏0ℎ (

1

7
(1 − 𝜏0

7

2) −
1

4
(1 − 𝜏0

2))

2

− 4(−
1

12ℎ
(𝜏0
2 +

1

−1

1) + 𝜏0

3

2ℎ(4 − 𝜏0)) (
𝜏0

2
(
4

3
(1 −   𝜏0

3) − 2(1 − 𝜏0
2)) −

2𝜇𝑄

ℎ3
))

1

2

)/(−
1

6ℎ
(𝜏0
2 + 1) + 𝜏0

3

2 ℎ

2
(4 −   𝜏0))

]
 
 
 
 
2

− 𝑓 )𝑑𝑧                                                                         

                                                                                                                                                                             (22) 

Using Eq. (19): 
𝑑𝑝

𝑑𝑧
= −p =[−𝑄𝜇 + 2𝜏0(

1

3
ℎ3(1 − 𝜏0

3) −
ℎ3

2
(1 − 𝜏0

2))/𝜏0
2ℎ4(

1

4
+

1

4
𝜏0
2 −

𝜏0

2
+

ℎ4

4
(1 − 𝜏0

2) −
ℎ4

8
(1 − 𝜏0

4))] + 𝑓                                                                                                 

                                                                                                                                                                             (23) 

The pressure drop ∆p  across the stenosis between the cross-sections z = ± L/2 can be obtained by integrating 

Eq. (23) as 

∆𝑝 = −∫ (

[
 
 
 
 

(
√2
2

3
(𝜏0ℎ)

1

2 (
1

7
(1 − 𝜏0

7

2) −
1

4
(1 − 𝜏0

2)) + (
2

9
𝜏0ℎ (

1

7
(1 − 𝜏0

7

2) −
1

4
(1 − 𝜏0

2))

2

− 4(−
1

12ℎ
(𝜏0
2 +

𝐿/2

−𝐿/2

1) + 𝜏0

3

2ℎ(4 − 𝜏0)) (
𝜏0

2
(
4

3
(1 −   𝜏0

3) − 2(1 − 𝜏0
2)) −

2𝜇𝑄

ℎ3
))

1

2

)/(−
1

6ℎ
(𝜏0
2 + 1) + 𝜏0

3

2 ℎ

2
(4 −   𝜏0))

]
 
 
 
 
2

− 𝑓 )𝑑𝑧                                                                        

                                                                                                                                                                             (24) 

Using non-dimensional scheme in Eq.(24) 

  ∆𝑝 = −∫ [−𝑄𝜇 + 2𝜏0(
1

3
ℎ3(1 − 𝜏0

3) −
ℎ3

2
(1 − 𝜏0

2))/𝜏0
2ℎ4(

1

4
+

1

4
𝜏0
2 −

𝜏0

2
+

ℎ4

4
(1 − 𝜏0

2) −
ℎ4

8
(1 − 𝜏0

4))] 𝑑𝑧 +
1

−1

𝑓 𝑑𝑧                                                                                                                                                                      (25) 

The resistance to flow 𝜆, is defined by 

                                                                                 𝜆 =
∆𝑝

𝑄
.                                                                                 (26)   

Using Eqs. (22) and (25) in Eq. (26), we get     
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 𝜆 = −
1

𝑄
∫ (

[
 
 
 
 

(
√2
2

3
(𝜏0ℎ)

1

2 (
1

7
(1 − 𝜏0

7

2) −
1

4
(1 − 𝜏0

2)) + (
2

9
𝜏0ℎ (

1

7
(1 − 𝜏0

7

2) −
1

4
(1 − 𝜏0

2))

2

− 4(−
1

12ℎ
(𝜏0
2 +

1

−1

1) + 𝜏0

3

2ℎ(4 − 𝜏0)) (
𝜏0

2
(
4

3
(1 −   𝜏0

3) − 2(1 − 𝜏0
2)) −

2𝜇𝑄

ℎ3
))

1

2

)/(−
1

6ℎ
(𝜏0
2 + 1) + 𝜏0

3

2 ℎ

2
(4 −   𝜏0))

]
 
 
 
 
2

− 𝑓 )𝑑𝑧         

                                                                                                                                                   (27) 

 

𝜆 = −
1

𝑄
∫ [−𝑄𝜇 + 2𝜏0(

1

3
ℎ3(1 − 𝜏0

3) −
ℎ3

2
(1 − 𝜏0

2))/𝜏0
2ℎ4(

1

4
+

1

4
𝜏0
2 −

𝜏0

2
+

ℎ4

4
(1 − 𝜏0

2) −
ℎ4

8
(1 − 𝜏0

4))] + 𝑓 𝑑𝑧
1

−1
  

                                                                                (28) 

The resistance to flow for the Casson’s fluid model is given by Eq. (3.17) and the resistance to flow for the 

Bingham Plastic fluid model is given by Eq. (28). 

