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Abstract—Today’s heterogeneous wireless network (HWN) is a
collection of ubiquitous wireless networking elements (WNEs) that
support diverse functional capabilities and networking purposes.
In such a heterogeneous networking environment, proximity esti-
mation will play a key role for the seamless support of emerging
applications that span from the direct exchange of localized traffic
between homogeneous WNEs (peer-to-peer communications) to
positioning for autonomous systems using location information
from the ubiquitous HWN infrastructure. Since most of the exist-
ing wireless networking technologies enable the direct (or indirect)
estimation of the distances and angles between their WNEs, the
integration of such spatial information is a natural solution for
robustly handling the unprecedented demand for proximity esti-
mation between the myriads of WNEs. In this paper, we develop
an analytical framework that integrates existing knowledge of
the HWN layout to enable proximity estimation between WNE
supporting different radio access technologies (RATs). In this
direction, we derive closed-form expressions for the distance distri-
bution between two tagged WNEs given partial (or full) knowledge
of the HWN topology. The derived expressions enable us to analyze
how different levels of location-awareness affect the performance
of proximity estimation between WNEs that are not necessarily
capable of communicating directly. Optimal strategies for the
deployment of WNEs, as means of maximizing the probability of
successful proximity estimation between two WNEs of interest, are
presented, and useful guidelines for the design of location-aware
proximity estimation in the nowadays HWN are drawn.

Index Terms—Proximity estimation, cluster process, multi-tier
model, heterogeneous wireless networks.

I. INTRODUCTION

OVER the past few years, wireless networks have been
transformed from a set of single-tier operator-deployed

circuit-switched systems, designed to support voice-centric ser-
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vices in wide geographical regions, to a set of multi-tier net-
working clusters of user-installed IP-based wireless networking
elements (WNEs), designed to support heterogeneous commu-
nication capabilities and diverse networking requirements. The
nowadays heterogeneous wireless network (HWN) is composed
by tower-mounted cellular base stations (BSs) for providing
wide area coverage (a.k.a. macrocells), user-deployed small-
sized base stations for boosting the area spectral efficiency of the
licensed spectrum [1] (e.g., femtocells), wireless local area net-
work access points for enabling high-data rate connections to the
Internet over the unlicensed spectrum [2], as well as other low-
cost low-power and battery-operated sensors for monitoring,
measuring, and communicating localized changes in nearby
sink nodes [3], [4] (e.g., energy monitoring in the smart grid).

The spatial distribution of WNEs is neither completely ran-
dom nor subject to planned installation [5]. Instead, most of the
WNEs are typically clustered around certain points of interest,
e.g., a collection of ZigBee sensors around a dual-mode Wi-Fi/
ZigBee sink node, or a set of access points inside a building [6].
This spatial property is increasingly identified to characterize
most of the current state-of-the-art networking systems and
to play a key role to their statistical behavior [5]–[9]. Even
though the clustered installation of WNEs is prominent in the
present HWN, the relative distances and angles between the
WNEs still govern the performance of all functions necessary
for its fundamental operation, e.g., WNE discovery, association,
and power control. In this direction, more and more radio
access technologies (RATs) incorporate a suite of measurement
capabilities to their baseline operation that enable WNEs of
the same RAT to directly (or indirectly) estimate the relative
distance or angle between them, e.g., Timing Difference (TD)
[10], Angle of Arrival (AoA) [10], Time of Arrival (ToA) [11],
Received Signal Strength (RSS) [2], [10], and Radio Frequency
(RF) power level [3]. The employment of such measurements
is the cornerstone of location estimation upon which a WNE
estimates its relative position (distance, angle) with respect to
another target WNE of the same RAT [12].

Location estimation is a key prerequisite for location-aware
decision making [13]. Among others, it can significantly im-
prove the performance of proximity estimation upon which a
tagged WNE (source WNE) identifies its physical proximity
(or connectivity) to another WNE (target WNE). When the two
tagged WNEs support the same RAT, proximity estimation is
typically referred to as peer discovery [14], [15]. Recently, there
has been a surge of interest on proximity estimation between
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Fig. 1. Proximity estimation given spatial information from the heteroge-
neous WNEs.

WNEs that do not necessarily support (or associate with) the
same RAT. Social networking, massive multiplayer online gam-
ing, device-to-device communications, smart metering, first-
responder communications, and unsupervised navigation of
communication-aware robotic nodes are only a few of the
emerging applications motivating this disruptive functionality
[4], [17], [18]. Besides, proximity estimation is the inextricable
prelude for the direct exchange of localized traffic between
nearby WNEs, a.k.a. machine-type communications [19], [20],
and a vital component of the future 5G network where the
estimation of proximity between the myriads of WNEs can be
a limiting performance factor [21].

Fig. 1 provides an illustrative example of a multi-tier clus-
tered HWN. To better comprehend the benefits of proximity
estimation between heterogeneous WNEs, let us consider that
the dual-mode Wi-Fi/ZigBee robot (source WNE) seeks to dis-
cover a malfunctioning ZigBee sensor (target WNE) to replace
it. The strategic integration of spatial information from (as
many as possible) heterogeneous WNEs enables the robot to
navigate towards the malfunctioning sensor, even when they are
separated by a large geographical distance. Such an approach is
(perhaps) the only viable solution to the problem since, on the
one hand, the low-cost sensor is unable to employ GPS-assisted
location estimation and, on the other hand, the frequent use of
the energy-consuming GPS receiver at the (battery-operated)
robot can rapidly deplete its battery.

In this work, we develop an analytical framework that aims at
providing an answer to the relevant and interesting question of
what is the probability that two tagged WNEs are in proximity,
even if the respective nodes are not capable of communicating
directly, e.g., large separation distance, or support of different
RATs. To achieve this, we correlate the locations of the source
and the target WNEs (and estimate their relative distance), by
incorporating existing knowledge for their locations relative to
their upper-tier WNEs in the HWN (up to tier-1). When such
knowledge is not available, we employ stochastic modeling
for estimating the location of a WNE relative to its upper-
tier WNE(s). Although such an approach can be subject to
erroneous positioning measurements or increased uncertainty
(due to the modeling assumptions), it also enables proximity es-
timation between nodes separated by a large geographical dis-
tance or supporting different RATs. Besides, current literature
includes a plethora of practical techniques for employing fine-

grained location estimation and mitigating prominent effects of
the wireless medium [11], [12], [18], [22].

In this direction, we propose an analytical framework that
integrates existing knowledge of the actual HWN layout, e.g.,
clustering relations and relative position measurements, and
employs stochastic modeling to assess the spatial relations
that are not known for the HWN layout. To achieve this, we
propose an M-tier model of networking clusters that captures
the key spatial dependencies between the WNEs of the today’s
HWN. This model enables us to assess the performance of
proximity estimation among two tagged (and not necessarily
homogeneous) WNEs, given partial knowledge of the HWN
layout. Under this model, we show that the probability that the
two tagged WNEs are in proximity is given by the (conditional)
cumulative distribution function (cdf) of their relative distance.
Accordingly, we derive closed-form expressions on the distri-
bution of the relative distance between the two WNEs, given
partial knowledge of the relative distances and angles of their
upper-tier WNEs. The derived expressions enable us to derive
optimal strategies for the deployment of upper-tier WNEs, as
means of maximizing the probability of proximity between
WNEs that reside in lower-tiers. Numerical results conclude
our work, providing valuable insights for the design of location-
aware proximity estimation in HWNs.

A. Related Works

The Poisson point process (PPP) has been recently shown
to be as accurate as the grid model and a good fit for model-
ing the locations of small-sized stations in multi-tier cellular
networks with independent tiers [1]. Besides, the PPP model
has been used to derive near-optimal strategies for random
peer discovery in homogeneous networks [14] and quantify
its performance under the joint impact of channel fading and
random node distribution [15]. Nonetheless, more sophisticated
point process (PP) models have been recently studied to capture
the repulsiveness among macrocell base stations observed in
real-world cellular networks [16]. In parallel, a considerable
amount of works identify that the locations of short-range
WNEs are not completely random, e.g., sensors [8], femtocells
[9], hotspots [5], or more generic WNEs [6], [7], while they
typically form clusters around other WNEs of higher radii.
Different from the aforementioned works, in this paper we
propose an M-tier HWN model that accounts for both the
multi-tiered structure of the present HWN and the clustering
of short-range WNEs around WNEs of higher radii. Under
this model, we develop an analytical framework that enables
flexible integration of existing knowledge for the HWN layout
upon evaluating the probability that two tagged WNEs are in
proximity. Also, different from [14], [15], we integrate existing
knowledge of the HWN layout in the proximity estimation
process, i.e., conditional distributions, and focus on the (more
general) scenario where the two tagged WNEs are not (nec-
essarily) capable of communicating directly, e.g., due to large
separation distance or the support of different RATs.

