The AGN nature of LINER nuclear sources

Isabel Márquez (IAA-CSIC, Granada, Spain)

Coll.: J. Masegosa, 0. González-Martín, L. Hernández García, A. del Olmo, S. Cazzoli, M. Povic, H. Netzer

Overview

1. Introduction:

- Properties
- LINERs vs. LIERs

2. AGN LINERs

- X-ray properties and variability
- MIR spectroscopy
- HST H α imaging
- The BLR in LINERs 1.9 revisited

3. Most luminous LINERS @ $z=0.04-0.11$
4. Conclusions

Introduction

LINERs: Low Ionization Emission-line Regions

 Spectral Classification (Heckman 1980)- Optical spectra dominated by emission lines from low ionization species
([0I], [NII][SII])
- Early types
- Lower luminosities than Seyferts
- Continuity ionization state and electron temperature

BUT, difficult detection due to extinction and contamination by circumnuclear star formation

Introduction

Ho (2008)

Warning: broad line LINERs must be AGN powered
LINERs 1.9 (Ho et al. 1997)

Introduction

- Non Stellar Photoionization

(Osterbrock 1959, Ferland \& Netzer 1983, Halpern \& Steiner 1983,Ho,Filipenko \& Sargent 1993, Groves,Dopita \& Sutherland 2004)

- Shock induced
(Dopita \& Sutherland 1996, Aldrovandi \& Contini, Kewley+2001)

- Stellar Photoionization

(Terlevich, Melnick 1985, Binette+1994, Stasinska+2008, Sarzi+2010)

Introduction

MORPHOLOGY

SAMPLE: Palomar Sky Survey
LINERs:from E to Sb, irrespective of the interaction class
(Márquez et al. 2010)

Passive red galaxies
(0.09 < z < 0.1)
are mostly LINERs (color-cut selected)
(Yan et al. 2012)

Introduction.LIERS (non-nuclear LINERs)

NGC 5966 (Kehrig+ 12)

(see also
Papaderos+12,
Singh+ 13)

Introduction.LIERS (non-nuclear LINERs)

NGC 5850 (Bremer+ 13)

AGN-powered nucleus?

Line
asymmetries

AGN LINERs: Xrays

SAMPLE: from multiwavelength catalogue of 476 LINERs (Carrillo + 1999)

82 LINERs

68 with Chandra,
54 with XMM-Newton
(40 in common)
Gonzalez-Martín's PhD thesis

González Martín et al. (2006a, 2009a, 2009b)

AGN LINERs: X-rays

AGN candidates: 90\% when including other wavelengths

AGN LINERs: X-rays

NGC 315

X-ray spectral fitting:

MEPL, two absorbers
$\Gamma=2.11(\sigma=0.52)$
$k T=0.54(\sigma=0.52)$
$\log \mathrm{NH} 1=21.32(\sigma=0.71)$
$\log \mathrm{NH} 2=21.93(\sigma=1.36)$

AGN LINERs: X-rays

Why LINERs are so Dim with M_BH of 10^{8} - $10^{9} \mathrm{Mo}$?

The origin of such obscuration is crucial to relate LLAGN to HLAGN

AGN LINERs: X-rays

LINERS versus Seyfert 2s

LINERS have

$\log (L(2-10 \mathrm{keV}))$

- lower X-ray luminosities
- Lower Eddington ratios

(Hernández-García+2016)

AGN LINERs: X-ray variability

Sample: 17 AGN-LINERs with multiepoch XMM-Newton and/or Chandra observations

Long and short term variations studied

Model:

wabs[NHgal] (zwabs[NH1]*mekal [kT,Norm1] +
zwabs[NH2]*plaw[gamma,Norm2])

- No short-term variations
- 50\% with long-term variations
- Flux variations due to Norm2 and NH2 (one case)
- Variable at UV

Hernández-García +2013, 2014, 2016

AGN LINERs: X-rays

LINERS versus Seyfert 2s

Variations due to absorbers at hard X-ray energies are much more frequent in Seyfert 2s than in LINERs

No LINER changing-look candidates have been reported
UV long-term variations are common in LINERs (not detected in Sey2)

	LINER	Seyfert 2
Short-tem var.	No	No
Long-term var.	Yes	Yes
Variable	Norm2	Norm2
parameters	(NH2 in one case)	NH2
Long-term UV	Yes	No

(Hernández-García+2016)

AGN LINERs: MIR spec.

Bright LINERS $L_{x}(2-10 \mathrm{keV})>\mathbf{1 0}^{41} \mathrm{erg} / \mathrm{s}$

AGN LINERs: MIR spec.