Results and Discussion: 
Stenosis is a serious cardiovascular disease. The irregular growth of stenosis affects the flow of blood 

in the arteries and which leads to serious circulatory disorders. Stenoses are formed by the accumulation of fats/ 

lipids on the inner wall of the arteries. Stenosis developed in the arteries can cause several diseases like blood 

pressure, atherosclerosis, heart attack and brain hemorrhage. The effects of various parameters on the resistance 

to flow are computed numerically by taking 
𝑅∗(𝑧)

𝑅0
= exp[βB2(z − B1)

2] 

And 𝑑1 = 𝐿1 = 𝐿2 = 0.2, B1 = 0.8, B = 1, β1 = 0.01. 

It is observed that the resistance to flow increases with the height of both the primary and secondary stenosis (δ1,  

δ2). Figs.3-4 shows the variation of resistance to flow with respect to height of secondary stenosis for different 

values of inclination (α) and height of primary and secondary stenosis δ1 and δ2. Fig. shows that the resistance to 

flow increases with the height of secondary stenosis. It is also notice that the resistance to flow also decreases 

with the decreasing value of inclination (α). Fig. 5 shows the variation to resistance to flow with respect to the 

height of the secondary stenosis for different values of parameter F. the resistance to flow increases for the 

increasing values of height of the secondary stenosis for F = 0.5. Fig. 6 shows the variation of resistance to flow 

with respect to height of secondary stenoses. Figure shows that the resistance to flow increases with the 

increasing values of height of secondary stenoses. It is also shown that the resistance to flow increases with the 

yield stress.  Fig. 7 shows the variation of resistance to flow with respect to height of secondary stenoses for 

different values of inclination (α) and height of primary stenoses taken δ1 = 0. Fig. shows that the resistance to 

flow increases with the height of secondary stenoses. It is also notice that the resistance to flow decreases with 

the increasing value of inclination (α). Fig. 8 shows the variation of resistance to flow with respect to height of 

secondary stenoses for different values of inclination (α) and height of primary stenoses taken δ1 = 0.1. 
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Figure 6: Variation of resistance to flow with 

respect to δ2
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Fig.ure 8: Variation of resistance to flow with 
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Figure shows that the resistance to flow increases with the height of secondary stenoses. It is also 

notice that the resistance to flow decreases with the increasing value of inclination (α). Figs. 9 Depicts the 

results for the resistance to flow with different values of viscosity of the blood for the Bingham Plastic fluid. 

Fig. 10 depicts the results for the resistance to flow with different values of viscosity of the blood for Casson’s 

fluid. The resistance to flow increases with the increasing value of viscosity of blood. It is also shown in this 

figure that the resistance to flow increases for the increasing value of the height of the secondary stenoses. In is 

also found that the results for Casson’s Fluid give higher results in comparison of  Bingham Plastic fluid. Figs. 

11-12, gives the results for resistance to flow with the height of the secondary stenosis for different values of α. 

It is found that the casson's fluid model gives higher results in comparison to Bingham Plastic fluid. It is found 

that resistance to flow increases with respect to increasing values of δ2 and increases for the decreasing values of 

α for the both fluid models. Figs. 13-14, gives the results for resistance to flow with the height of the secondary 

stenosis for different values of α and τ. It is found that the casson's fluid model gives higher results in 

comparison to Bingham Plastic fluid. It is found that resistance to flow increases with respect to increasing 

values of δ2 and τ. It is also found that the resistance to flow increses for the decreasing values of α for the both 

fluid models. 

Conclusion:  
Stenoses developed in the arteries can cause several diseases like blood pressure, atherosclerosis, heart 

attack and brain hemorrhage. A comparative study of Casson’s and Bingham Plastic fluid through an inclined 

tube of non-uniform cross-section with multiple stenoses has been presented. Solutions have been obtained for 

primary and secondary stenoses. The resistance to flow increases as the secondary stenoses and viscosity of 
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Figure 11: Variation of resistance to flow with 

respect to δ2 for different values of α When 
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Figure 12: Variation of resistance to flow with 

respect to δ2 for different values of α, When F=0.1, 
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blood increases but the resistance to flow also decreases with the decreasing value of angle of inclination. It is 

found that the Casson’s Fluid model gives more appropriate resuls in comparison of Bingham Plastic fluid 

model. This present study may be helpful for better understanding the flow characteristics of blood having 

multi-stenoses.   
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