Location estimation poses several challenges that span from
mitigating (or exploiting) prominent effects of the wireless
medium [11], [13], [18] to employing cooperative localization
[12], [22]. The impact of non line-of-sight (NLOS) propagation
on localization is discussed in [11], where the authors propose
regression algorithms to robustly identify and mitigate it in the



ultra wide-band (UWB) network. The authors in [18], demon-
strate how the spatial predictability of wireless channels can be
exploited, to jointly optimize the communication and motion
plan of robots over predefined trajectories. The performance
of cooperative RF-based localization between homogeneous
WNEs is assessed in [12]. The interplay between the accuracy
and the communication delay upon cooperative localization is
analyzed in [22], where it is shown that standard cooperation
results in the worst possible accuracy/delay trade-off. It follows
that current literature includes a noteworthy amount of studies/
techniques for handling prominent effects of the wireless
medium and employing fine-grained location estimation in
practical network deployments [11], [12], [18], [22]. Under this
viewpoint, instead of analyzing the performance of proximity
estimation in the presence of localization errors, in this work,
we focus on integrating location information from different
WNEs to enable proximity estimation between WNEs that are
not necessarily capable of communicating directly. Besides,
as shown in the numerical results section, the results of our
analysis can be used to identify conditions under which the
localization precision can be relaxed without significantly af-
fecting the performance of proximity estimation. To the best
of our knowledge, this is the first attempt to evaluate the per-
formance of proximity estimation between non-homogeneous
WNEs given partial (or full) knowledge of the HWN layout.

B. Key Contributions

The key contributions of our work are as follows:
• We develop an analytical framework that integrates exist-

ing knowledge from the ubiquitous HWN infrastructure
and employs stochastic modeling, to enable proximity
estimation between WNEs that are not necessarily capa-
ble of communicating directly. The proposed framework
launches the design of innovative proximity services
when network coverage is sparse or when GPS-based lo-
calization is unavailable, e.g., indoor buildings, industrial
areas, mines, underground parking lots.

• We derive closed-form expressions for the conditional
probability distribution of the distance Z between two
(not necessarily homogeneous) WNEs, given partial
knowledge of the spatial relations between their upper-
tier parent WNEs.

• We analyze the performance of proximity estimation
between (not necessarily homogeneous) WNEs given
different levels of knowledge for the HWN layout.

• We derive optimal strategies for the placement of upper-
tier WNEs as means of maximizing the probability that
two WNEs of interest are in proximity.

• We provide valuable insights for the design of location-
aware proximity estimation in HWNs. We show that a
denser tier-1 layout may deteriorate the performance of
proximity estimation. We also show that the accuracy
of AoA measurements can be relaxed in the low-tier
WNEs, without significantly affecting the performance
of proximity estimation.

The remainder of this paper is organized as follows. In
Section II, we present the proposed M-tier model, motivate
our modeling assumptions, and outline the location information
model. In Section III, we derive closed-form expressions for the

distance distribution between two tagged WNEs, conditioned
on different knowledge for the HWN topology. In Section IV,
we present optimal strategies for the deployment of upper-tier
WNEs, whereas in Section V, we investigate the impact of key
system parameters on the performance of proximity estimation
and draw useful guidelines for its design in the future HWN.
Section VI includes our conclusions.

II. SYSTEM MODEL

A. System Description

We consider a fairly general HWN of M tiers, where each
tier consists of WNEs that serve similar communication pur-
poses and support the same RAT. The WNEs belonging to the
m-th tier are referred to as tier-m WNEs (m = 1, . . . , M). We
consider that the tier-1 WNEs form a homogeneous PPP �1
with intensity λ in the Euclidean plane, e.g., medium to long
range base stations, and that, for m > 1, the tier-m WNEs are
clustered around some of the tier-(m − 1) WNEs. We empha-
size on around some of and not all tier-(m − 1) WNEs, since in
practical deployments we do not expect a tier-m cluster around
every tier-(m − 1) WNE. Let �m denote the complete PP of
tier-m WNEs, i.e., the union of all tier-m clusters. Given that
a tier-m cluster is present around the tier-(m − 1) WNE vi ∈
�(m−1), we assume it to be in the form Nm

vi
= Nm

i + vi, where
the point sets Nm

i are independently and identically distributed
(i.i.d) and independent of the parent PP �m−1. All tier-m
clusters (m > 1) are modeled by the Thomas cluster process
(ThCP) as follows [6]: a) the number of points in each tier-m
cluster is Poisson distributed with mean c̄m, and b) the WNEs
in a tier-m cluster are scattered independently according to a
symmetric normal distribution around the parent tier-(m − 1)

WNE with variance σ 2
m.

We now turn our attention to two tagged WNEs, coined
as the source and the target WNEs. We consider that the
source WNE associates with a tier-ms WNE, coined as the
associated WNE of the source WNE, and that the target WNE
associates with a tier-mt WNE, coined as the associated WNE
of the target WNE. The associated WNEs of the source/target
WNEs can belong to different tiers in the HWN and support
different RATs. Moreover, the source and the target WNEs
are not necessarily part of the HWN infrastructure. Consider
for example the spatial distribution of Wi-Fi users around a
Wi-Fi hotspot as compared to that of Wi-Fi sensors around
a Wi-Fi sink node (aggregation point). Even though both the
Wi-Fi users and the Wi-Fi sensors are clustered around a WNE
of the same tier, different properties characterize the spatial
distribution of the end terminals (Wi-Fi users) and the low-tier
network infrastructure (sensors). For this reason, we choose to
model the locations of the source and the target WNEs (relative
to their associated WNEs) explicitly. In particular, we consider
that the source and the target WNEs are scattered indepedently
around their associated WNEs according to the ThCP as well,
with deployment variances σ 2

s and σ 2
t , respectively.

Assumption 1: Let (xu, yu) and (xv, yv) denote the Cartesian
coordinates of a tier-m WNE u ∈ Nm

v and its parent tier-(m − 1)

WNE v ∈ �m−1, respectively. The x and y components of the
relative distance between the tier-m WNE u and its parent tier-
(m − 1) WNE v, i.e., the random variables xm = xu − xv and
ym = yu − yv , are independent.



Assumption 1 states that the knowledge of the relative x-axis
distance between a WNE and its parent WNE does not provide
any information on the relative distance in the y-axis. We
consider the same assumption to hold for the x and y compo-
nents of the relative distance between the source/target WNEs
and their associated WNEs. Lemma 1 readily follows from
Assumption 1.

Lemma 1: The x and y components of the relative distance
between a tier-m WNE u and its parent tier-(m − 1) WNE v,
i.e., the random variables xm = xu − xv and ym = yu − yv , are
independent and normally distributed with variance σ 2

m.
Proof: Can be readily proved by using Assumption 1 and

the methodology in [26]. �
If not fixed and known, the distance D between a tier-1 WNE

and its k-th nearest WNE in �1 follows a generalized Gamma
distribution (k is termed as their neighboring degree).

Lemma 2: The pdf fD(d) of the distance D between a tier-1
WNE and its k-th nearest neighbor in �1 is given by

fD(d) = 2(πλ)k

�[k] d2k−1e−πλd2
, (1)

where �[k] is the Gamma function.
Proof: The proof can be found in [23]. �

B. Location Information Model and Parameters

Since we are interested on analyzing how different levels
of location-awareness affect the performance of proximity es-
timation in HWNs, we assume the presence of a location in-
formation server (LIS) that maintains fundamental knowledge
of the HWN layout. In particular, we consider that the LIS is
aware of the tier-1 intensity λ and the deployment variances
σ 2

m (m > 1), σ 2
s and σ 2

t . Besides, these parameters can be
estimated by overhearing the pilot signals in the HWN, or by
taking into account the typical range of different RATs, e.g.,
femtocells cover up to a few meters and UWB sensors up to a
few centimeters. We further consider that part of the WNEs in
the HWN can push/pull positioning measurements to the LIS
over the common IP layer.

