

Isabel Márquez (IAA-CSIC, Granada, Spain)

Coll.: J. Masegosa, O. González-Martín, L. Hernández García, A. del Olmo, S. Cazzoli, M. Povic, H. Netzer

Padova, 4th April 2017

Overview

- 1. Introduction:
 - Properties
 - LINERs vs. LIERs

2. AGN LINERs

- X-ray properties and variability
- MIR spectroscopy
- HST $H\alpha$ imaging
- The BLR in LINERs 1.9 revisited
- 3. Most luminous LINERS @ z=0.04-0.11
- 4. Conclusions

BUT, difficult detection due to extinction and contamination by circumnuclear star formation

Ho (2008)

- Non Stellar Photoionization

(Osterbrock 1959, Ferland & Netzer 1983, Halpern & Steiner 1983, Ho, Filipenko & Sargent 1993, Groves, Dopita & Sutherland 2004)

- Shock induced

(Dopita & Sutherland 1996, Aldrovandi & Contini, Kewley+2001)

- Stellar Photoionization

(Terlevich, Melnick 1985, Binette+1994, Stasinska+2008, Sarzi+2010)

Cid-Fernandes+(2011

MORPHOLOGY

SAMPLE: Palomar Sky Survey

LINERs: from E to Sb,

irrespective of the interaction class

(Márquez et al. 2010)

Passive red galaxies
(0.09 < z < 0.1)
are mostly LINERs
(color-cut selected)
(Yan et al. 2012)</pre>

Introduction.LIERS (non-nuclear LINERs)

SB Kewley+01

Sy/LINER Kewley+06

NGC 5966 (Kehrig+ 12)

Introduction.LIERS (non-nuclear LINERs)

AGN-powered nucleus? Line asymmetries

NGC 5850 (Bremer+ 13)

SAMPLE: from multiwavelength catalogue of 476 LINERs (Carrillo + 1999) 82 LINERS 68 with Chandra, 54 with XMM-Newton (40 in common) Gonzalez-Martín's PhD thesis

González Martín et al. (2006a, 2009a, 2009b)

<u>X-ray spectral fitting:</u>

MEPL, two absorbers $\Gamma = 2.11 (\sigma = 0.52)$ $kT = 0.54 (\sigma = 0.52)$

log NH1 = 21.32 (σ =0.71) log NH2 = 21.93 (σ =1.36)

Front cover A&A
(González-Martín+2009a)

Why LINERs are so Dim with M_BH of 10⁸ - 10⁹ Mo ?

The origin of such obscuration is crucial to relate LLAGN to HLAGN (González-Martín+2009b)

LINERS versus Seyfert 2s

LINERS have

- lower X-ray luminosities
- lower Eddington ratios

(Hernández-García+2016)

AGN LINERs: X-ray variability

Sample: **17 AGN-LINERs** with multiepoch XMM-Newton and/or Chandra observations Long and short term variations studied

Model:

wabs[NHgal](zwabs[NH1]*mekal[kT,Norm1]
+

zwabs[NH2]*plaw[gamma,Norm2])

- No short-term variations
- 50% with long-term variations
- Flux variations due to Norm2 and NH2 (one case)

- Variable at UV

Hernández-García +2013, 2014, 2016

LINERS versus Seyfert 2s

Variations due to **absorbers at hard X-ray** energies are much **more frequent in Seyfert 2s** than in LINERs

No LINER changing-look candidates have been reported

UV long-term variations are common in LINERs (not detected in Sey2)

	LINER	Seyfert 2
Short-tem var.	No	No
Long-term var.	Yes	Yes
Variable parameters	Norm2 (NH2 in one case)	Norm2 NH2
Long-term UV	Yes	No

(Hernández-García+2016)

AGN LINERs: MIR spec.

Bright LINERS L_X(2-10 keV) > 10⁴¹ erg/s

(González-Martín et al. 2015)

AGN LINERs:

MIR spec.

- Spectral decomposition: torus, ISM, stellar

- High resolution MIR images, Xray luminosity
- Affinity propagation method for grouping
- LINERS in groups 1 and 2
- Torus contribution negligible L_{BOL} \sim $10^{41}~erg/s$

(González-Martín et al. 2017)

IONIZED GAS IN LINERS

The BLR in LINERs 1.9 revisited

All 22 LINERs 1.9 from Ho et al. (1997) observed with TWIN@CAHA, (dispersion ~ 0.55 A/px, 0.56"/px)

Stellar population carefully subtracted (Starlight and Ppfx) Fitting of the narrow emission lines [SII], [OI]

(Márquez+, in prep.)

The BLR in LINERs 1.9 revisited

Generally narrow lines with several components, [SII] different from [OI] Very broad H α component not required in 15 LINERs

14 with HST/STIS spectroscopy: disagreement when fixing narrow component with [SII] (see Balmaverde et al.)

Very broad H α in 5 LINERs (N1052, N3718, N3998, N4203, N5077)

(Márquez+, in prep.)

Most luminous LINERs @z=0.04 - 0.11

LINERs from zCOSMOS at

- $z \sim 0.3$ (Herschel-PACS FIR data)
- L(IR) from 10⁴⁴ erg/s and higher AGN luminosities
- later morphological types (82% of their sample)

- LINERS at z ~ 0.3 have LFIR 2 orders of magnitude higher than those for nearby LINERs

Most luminous LINERs @z=0.04 - 0.11

104

1044

Ա 10⁴՝

10⁴¹

 L_{AGN} (erg/s)

(erg/s)

- **SDSS/DR4** MPI-JHU catalogue
- classification: BPT-NII and BPT-OI diagrams
- redshift selection: 0.04 < z < 0.11
- EW(Hα) > 2.5A
- Luminous LINERs (LLINERs) selection, in terms of their AGN luminosity:
- LAGN measured through [OIII] and [OI] (Netzer 2009)
 - \rightarrow ~ 150 LLINERs with **logLAGN > 44.3** (erg/sec)

<u>The most luminous LINERs (MLLINERs) selection, in terms of their AGN and SF luminosity:</u> - SFR measured with *Dn4000* method → LSF → selected <u>47 sources</u> with logLSF > 43.3 (erg/sec)

Povic et al. 2016

Most luminous LINERs @z=0.04 - 0.11

Local LINERs are hosted by massive and old early-type galaxies, with low extinctions, massive BHs, old stellar populations, and little or no star-formation

- MLLINERs in this work have:
- * all morphologies
- * higher extinctions
- * much higher SFRs
- This kind of LINERs, first detected @ $z \sim 0.3$,

confirmed in the local universe (@z = 0.04 - 0.11)

so evolutionary scenario discarded

- Same M*, SFRs, and LAGN at both redshifts
- Along the LAGN = LSF line (co-evolution?)
- Most of them lie on the MS of SF galaxies, with $M^* > 10^{10}Mo$
- Fraction of LINERs on MS depends on AGN luminosity

Povic et al. 2016

1. AGN LINERs

x-rays: 60%-90% AGN, Compton-thickness, comparison with Sey2 properties and variability

MIR spectroscopy: bright LINERs similar to Sey2, torus contribution negligible $L_{BOL} \sim 10^{41}$ erg/s HST H α imaging: outflow/core-halo morphologies BLR in LINERs 1.9 revisited: 5/22 need very broad H α

- 2. Most luminous LINERS @ z=0.04-0.11
- Same M*, SFRs, and LAGN at z=0.3
- Along the LAGN = LSF line

- Most of them lie on the MS of SF galaxies, with $M^{\star} > 10^{10} \textrm{Mo}$

- Fraction of LINERs on MS depending on AGN luminosity