- Spectral decomposition: torus, ISM, stellar
- High resolution MIR images, Xray luminosity
- Affinity propagation method for grouping
- LINERS in groups 1 and 2
- Torus contribution
negligible $\mathrm{L}_{\mathrm{BOL}} \sim 10^{41} \mathrm{erg} / \mathrm{s}$

(González-Martín et al. 2017)

IONIZED GAS IN LINERs

H α HST imaging:
32 LINERs
H α imaging
of (multi- λ)
confirmed AGN
favours
core-halo
and
outflow
morphologies
(65\%)
(Masegosa+2011)

The BLR in LINERs 1.9 revisited

All 22 LINERs 1.9 from Ho et al. (1997) observed with TWIN@CAHA, (dispersion ~ 0.55 A/px, 0.56"/px)

Stellar population carefully subtracted (Starlight and Ppfx) Fitting of the narrow emission lines [SII], [OI]

NGC4203-R_1d_final LF OI Ha NII SII 1/2c vb

(Márquez+, in prep.)

The BLR in LINERs 1.9 revisited

Generally narrow lines with several components, [SII] different from [OI] Very broad $\mathrm{H} \alpha$ component not required in 15 LINERs
14 with HST/STIS spectroscopy: disagreement when fixing narrow component with [SII] (see Balmaverde et al.)

Very broad H α in 5 LINERs (N1052, N3718, N3998, N4203, N5077)
(Márquez+, in prep.)

Most luminous LINERs @z=0.04-0.11

Tommasin et al. 2012

LINERs from zCOSMOS at
z ~ 0.3 (Herschel-PACS FIR data)

- L(IR) from $10^{44} \mathrm{erg} / \mathrm{s}$
and higher AGN luminosities
- later morphological types (82% of their sample)
- LINERS at $\mathrm{z} \sim 0.3$ have LFIR 2 orders of magnitude higher than those for nearby LINERs

Most luminous LINERs @z=0.04-0.11

- SDSS/DR4 MPI-JHU catalogue
- classification: BPT-NII and BPT-OI diagrams
- redshift selection: $\mathbf{0 . 0 4}<\mathbf{z}<\mathbf{0 . 1 1}$
$-\mathbf{E W}(\mathrm{Ha})>2.5 \mathrm{~A}$
Luminous LINERs (LLINERs) selection, in terms of their
AGN luminosity:
- LAGN measured through [OIII] and [OI] (Netzer 2009)
$\rightarrow \sim 150$ LLINERs with logLAGN >44.3 ($\mathrm{erg} / \mathrm{sec}$)

$\mathbf{L}_{\mathbf{A G N}}$ (erg/s)
The most luminous LINERs (MLLINERs) selection, in terms of their AGN and SF luminosity:
- SFR measured with Dn4000 method \rightarrow LSF
\rightarrow selected 47 sources with logLSF >43.3 (erg/sec)

CAHA/TWIN \& NOT/ALFOSC

- long-slit spectra for 42 sources
- spectral sampling 0.8, 1.1-1.2 \AA / px

HERSCHEL/PACS

- 6 sources
$+$
$-70 \& 10 \mu \mathrm{~m}$

IRAS

- 13 sources
$-12,25,60 \& 100 \mu \mathrm{~m}$

Most luminous LINERs @z=0.04-0.11

Local LINERs are hosted by massive and old early-type galaxies, with low extinctions, massive BHs, old stellar populations, and little or no star-formation

- MLLINERs in this work have:
* all morphologies
* higher extinctions
* much higher SFRs
- This kind of LINERs, first detected @ z ~ 0.3, confirmed in the local universe ($@ z=0.04-0.11$) so evolutionary scenario discarded
- Same M*, SFRs, and LAGN at both redshifts
- Along the LAGN = LSF line (co-evolution?)
- Most of them lie on the MS of SF galaxies, with $\mathrm{M}^{*}>\mathbf{1 0}^{\mathbf{1 0}} \mathbf{M o}$
- Fraction of LINERs on MS depends on AGN luminosity

$>60 \%$ of all low-redshift LINERs (Leslie et al. 2016)

Conclusions

1. AGN LINERs

x-rays: 60\%-90\% AGN, Compton-thickness, comparison with Sey2 properties and variability

MIR spectroscopy: bright LINERs similar to Sey2, torus contribution negligible $\mathrm{L}_{\mathrm{BOL}} \sim 10^{41} \mathrm{erg} / \mathrm{s}$

HST H α imaging: outflow/core-halo morphologies
BLR in LINERs 1.9 revisited: 5/22 need very broad H α
2. Most luminous LINERS @ $z=0.04-0.11$

- Same M*, SFRs, and LAGN at $z=0.3$
- Along the LAGN = LSF line
- Most of them lie on the MS of SF galaxies, with M* > $10^{10} \mathrm{Mo}$
- Fraction of LINERs on MS depending on AGN luminosity