We assume that the LIS is aware of the clustering relations
between the WNEs and capable of identifying the parent WNEs
of the source/target WNEs up to tier-1. For brevity, we refer
to the tier-m WNE in the sequence of parent WNEs for the
source WNE as the tier-m parent of the source WNE (m < ms),
and use a similar terminology for the parents of the target
WNE (m < mt). In practice, the sequence of parent WNEs
can be identified by exploiting knowledge from the installation
phase, or by performing measurements on the TD, ToA, RSS,
or RF power level, of higher-tier WNEs [2], [3], [10], [11].
For example, a dual-mode cellular/Wi-fi hotspot can measure
the RSS from all nearby macrocells and set the one with the
strongest signal as its parent. On the other hand, a sensor node
can identify the nearest multi-RAT sink node by measuring the
RF power level, or counting the number of hops to, all nearby
sink nodes [3].

Aiming to capture the different levels of location-awareness
that the LIS can provide to the two tagged WNEs, we consider it
capable of utilizing spatial information on the relative distance
and angle between two WNEs of interest. In Table I, we list
the spatial information considered in this paper and provide
insights on how it can be estimated in existing systems. Note

TABLE I
LOCATION INFORMATION PARAMETERS (SPATIAL INFORMATION)

that all angles are assumed to be measured with respect to
the same reference direction: from the tier-1 parent of the
target WNE to the tier-1 parent of the source WNE (Fig. 1).
Nonetheless, in most of the 3GPP and IEEE-based systems, the
WNEs perform angle measurements with respect to the (true)
North [2], [10]. To resolve this issue, the LIS can utilize an
additional measurement on the angle between the tier-1 parents
(with respect to the true North) and subtract it from all angle
measurements provided by the low-tier WNEs. In this fashion,
all angles can be readily translated with respect to the desired
reference direction (Fig. 1).

It is critical to note that we do not assume that the LIS has
full knowledge of these measurements. Instead, we investigate
how certain combinations of them affect the performance of
proximity estimation in a HWN. The combined distance and
angle measurements with respect to a target WNE can be
viewed as the relative polar coordinates of the measuring WNE



with respect to the target WNE. In the sequel, we denote by
Ls and Lt the set of parent WNEs of the source and target
WNE, respectively, for which the LIS has knowledge of their
relative polar coordinates with respect to their upper-tier parent
WNEs. The rest of the parent WNEs are denoted by L̄s and L̄t,
respectively. Fig. 1 depicts all parameters and random variables
(RVs) involved in our analysis.

C. Performance Metrics

The performance of proximity estimation is tightly coupled
with the definition of proximity between the WNEs. Aiming
to cover both range-based and connectivity-based approaches
[12], we define the probability of probability (PoP) as follows:

AJ
�= P

[
Z ≤

(
c

Zth

) 1
a

∣∣∣∣∣J
]

, (2)

where J denotes the available knowledge of the HWN topol-
ogy, c is a scaling factor, a is a decay exponent, Z is the distance
between the two tagged WNEs, and Zth is a fixed threshold
that guarantees proximity between the WNEs. Assuming that
c refers to the transmit power at the source WNE (in Watts),
a to the path loss exponent, and Zth the receiver sensitivity at
the target WNE (in Watts), (2) models the connectivity-based
approach, i.e., AJ = P[cZ−a ≥ Zth|J ]. In the contrary, for c =
1 and a = −1, (2) reduces to the range-based approach, i.e.,
AJ = P[Z ≤ Zth|J ]. From (2), it follows that the PoP is given

by the cdf of the distance Z at the point
(

c
Zth

) 1
a
, conditioned on

the available knowledge J . Note that in (2) we do not account
for the impact of network interference. The main reason is
that we focus on proximity estimation between WNEs that are
not necessarily capable of communicating directly, i.e., the two
WNEs can support different RATs.

D. Discussion on the System Model

In this section, we motivate our modeling assumptions and
discuss their role in the subsequent analysis. Even though the
PPP model has been extensively used to study the impact of
the spatial distribution of macrocells on network performance,
current literature includes PP models that better capture the spa-
tial properties of macro-cellular networks, e.g., Determinental
Point Processes (DPP) [5], [16]. In parallel, the authors in [25]
have recently shown that existing results under the PPP model,
can be generalized under other motion-invariant PP models as
well, based on the Asymptotic Deployment Gain concept. In
our work, we derive the distribution of the distance Z between
two tagged WNEs, given location information including either
the inter-site distance D or the neighboring degree k between
their tier-1 parents.

Notably, the derived expressions given knowledge of the
distance D apply under any motion-invariant PP model for
tier-1. This can be readily shown if we consider that the prob-
ability distribution of the distance Z is conditioned on a fixed
value of the distance D. In the contrary, the expressions given
knowledge of the neighboring degree k require the probability
distribution of the distance to the k-th nearest neighbor in tier-1.
To the best of our knowledge, the distance distribution to the
k-th nearest neighbor is available for only a few PP models,

if not only the PPP model. Hence, even though more general
models can be used to model the spatial distribution of tier-1
WNEs, the PPP model is the only tractable model for assessing
the probability distribution of the distance Z given knowledge
of the neighboring degree k. Accordingly, all subsequent deriva-
tions given knowledge of the neighboring degree k are limited
to the PPP model for tier-1, leaving as future work potential
extensions to more general spatial models for tier-1.

Let us now motivate our modeling assumptions on the spatial
distribution of low-tier WNEs. In real-life HWNs, the de-
ployment of short-range WNEs is purpose-driven and strongly
depends on the geographical/demographic data. For example,
hotspots are typically clustered around medium-sized base sta-
tions in a down-town region. Moreover, in sensor networks,
sink nodes are installed close to the center-of-mass of lower-
tier sensors, so as to aggregate traffic from as many as pos-
sible sensors and reduce deployment/operational costs. In the
same direction, the authors in [5] conclude that, compared
to other PP models, the class of poisson cluster processes
(PCPs) better captures the key spatial depedencies in sensor
networks, military platoons, and urban networks with dense
hotspots. Besides, the ThCP belongs to the class of PCPs that
have been extensively used to model the spatial distribution of
sensors [8], femtocells [9], hotspots [5], and generic WNEs [6],
[7], around their upper-tier WNEs. Notably, the ThCP model
is also a good fit for the spatial distribution of remote radio
units (RRU) around centralized processing units (CPUs), a.k.a.
base-band pool, in the cloud—radio access network (C-RAN)
architecture. In light of the above discussion, we consider that
the ThCP model holds some important statistical properties
that make it analytically tractable and practical. Besides, the
proposed multi-tier model of ThCP-distributed clusters enables
us to model the locations of the myriads of WNEs belonging to
different RATs under a common analytical framework.

To better reveal the key parameters governing the proposed
M-tier HWN model, in Fig. 2 we provide an illustrative example
of a three-tier HWN that is in line with our system model.
Note that, as discussed in Section III-A, the proposed M-tier
model does not dictate the presence of a tier-m cluster around
every tier-(m − 1) WNE. On the other hand, the ThCP model
enables flexible modeling of the low-tier clusters by allowing
different cluster populations (cm) and deployment variances
σm per networking tier (m < M). For example, the clustering
relations are more prominent in the HWN of Fig. 2(a), i.e.,
σ1 = 200 m2 and σ1 = 30 m2, as compared to the HWN of
Fig. 2(b), i.e., σ1 = 250 m2 and σ1 = 30 m2. We recognize that
the selection of an appropriate deployment variance σm for m <

M is critical in the proposed M-tier model. Nonetheless, current
literature includes a plethora of well-studied techniques for
fitting sample data to symmetrical normal distributions (such
as the one assumed under the ThCP model), e.g., method of
moments, or maximum likelihood distribution fitting. Besides,
the σm parameter refers to the entire HWN tier and can be
estimated by averaging over meaningful realizations of the
point process, or by utilizing existing reference subsets in the
broader area of interest. Under this viewpoint, in the sequel we
consider that, given the sample data/knowledge discussed in
Section III-B, the LIS can employ existing distribution fitting
techniques to estimate the deployment variance parameters
per tier.



Fig. 2. Spatial relations and nearest-neighbor coverage in the proposed M-tier model.

Interestingly, the subsequent analysis can be readily extended
to the case where the (known) distances/angles measurements
are subject to random Gaussian noise. This follows from the
fact that the locations of WNEs with unknown polar coordinates
(relative to their parent WNEs) are modeled as Gaussian noise
with known variance (ThCP model). Hence, an error analysis
would be equivalent to the introduction of additional tier(s) with
known variance.

III. DISTANCE DISTRIBUTIONS AND PROXIMITY

ESTIMATION IN MULTI-TIER HWNS

In Section III-A, we derive the pdf and the complemen-
tary cdf (ccdf) of the distance Z between two tagged WNEs,
given knowledge of the distance D between their tier-1 parents
and partial knowledge of the relative polar coordinates of the
source/target WNEs (with respect to their associated WNEs),
or the relative polar coordinates of some of their tier-m par-
ent WNEs (with respect to their upper-tier parent WNEs). In
Section III-B, we generalize the derived expressions to the case
where, instead of the distance D, the LIS has knowledge of the
neighboring degree k between the tier-1 parent WNEs. These
expressions are of high practical interest as well, as they enable
proximity estimation even if the LIS has imperfect knowledge
of the distance D. Such a scenario can take place when the
tier-1 WNEs face difficulties in accurately estimating their
inter-site distance, e.g., indoor or unplanned deployment. In
such occassions, the tier-1 WNEs can measure the RSS from
other tier-1 WNEs and inform the LIS. Accordingly, the LIS can
identify their neighboring degree by sorting the measurements
in descending order. Such an approach, surpasses the need
for accurate mapping between the RSS measurements and the
distance D. Besides, the identification of k is less vulnerable to
the effects of the wireless medium.

A. Distance Distribution Between Two WNEs Given at Least
the Inter-Site Distance D

Theorem 1: The conditional pdf fZ|D(z) of the distance Z
between the source and the target WNEs in a multi-tier clus-
tered random HWN, given a) the distance D between their tier-1
parent WNEs and b) the relative polar coordinates of their
parent WNEs in Ls and Lt, is given by

fZ|D(z) = z

σ 2 e
− η2

x +η2
y +z2

2σ2 I0

⎡
⎢⎣z

√
η2

x + η2
y

σ 2

⎤
⎥⎦ , (3)

where I0[x] is the modified Bessel function and the parameters
ηx, ηy, and σ are given by:

ηx = D +
∑
j∈Ls

Sj cos φj −
∑
i∈Lt

Ti cos θi, (4)

ηy =
∑
i∈Lt

Ti sin θi −
∑
j∈Ls

Sj sin φj, (5)

σ 2 =
∑
j∈L̄s

σ 2
j + σ 2

s +
∑
i∈L̄t

σ 2
i + σ 2

t . (6)

The corresponding ccdf F̄Z|D(z) is given by

F̄Z|D(z) = Q1

⎡
⎢⎣
√

η2
x + η2

y

σ
,

z

σ

⎤
⎥⎦ , (7)

where Q1[a, b] is the Marcum-Q function of the first order. If
the relative polar coordinates (Rs, ξs) of the source WNE and/or
(Rt, ξt) of the target WNE are also given, (3) and (7) hold with
ηx, ηy, and σ , as given in Appendix A.



Proof: See Appendix A. �
Theorem 1 can be used to analytically evaluate the probabil-

ity that two WNEs are in proximity, given any combination of
spatial information that includes the distance D. The require-
ment of knowing D can be readily met in practical HWNs,
where the locations of tier-1 WNEs typically remain fixed over
time. The results in Theorem 1 not only allow heterogeneous
WNEs to handle the uncertainty on their proximity, but also
enable them to employ different levels of location-awareness
upon proximity estimation depending on the available spatial
information. Since different communication radii are met for
the different WNEs of a HWN, more accurate estimates on the
relative polar coordinates of low-tier WNEs will be critical only
for applications requiring high proximity estimation accuracy,
e.g., when a physical/visual contact is required. Note that
Theorem 1 also applies when the tier-1 parent WNE of the
two tagged WNEs is common, i.e., D = 0. Under the proposed
HWN model of multi-tier ThCP-based clusters, Corollary 1
calculates the distance between two tagged WNEs when the LIS
has full knowledge of the involved WNEs.

Corollary 1: The distance Z between the source and the tar-
get WNEs in a multi-tier clustered random HWN, given a) the
distance D between their tier-1 parent WNEs, b) the relative
polar coordinates (Sj, φj) of all parent WNEs of the source
WNE (1 < j ≤ ms), c) the relative polar coordinates (Ti, θi) of
all parent WNEs of the target WNE (1 < i ≤ mt), d) the relative
polar coordinates (Rs, ξs) of the source WNE, and e) the relative
polar coordinates (Rt, ξt) of the target WNE, is given by Z =√

(D + Zx)2 + Z2
y where the parameters Zx and Zy are given by:

Zx =
ms∑
j=1

Sj cos φj + Rs cos ξs −
mt∑

i=1

Ti cos θi − Rt cos ξt, (8)

Zy =
mt∑

i=1

Ti sin θi + Rt sin ξt −
ms∑
j=1

Sj cos φj − Rs sin ξs. (9)

Proof: The proof is derived by plugging (20), (21), Rs,x =
Rs cos ξs, Rs,y = Rs sin ξs, Rt,x = Rt cos ξt and Rt,y = Rt sin ξt in
(17) (see Appendix A). �

B. Distance Distribution Between Two WNEs Given at Least
the Neighboring Degree k

Let us now relax the requirement of having perfect knowl-
edge of the distance D and extend our results to the scenario
where the associated BSs can only identify k (more loose
information).

Remark 1: The probability distribution of the distance Z,
given the neighboring degree k between the tier-1 parent WNEs
of the two tagged WNEs, is obtained by integrating out the
distance D ≥ 0 in the results of Theorem 1.

Note that the distance D is part of the ηx parameter in all
scenarios in Theorem 1. Remark 1 can be used to numerically
evaluate the distance distribution between the two WNEs of
interest. In general, the integration of the Modified Bessel
function in (3), or the Marcum-Q function in (7), with respect to
D can not be expressed in closed-form. However, there exist two
special cases where such integration gives closed-form expres-
sions. The first case is when the LIS has knowledge of only the
neighboring degree k, while the second case is when the LIS has

knowledge of k and all parameters listed in Corollary 1 except
from D. For brevity, in the second case we denote the respective
pdf and ccdf by fZ|k,full(z) and F̄Z|k,full(z), respectively.

Theorem 2: The conditional pdf fZ|k(z) of the distance Z be-
tween the source and the target WNEs in a multi-tier clustered
random HWN, given only the neighboring degree k between
their tier-1 parent WNEs, i.e., Ls = ∅ and Lt = ∅, is given by

fZ|k(z) = 1

σ 2

(
εk−1 − 1

εk−1

)k

ze
− πλz2

εk−1

· Lk−1

[
− πλz2

(εk−1 − 1)εk−1

]
, (10)

where Ln[x] is the Laguerre polynomial and εk−1 = 2πλσ 2 +
1. The ccdf F̄Z|k(z) is given by

F̄Z|k(z) = e
− πλz2

εk−1

εk−1

k−1∑
n=0

εn

(
εk−1 − 1

εk−1

)n

· Ln

[
− πλz2

(εk−1 − 1)(εk−1)

]
, (11)

where εn = 1 for all n < k − 1.
Proof: See Appendix B. �

Theorem 3: The conditional pdf fZ|k,full(z) of the distance
Z between the source and the target WNEs in a multi-tier
clustered random HWN, given a) the neighboring degree k be-
tween their tier-1 parent WNEs, b) the relative polar coordinates
(Sj, φj) of all parent WNEs of the source WNE (1 < j ≤ ms),
c) the relative polar coordinates (Ti, θi) of all parent WNEs of
the target WNE (1 < i ≤ mt), d) the relative polar coordinates
(Rs, ξs) of the source WNE, and e) the relative polar coordinates
(Rt, ξt) of the target WNE, is given by (12), shown at the bottom
of the page, where U[x] is the unit step function, d1 = −Zx −√

z2 − Z2
y , d2 = −Zx +

√
z2 − Z2

y , and the parameters Zx and

Zy are given by (8) and (9), respectively. The ccdf F̄Z|k,full(z) is
given by (13), shown at the bottom of the page, where �[k, x]
is the upper partial Gamma Function.

Proof: See Appendix C. �

IV. OPTIMAL NETWORK DEPLOYMENT FOR

LOCATION-AWARE PROXIMITY ESTIMATION

The strategic deployment of WNEs can play a key role
in meeting purpose-driven targets. Consider for example the
strategic deployment of sink nodes in industrial environments
with numerous metering sensors. Even though the installation
of additional sink nodes will enhance system robustness and
improve network performance, e.g., decrease the number of
multi-hop transmissions between the sensors, it will also in-
crease network deployment costs and operational expenses.
Hence, a key challenge is to identify the number of sink
nodes that meet the capital/operational requirements set by the
local operator while enabling effective proximity estimation
among the sensor nodes deployed in a prescribed area. Another
interesting example is the strategic placement of rapidly de-
ployable cells and low-power sensors, as means of maximizing
the probability of locating communication-enabled targets in
emergency situations. A key challenge here is to adjust the



WNE density (or emission range) among the different tiers,
given the available set of equipment, so as to maximize the
probability that a communication-enabled target is identified to
be in close proximity. Besides, maximizing the performance
of proximity estimation between heterogeneous WNEs, e.g.,
an anchor point and a target device with unknown location, is
of paramount importance in automated navigation systems, in-
dustrial installations, and underground facilities, e.g., mines,
public transport platforms, parking buildings.

In light of the above discussion, in this section we derive
useful guidelines on how to adjust the density (or range) of
upper-tier WNEs, so as to maximize the capability of lower-tier
WNEs to effectively estimate their physical proximity. Recall
that, for a fixed area size, the deployment of additional tier-
(m − 1) WNEs reduces the deployment variance in tier-m (σ 2

m).
A reduced deployment variance σ 2

m is also translated to shorter
range for the tier-m WNEs. In the sequel, we identify the con-
ditions under which the deployment variance σ 2 (Theorem 1)
and the tier-1 intensity λ can maximize the probability of prox-
imity between two tagged WNEs. When relevant, we derive
approximate and exact expressions for the optimal σ 2 and λ

parameters. Since in a real-world HWN not all tiers can be
subject to optimization, we decompose the σ 2 parameter into
two components: σ 2 = σ 2

o + σ 2
n , where σ 2

o refers to the sum of
variances from tiers that are subject to optimization and σ 2

n to
the sum of the remaining variances that constitute σ 2.

Theorem 4: Let ζ =
√

η2
x + η2

y

(
c

Zth

)− 1
a

and σ 2 = σ 2
o + σ 2

n ,

where the parameters ηx, ηy, and σ 2 are as in Theorem 1. For
ζ < 1, the probability of proximity AD decreases with σ 2

o . For
ζ > 1, the probability AD attains an optimal operation point
(maximum) if the sum of the variance(s) of interest, i.e., the σ 2

o
parameter, satisfies the following condition:

I0

[
η2

x + η2
y

ζ
(
σ 2

n + σ 2
o

)
]

= ζ I1

[
η2

x + η2
y

ζ
(
σ 2

n + σ 2
o

)
]

. (14)

The optimal variance, denoted by σ 2∗
o , can be approximated by

σ 2∗
o ≈

8(ζ − 1)
(
η2

x + η2
y

)
ζ(3ζ + 1)

− σ 2. (15)

Proof: See Appendix D. �
Theorem 4 can be interpreted as follows. As the sum of the

variances of interest (σ 2
o ) decreases, the distance Z between the

two WNEs tends to be probabilitistically closer to the known

distance that separates the WNEs, i.e., the distance
√

η2
x + η2

y ,

which in turn, for ζ < 1, is lower than the maximum range for

successful proximity estimation, i.e., the parameter
(

c
Zth

)− 1
a
.

On the other hand, when ζ > 1, the minimum (known) distance
between the two WNEs is greater than the maximum range for
successful proximity estimation. Thus, a higher uncertainty on
the locations of the tagged WNEs and their parent WNEs, part
of which are included in σ 2

o , increases the probability that the
two WNEs are in proximity (up to a certain point: the value
of σ 2∗

o ). We now turn our attention to the impact of the tier-1
intensity λ on the PoP Ak,full. Notably, we show that when
the LIS has knowledge of all parameters in Theorem 3, there
exists an optimal tier-1 deployment strategy that maximizes the
performance of location-aware proximity estimation.

Theorem 5: The probability of proximity Ak,full: (a) is equal
to 1 for z ≤ |Zy|, (b) is equal to 0 for z > |Zy| and d2 ≤ 0,
(c) increases with λ for z > |Zy|, d2 > 0, and (d) exhibits an
optimal operation point for z > |Zy|, d2 > 0, d1 > 0, if the tier-
1 intensity is given by

λ∗ =
k ln

d2
1

d2
2

π
(
d2

1 − d2
2

) . (16)

Proof: Properties (a) and (b) follow from (13). Prop-
erty (c) follows from the fact that the derivative of Ak,full =
1 − �[k,πλd2

2]
�[k] with respect to λ, is always positive. Property

(d) follows by differentiating Ak,full = �[k,πλd2
1]−�[k,πλd2

2]
�[k] with

respect to λ and solving
∂Ak,full

∂λ
= 0. �

V. NUMERICAL RESULTS AND DESIGN GUIDELINES

In this section, we analyze the impact of the key system para-
meters on the PoP given partial (or full) knowledge of
the HWN topology. By using the results presented before,
we identify how different levels of location-awareness af-
fect the performance of proximity estimation and derive
useful design guidelines for the today’s HWN. When rel-
evant, we consider the multi-tier HWN layout illustrated
in Fig. 1.

A. On the Impact of the Deployment Variance σ 2 and
the Tier-1 Intensity λ

In this section, we identify optimal strategies for the deploy-
ment of low-tier (m > 1) and tier-1 WNEs, and examine how
partial knowledge of the HWN topology, or inaccurate posi-
tioning measurements, affect the performance of proximity es-
timation. In Fig. 3, we plot the impact of the standard deviation

fZ|k,full(z) =
⎧⎨
⎩

0, z ≤ |Zy|
2(πλ)k z

�[k]
√

z2−Z2
y

(
d2k−1

1 e−πλd2
1 U[d1] + d2k−1

2 e−πλd2
2 U[d2]

)
, z > |Zy| (12)

F̄Z|k,full(z) =

⎧⎪⎨
⎪⎩

0, z ≤ |Zy|(
�[k]−�

[
k,πλd2

1

])
U[d1]+�

[
k,πλd2

2

]
�[k] , z > |Zy| and d2 > 0

1, z > |Zy| and d2 ≤ 0

(13)



Fig. 3. Probability of Proximity given D vs. Deployment Std. Deviation σ .

σ0 on the PoP AD (location information for at least the distance
D). Recall that σ0 is a measure of the uncertainty on the
locations of WNEs around their parent WNEs, for which the
LIS has no knowledge of their relative polar coordinates.

As expected, if the LIS has full knowledge on the coordinates
of the source/ target WNEs and their parent WNEs, proximity
estimation is either successful or not. Given Zth = 100 m,
c = 1, and a = −1, i.e., range-based discovery, the proximity
estimation is successful (AD = 1) if the x-axis and y-axis com-
ponents of the relative distance between the two WNEs, i.e., the
ηx and ηy parameters, satisfy the condition η2

x + η2
y ≤ Z2

th, e.g.,
(ηx = 10 m, ηy = 5 m) and (ηx = 50 m, ηy = 50 m). Interest-
ingly, when the LIS has partial (or inaccurate) knowledge of the
parent WNEs coordinates, the behavior of AD changes with σ0
depending on the ratio of a) the known distance between the two

tagged WNEs
√

η2
x + η2

y , and b) the proximity threshold Zth.

The aforementioned ratio corresponds to ζ in Theorem 4
(range-based discovery). For (ηx = 10 m, ηy = 5 m) and (ηx =
50 m, ηy =50 m), which both result in ζ <1, the probabilityAD
decreases with σ0. This behavior is in line with Theorem 4 and
follows from the fact that a higher σ0 prolongs the tail of the dis-
tance distribution between i) the WNEs with unknown rela-
tive polar coordinates and ii) their parent WNEs. Notably, σ0
dominates the ηx and ηy parameters above a certain point, i.e.,
for σ0 >200 m AD is roughly the same for all ηx and ηy values.
On the other hand, for (ηx = 100 m, ηy = 80 m) and (ηx =
200 m, ηy = 150 m), which both result in ζ > 1, the perfor-
mance of proximity estimation improves with σ0 up to a certain
point. This behavior is due to the fact that for ζ > 1, a small un-
certainty on the coordinates of WNEs with unknown locations
reduces the ‘gap’ between the known distance separating the
two WNEs and the threshold Zth. We note here that, the optimal
σ ∗

0 in Fig. 3 is well approximated by the square root of (15)
(highlighted with a star). The results in Fig. 3 highlight that
the employment of more accurate positioning measurements
is more meaningful when ζ < 1, and that the deployment of
additional low-tier WNEs should be carefully handled when
ζ > 1. These two design guidelines can be the basis for a) op-
timizing the frequency/accuracy of positioning at the WNEs so
as to pertain the signaling/processing overhead at low levels and
b) strategically deploying additional low tier WNEs to improve
the performance of location-aware proximity estimation.

Fig. 4. Probability of Proximity given k vs. Deployment Std. Deviation σ .

Fig. 5. Probability of Proximity given k vs. Tier-1 Intensity λ.

In Fig. 4 we plot the effect of σ on the PoP Ak for various
values of k and λ. As expected, the probability Ak decreases
with k. However, the impact of higher k is less evident when
the WNEs are densely deployed, e.g., for λ = 10−3.5 (one tier-1
WNE per 50 m2), and becomes prominent in lower tier-1 inten-
sities, e.g., for λ = 10−4.8 (one tier-1 WNE per 250 m2). Once
again, σ is shown to dominate the performance of Ak. Notably,
Fig. 4 reveals the existence of optimal deployment strategies for
the low-tier WNEs, even when the LIS is only aware of k, e.g.,
observe the curves for k = 3, 5 and λ = 10−4.3, 10−4.8. Be-
sides, Fig. 4 highlights that even fundamental parameters on the
HWN layout, such as the neighboring degree k, carry enough
information to infer about the outcome of proximity estimation
and optimize its performance. The results in Figs. 3 and 4 also
indicate that the performance of proximity estimation remains
roughly the same when the estimation process for the individual
deployment variances involves an aggregate error of up to a few
meters (for the proximity threshold under scope).

Let us now examine the impact of the tier-1 intensity on
the PoP Ak (Fig. 5). When the LIS has knowledge of only
the neighboring degree k, the probability Ak increases with λ

and decreases with k (blue and cyan plots). This behavior is in
line with intuition, since a higher λ reduces the mean inter-site
distance between the tier-1 WNEs and a higher k increases it.
However, the performance gains from the densification of tier-1
are limited by the uncertainty on the parent WNE locations
(modeled by σ ). For example, when the discovery threshold is



Fig. 6. Probability of Proximity given D vs. Scaling Factor c [W].

lower than the aggregate std. deviation σ , e.g., Zth = 90 m <

σ = 100 m, an increase of the tier-1 intensity λ by two orders
of magnitude leaves the performance of proximity estimation
roughly unaffected (Fig. 5), e.g., for σ = 100 m and λ =
10−3 → 10−1. On the other hand, when the LIS is aware of
k and has full knowledge of the relative polar coordinates of the
tagged WNEs and their parent WNEs (m > 1), there exists an
optimal tier-1 intensity λ∗ that maximizes Ak. This behavior
is in line with Theorem 5 and, notably, the optimal tier-1
intensity λ∗ is computed by (16) (highlighted with a star). When
the tier-1 parent WNEs of the two tagged WNEs are distant
neighbors, e.g., k = 3, the optimal λ∗ shifts to higher values that
statistically reduce the distance between the tier-1 WNEs. In
addition, the performance gains from the densification of tier-1
are shown to be lower when the ηx and ηy components are high
(green vs. red plots). Hence, if not subject to optimization, the
deployment of additional tier-1 WNEs may deteriorate (rather
than improve) the performance of proximity estimation when
the LIS is aware of k (instead of D).

B. On the Impact of Transmit Power

We now turn our attention to the impact of the scaling fac-
tor c (connectivity-based discovery). The proximity threshold
(receiver sensitivity) is set to Zth = −80 dB. Given location
information for at least the distance D, the PoP a) increases with
the transmit power c, b) is inversely proportional to the path loss
exponent a, and c) decreases with the relative distance compo-
nents |ηx| and |ηy| (Fig. 6). When the LIS has full knowledge
on the relative coordinates of the tagged WNEs and their parent
WNEs (dotted lines), the transmit power c for successful prox-
imity estimation can be readily estimated by using Corollary 1
(dotted lines). On the other hand, when the LIS has partial
knowledge of the WNEs coordinates (solid and dashed lines),
an increase of the distance components ηx and ηy is shown to
be more preferable, in terms of transmit power requirements,
compared to a similar increase to the uncertainty on the WNEs
locations (modeled by σ ). This relation can be easily observed
by comparing the red solid, red dashed, and black solid lines.
Thus, when the transmit power is a limiting performance factor
at the source WNE, the utilization of measurements (to lower
the uncertainty on the WNEs locations) can play a key role
in reducing the power transmissions/consumption required for
proximity estimation. An instantiation of such an approach, is

Fig. 7. Probability of Proximity given D vs. Tier-2 Parent Angle φ2 [degrees].

the employment of measurements from the tier-1 and tier-2
parent WNEs of the ZigBee sensor (target WNE) in Fig. 1, as
means of reducing the transmit power for proximity estimation
at the battery-operated robot (source WNE).

C. On the Impact of Angles Between the WNEs

The employment of accurate AoA measurements increases
the complexity and processing requirements for the radio trans-
ceiver. With this in mind, in Fig. 7 we investigate the impact
of the φ2 angle between the tier-3 and the tier-2 parents of the
target WNE on the PoP AD. As expected, when the LIS has
full knowledge on the locations of the tagged WNEs and their
parent WNEs, proximity estimation can be either successful
or not. Notably, there exists a φ2 interval within which the
PoP remains roughly unaffected. This interval is shown to be
expanded, shifted, or compressed, in relation with the rest of
the parameters governing the HWN topology. For example, if
the angle ξt between the target WNE and its parent tier-3 WNE
is equal to −150◦ (instead of 150◦), then the φ2 interval for
successful proximity estimation is compressed and shifted to
the left (red dashed line in Fig. 7). This effect is due the fact
that for θ2 = −150◦ the two tagged WNEs are separated by a
higher distance (Fig. 1). Even more evident is the compression
of the φ2 interval when the angle between the tier-1 and tier-2
parent WNEs of the source WNE is set to θ1 = −60◦ instead
of (θ1 = 60◦) (red dotted line), since the distance between
them is even higher. Such an effect is expected in the today’s
HWN, where the distance between upper-tier WNEs is higher
compared to the one between lower-tier WNEs.

Interestingly, a similar interval exists when the LIS is not
aware of the relative coordinates of the target WNE (green
lines). Notice that the lack of such information prolongs the
tail of the respective φ2 interval with full knowledge in both
directions. When the LIS has no knowledge of the coordinates
(T1, θ1) of the tier-2 parent WNE, the probability AD is shown
to remain roughly unaffected by the values of φ2 (blue and cyan
lines). This relation indicates that the benefits from performing
accurate measurements on the angles between low-tier WNEs
is marginal when the relative coordinates of high-tier parent
WNEs are not known to the LIS.

From the discussion above, we draw two important design
guidelines. Firstly, the accurate estimation of the angle between
low-tier WNEs and their parent WNEs is necessary only When
accurate proximity estimation is required, e.g., the proximity



threshold Zth is low. Secondly, depending on the available
spatial information, the low-tier WNEs can relax the accuracy
of AoA measurements without significantly deteriorating the
performance of proximity estimation. The range of this relax-
ation (error tolerance) can be estimated by exploiting the results
presented in this work.

VI. CONCLUSION

More and more WNEs are capable of estimating their dis-
tance and angle to other nearby WNEs of the same technology.
Integrating such spatial information from the ubiquitous WNEs
of different RATs is a key enabler for fine-grained proximity es-
timation. In this paper, we have analyzed how partial knowledge
of the HWN topology affects the distance distribution between
two not necessarily nearby or homogeneous WNEs. To achieve
this, we have developed an analytical framework that is capable
of correlating the locations of two tagged WNEs to estimate
their relative distance. A key feature of the proposed framework
is the incorporation of existing knowledge for the locations of
the tagged WNEs relative to their upper-tier WNEs in combi-
nation with stochastic modeling when such knowledge is not
available. Even though the use of cluster models typically in-
volves numerical integration, we have shown that the proposed
multi-tier ThCP-based HWN model enables the derivation
of closed-form expressions on the performance of proximity
estimation. Among others, we have shown that even basic
information on the HWN layout carries enough information for
estimating the outcome of proximity estimation and fine-tuning
its performance. Also, we have identified conditions under
which the strategic installation of WNEs, or the use of position-
ing measurements from other WNEs, enhance the performance
of location-aware proximity estimation. Finally, we have shown
that, depending on the availability of spatial information, the
low-tier WNEs can relax the accuracy of AoA measurements
while pertaining a PoP target.

APPENDIX

A. Proof of Theorem 1

Let Ti,x and Ti,y denote the x and y-axis components (projec-
tions), respectively, of the relative distance between the tier-i
and tier-(i − 1) parent WNEs of the target WNE as shown in
Fig. 1 (i ≤ mt). In addition, let Sj,x and Sj,y denote the respective
x and y-axis components of the relative distance between the
tier-j and tier-(j − 1) parent WNEs of the source WNE (j ≤ ms).
Then, the distance Z between the two tagged WNE is given by
(17), shown at the bottom of the page.

For i ∈ Lt, where Lt is the set of parent WNEs of the target
WNE for which the relative polar coordinates are known, the x
and y-axis components of the relative distance Ti between the
tier-i and the tier-(i − 1) parent WNEs of the target WNE can
be readily computed by

Ti,x = Ti cos θi and Ti,y = Ti sin θi, for i ∈ Lt. (20)

Similarly, for j ∈ Ls, where Ls is the set of parent WNEs of
the source WNE for which the relative polar coordinates are
known, the x and y-axis components of the relative distance

Sj between the tier-j and the tier-(j − 1) parent WNEs of the
source WNE are given by

Sj,x = Sj cos φj and Sj,y = Sj sin φj, for j ∈ Ls (21)

If the relative polar coordinates (Rt, ξt) of the target WNE
are known to the LIS, then the x and y-axis components of the
distance Rt between the target WNE and its associated WNE are
given by Rt,x = Rt cos ξt and Rt,y = Rt sin ξt, respectively. On
the other hand, if the relative polar coordinates (Rs, ξs) of the
source WNE are known, then the x and y-axis components of the
distance Rs between the source WNE and its associated WNE
are given by Rs,x = Rs cos ξs and Rs,y = Rs sin ξs, respectively.
Let us now define two RVs Qx and Qy as in (18) and (19), shown
at the bottom of the page.

By combining (17)–(19) it can be readily shown that Z =√
Q2

x + Q2
y . Let us assume that the relative polar coordinates

of the source and target WNEs are not known to the LIS. By
taking a closer look to (18) it can be seen that the RV Qx is
composed by i) a sum of fixed and known parameters, i.e., the
sum (D + ∑

j∈Ls
Sj cos φj − ∑

i∈Lt
Ti cos θi), and ii) a sum of

unknown RVs, i.e., the sum (
∑

j∈L̄s
Sj,x + Rs,x − ∑

i∈L̄t
Ti,x −

Rt,x). From Lemma 1, the x component of the relative distances
Ti and Sj, i.e., the RVs Ti,x and Sj,x, are normally distributed
with variance σ 2

i and σ 2
j , respectively. Under the assumption of

independence of the x and y distance components between the
source/target WNEs and their associated WNEs (Section II), it
can be proved that the RVs Rs,x and Rt,x are normally distributed
with variance σ 2

s and σ 2
t , respectively. Note that this property is

an artefact of the proposed HWN model that consists of multi-
tier ThCP-based clusters.

On the other hand, the RVs Ti,x, Sj,x, Rs,x and Rt,x are
mutually independent. The independence follows by construc-
tion, since i) all tier-m clusters are i.i.d. and independent of
the parent tier-(m − 1) PP �m−1, and ii) the locations of the
two tagged WNEs are mutually independent and independent
from the locations of other WNEs (Section II). Now, since the
RV Qx is composed by a fixed sum and a sum of mutually
independent and normally distributed RVs (18), it can be proved
that it is normally distributed with mean ηx = (D + ∑

j∈Ls

Sj cos φj−∑
i∈Lt

Ti cos θi) and variance σ 2 =(
∑

j∈L̄s
σ 2

j +σ 2
s +∑

i∈L̄t
σ 2

i + σ 2
t ), i.e., Qx ∼ N (ηx, σ

2).
By following a similar approach, it can be shown that

Qy is normally distributed with mean ηy = (
∑

i∈Lt
Ti sin θi −∑

j∈Ls
Sj sin φj) and variance σ 2. Furthermore, Qy and Qx are

independent, since all RVs that constitute Qy (y-axis compo-
nents) are independent of the ones that constitute Qx (x-axis
components). The independence follows by Lemma 1 and by
using the facts that i) the x and y components of the relative
distance between the source/target WNEs and their associated
WNEs are independent, ii) all tier-m clusters are i.i.d. and
independent of the parent tier-(m − 1) PP �m−1, and iii) the
locations of the two tagged WNEs are mutually independent
and independent of the locations of other WNEs (Section II).
Since the RVs Qx ∼ N (ηx, σ

2) and Qy ∼ N (ηy, σ
2) are inde-

pendent, their joint density is given by

fQx,Qy(x, y) = 1

2πσ 2 e
− (x−ηx)2+(y−ηy)2

2σ2 . (22)



Now, let �Az denote the region of the plane such that z <√
x2 + y2 < z + dz. Then, the region �Az is a circular ring with

inner radius z and thickness dz [27]. By working in polar coor-
dinates, i.e., x = z cos ξ , y = z sin ξ , and dxdy = zdzdξ , we get

fZ|D(z)dz =
∫

�Az

fQx,Qy(x, y)dxdy (23)

= 1

2πσ 2

∫ 2π

0
e
− (z cos ξ−ηx)2+(z sin ξ−ηy)2

2σ2 zdzdξ. (24)

By eliminating dz from both sides in (24) and solving the
integral, we finally reach (3). We now derive the conditional
ccdf F̄Z|D(z) as follows:

F̄Z|D(z) =
∫ ∞

z
fZ|D(x)dx (25)

=
∫ ∞

z

x

σ 2 e
− η2

x +η2
y +x2

2σ2 I0

⎡
⎢⎣x

√
η2

x + η2
y

σ 2

⎤
⎥⎦ dx (26)

= Q1

⎡
⎢⎣
√

η2
x + η2

y

σ
,

z

σ

⎤
⎥⎦ , (27)

where QM[a, b] is the Marcum-Q function [28],
(25) is derived by substituting (3), and (27) by the
definition of the Marcum-Q function, i.e., QM[a, b] =∫ ∞

b x
( x

a

)M−1
e− x2+a2

2 IM−1[ax]dx, where IM−1[x] is the
modified Bessel function of the first kind and (M − 1)-th
order. Using a similar methodology, it can be shown that (3),
(27) also apply when the LIS has additional knowledge of
the relative polar coordinates of the source WNE and/or the
target WNE. However, the parameters ηx, ηy, and σ 2 should be
replaced as follows. If the relative polar coordinates (Rs, ξs) of
the source WNE are available, then

ηx = D +
∑
j∈Ls

Sj cos φj + Rs cos ξs −
∑
i∈Lt

Ti cos θi, (28)

ηy =
∑
i∈Lt

Ti sin θi −
∑
j∈Ls

Sj sin φj − Rs sin ξs, (29)

σ 2 =
∑
j∈L̄s

σ 2
j +

∑
i∈L̄t

σ 2
i + σ 2

t . (30)

If the relative polar coordinates (Rt, ξt) of the target WNE
are available, then

ηx = D +
∑
j∈Ls

Sj cos φj −
∑
i∈Lt

Ti cos θi − Rt cos ξt, (31)

ηy =
∑
i∈Lt

Ti sin θi + Rt sin ξt −
∑
j∈Ls

Sj sin φj, (32)

σ 2 =
∑
j∈L̄s

σ 2
j + σ 2

s +
∑
i∈L̄t

σ 2
i . (33)

If the relative polar coordinates of both the source and the
target WNEs are available, then

ηx = D +
∑
j∈Ls

Sj cos φj + Rs cos ξs −
∑
i∈Lt

Ti cos θi − Rt cos ξt,

(34)

ηy =
∑
i∈Lt

Ti sin θi + Rt sin ξt −
∑
j∈Ls

Sj sin φj − Rs sin ξs, (35)

σ 2 =
∑
j∈L̄s

σ 2
j +

∑
i∈L̄t

σ 2
i . (36)

B. Proof of Theorem 2

Provided that Ls = ∅ and Lt = ∅, the parameters in (4)–(6)
are given by ηx = D, ηy = 0, and

σ =
ms∑
j=1

σ 2
j + σ 2

s +
mt∑

i=1

σ 2
i + σ 2

t . (37)

Under this viewpoint, the conditional pdf fZ|k(z) is derived as
follows (Remark 1).

fZ|k(z) =
∫ ∞

0
P[Z|D = x]P[D = x|k]dx (38)

=
∫ ∞

0

z

σ 2 e
− x2+z2

2σ2 I0

[ zx

σ 2

]
· 2(πλB)k

�[k] x2k−1e−πλBx2
dx

(39)

= 2(πλB)k

σ 2�[n] ze
− z2

2σ2 ·
∫ ∞

0
x2n−1e

− (2πλσ2+1)x2

2σ2 I0

[ zx

σ 2

]
dx

(40)

= 1

σ 2

(
2πλσ 2

2πλσ 2 + 1

)k

ze
− πλz2

2πλσ2+1

· Lk−1

[
− z2

2σ 2(2πλσ 2 + 1)

]
(41)

Z =

√√√√√
⎛
⎝D +

ms∑
j=1

Sj,x + Rs,x −
mt∑

i=1

Ti,x − Rt,x

⎞
⎠

2

+
⎛
⎝ mt∑

i=1

Ti,y + Rt,y −
ms∑
j=1

Sj,y − Rs,y

⎞
⎠

2

. (17)

Qx = D +
∑
j∈Ls

Sj cos φj +
∑
j∈L̄s

Sj,x + Rs,x −
∑
i∈Lt

Ti cos θi +
∑
i∈L̄t

Ti,x − Rt,x (18)

Qy =
∑
i∈Lt

Ti sin θi +
∑
i∈L̄t

Ti,y + Rt,y −
∑
j∈Ls

Sj sin φj −
∑
j∈L̄s

Sj,y − Rs,y. (19)



where Ln[z] is the Laguerre polynomial, (39) is derived by
substituting (1) and (3), (40) by rearranging (39), and (41) by
solving the integral using [27, pp. 303] and elaborating with
the result. We now turn our attention to the derivation of the
respective ccdf F̄Z|k(z).

F̄Z|k(z) =
∫ ∞

y=0
fD|k(y)F̄Z|D=y(x)dy (42)

=
∫ ∞

y=0

(
2(πλ)k

�[k] y2k−1e−πλy2
)(

Q1

[ y

σ
,

z

σ

])
dy

(43)

= e
− πλz2

2πλσ2+1

2πλσ 2 + 1

k−1∑
n=0

εn

(
2πλσ 2

2πλσ 2 + 1

)n

· Ln

[
− z2

2σ 2(2πλσ 2 + 1)

]
, (44)

where (43) follows from the law of total probability, (43)
by substituting (27) and (1), and (45) by solving the integral
using [29] for εn = 1, ∀n < k − 1 and εk−1 = 2πλσ 2 + 1. The
expressions in (10) and (11) are derived by plugging εk−1 =
2πλσ 2 + 1 in (41) and (44), respectively.

C. Proof of Theorem 3

From Corollary 1, the distance Z is given by

z = g(Dn)
�=

√
(D + Zx)2 + Z2

y , (45)

where the parameters Zx and Zy are fixed and equal to (8) and
(9), respectively. By taking a closer look to (45) it follows
that the distance Z is always greater or equal to |Zy|. Thus,
fZ|k,full = 0 for Z < |Zy|. On the other hand, for Z ≥ |Zy|, the
distance Z is a function of a single RV (the distance D) with
known probability distribution (1). Therefore, for z ≥ |Zy| the
conditional pdf fZ|k,full can be derived as follows [26, pp. 93]:

fZ|k,full(z) = fD(d1)

|g′(d2)| + fD(d2)

|g′(d2)| , (46)

where d1 = −Zx −
√

z2 − Z2
y and d2 = −Zx +

√
z2 − Z2

y are

the real roots of (45), and g′(d) is the derivative of g(d) in
(45). Substituting g′(d) = d+Zx

z in (46), yields (12). Note that
the unit step function U[x] is used to ensure that the distance
D is strictly positive. The ccdf F̄Z|k,full(z) for z ≥ Zy is derived

by substituting d1 and d2 in (12), and integrating with respect
to z we reach to (47) and (48), shown at the bottom of the
page, where in (48) we have employed the change of variables

v = −Zx −
√

x2 − Z2
y and g = −Zx +

√
y2 − Z2

y . The ccdf in

(13) is derived by solving the integrals in (49) and substituting

d1 = −Zx −
√

z2 − Z2
y and d2 = −Zx +

√
z2 − Z2

y .

D. Proof of Theorem 4

By combining Lemma 3 and Theorem 1, it can be shown that

the PoP AD is given by AD = 1 − Q1

[√
η2

x+η2
y

σ
, 1

σ

(
c

Zth

) 1
a

]
.

Let us now define the ratio ζ =
√

η2
x + η2

y

(
c

Zth

)− 1
a
, which

corresponds to the ratio of the arguments in the Marcum-Q
function. By using the transform in [29, (4.16)] for ζ < 1, we
re-write the probability AD as follows:

AD = 1 − 1

2π

∫ π

−π

(1 + ζ sin θ)e
−

(
c

Zth

) 2
a

2σ2 (1+2ζ sin θ+ζ 2)

1 + 2ζ sin θ + ζ 2 dθ.

(49)

By plugging σ 2 = σ 2
n + σ 2

o in (49) and differentiating with
respect to σ 2

o , we get:

∂AD

∂σ 2
o

= −
(

c
Zth

) 2
a

4π
(
σ 2

n + σ 2
o

)2

·
∫ π

−π

(1 + ζ sin θ)e
−

(
c

Zth

) 2
a

2(σ2
n +σ2

o )
(1+2ζ sin θ+ζ 2)

dθ (50)

=
(

c
Zth

) 2
a

2
(
σ 2

n + σ 2
o

)2
e
−

(
c

Zth

) 2
a

2(σ2
n +σ2

o )
(1+z2)

·

⎛
⎜⎜⎝ζ I1

⎡
⎢⎢⎣ζ

(
c

Zth

) 2
a

σ 2
n + σ 2

o

⎤
⎥⎥⎦ − I0

⎡
⎢⎢⎣ζ

(
c

Zth

) 2
a

σ 2
n + σ 2

o

⎤
⎥⎥⎦
⎞
⎟⎟⎠ . (51)

Since all parameters in (51) are positive real and by definition
I0[x] > I1[x] ∀x > 0, the sign of (51) for ζ < 1 is always neg-
ative. Therefore, the PoP AD decreases with σ 2

o when ζ < 1.

F̄Z|k,full(z) =
∫ ∞

z

2(πλ)k

�[k]
x√

x2 − Z2
y

(
−Zx −

√
x2 − Z2

y

)2k−1
U
[(

−Zx −
√

x2 − Z2
y

)]

e
πλ

(
−Zx−

√
x2−Z2

y

)2 dx

+
∫ ∞

z

2(πλ)n

�[n]
y√

y2 − Z2
y

(
−Zx +

√
y2 − Z2

y

)2k−1
U
[(

−Zx +
√

y2 − Z2
y

)]

e
πλ

(
−Zx+

√
y2−Z2

y

)2 dy (47)

= −
∫ −Zx−

√
z2−Z2

y

−∞
2(πλ)k

�[k]
v2k−1U[v]

eπλv2 dv +
∫ ∞

−Zx+
√

z2−Z2
y

2(πλ)k

�[k]
g2k−1U[g]

eπλg2 dg, (48)



We now examine the monotonicity of AD when ζ > 1. For
notational convenience, we use the parameter q = 1

ζ
. By using

the transform in [29, (4.19)], the probability AD can be re-
written as follows:

AD = − 1

2π

∫ π

−π

(q2 + q sin θ)e
− η2

x +η2
y

2(σ2
n +σ2

o )
(1+2q sinθ+q2)

1 + 2q sin θ + q2 dθ.

(52)

By following a similar methodology with the one used for
(52), we reach to

∂AD

∂σ 2
o

=
q
(
η2

x + η2
y

)
2
(
σ 2

n + σ 2
o

)2
e
− (1+q2)(η2

x +η2
y)

2(σ2
n +σ2

o )

·
⎛
⎝I1

⎡
⎣q

(
η2

x + η2
y

)
σ 2

n + σ 2
o

⎤
⎦ − qI0

⎡
⎣q

(
η2

x + η2
y

)
σ 2

n + σ 2
o

⎤
⎦
⎞
⎠ . (53)

Since all parameters in (53) are positive real, I0[x] > I1[x]
∀x > 0, and q = 1

ζ
< 1, there exists an optimal variance pa-

rameter σ 2∗
o for which the weighted difference of the Bessel

functions is equal to zero. The optimal σ 2∗
o satisfies ∂AD

∂σ 2∗
o

= 0,
which is equivalent to (14). By employing the approximations

I0[x] = ex√
2πx

(
1 + 1

8x

)
and I1[x] = ex√

2πx

(
1 − 3

8x

)
in (14), we

reach to (15).
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