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Abstract—Multi-Carrier (MC) modulation schemes like Or-
thogonal Frequency Division Multiplexing (OFDM) are highly
sensitive to Phase Noise (PN). In the case of air interfaces
operating in higher frequencies, e.g. the range between 6 and
100 GHz frequently called millimeter wave (mmWave), the PN
generated by the local oscillators is even more accentuated.
Alternative MC systems are being considered for future mmWave
wireless communications. In this contribution, we analytically
derive expressions for an upper bound for the interference power
generated by the PN in OFDM, DFT-Spread-OFDM and Filter
Bank Multi-Carrier (FBMC). Then, we evaluate the performance
degradation due to that imperfection in terms of coded and
uncoded BER.

I. INTRODUCTION

For the next generation mobile broadband standard (aka.
5G) higher carrier frequencies are being considered [1]. These
frequencies are in the range of 6 to 100 GHz. In general,
this frequency range is referred to as millimeter wave, even
though it contains the lower centimeter wave range. The major
advantage is the large available bandwidths in this spectrum
range.

LTE, LTE-Advanced (aka. 4G) and WiFi systems oper-
ating below 6 GHz employ CP-OFDM based MC modula-
tion schemes. Other MC schemes like FBMC are currently
being considered for future wireless standards. In general,
MC modulation schemes have the advantage of improved
performance in frequency selective fading environment, es-
pecially if combined with channel coding. In a multi-user
environment, frequency dependent scheduling and resource
allocation help leveraging the best parts of the spectrum for
every user. This features come at the price of an increased
sensitivity to synchronization errors and nonlinearities of the
Radio Frequency (RF) front-end. For example, MC systems
are more sensitive to RF impairments like PN, because it
destroys the orthogonality between subcarriers and introduces
Inter-Carrier Interference (ICI).

The PN encountered in a Voltage Controlled Oscilator
(VCO) increases with the oscillating frequency [2]. Additional
quality of the VCO increases the power consumption. Today
even low-cost low-power CMOS VCOs for mmWave consume
a considerable amount of power [3]. Therefore, it will not
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Fig. 1. Phase noise equivalent baseband model.

be possible to design mmWave VCOs with a similar power
consumption and PN property as VCOs used in LTE devices
today.

In this paper, we analyze the sensitivity to PN of conven-
tional OFDM, DFT-S-OFDM and FBMC by considering PN
characteristics of existing VCOs for mmWave at 60 GHz. We
first derive analytical formulas for the power of the ICI due
to PN and then numerically evaluate the performance of the
MC systems.

II. INTER-CARRIER INTERFERENCE DUE TO PHASE NOISE

Fig. 1 shows the equivalent baseband model of a SISO
system with AWGN channel and phase noise at the receiver.
The phase noise is a random phase rotation applied in the time
domain. From Fourier analysis, it is known that a phase shift
in time domain represents a frequency shift in the frequency
domain. Therefore, it can be shown that phase noise generates
many frequency shifted replicas of the original signal spectrum
that are then added to the original signal. This generates ICI in
a MC system, especially if it has a poor frequency localization,
like conventional OFDM.

Based on this observation, we derive a lower bound on the
ICI power and, therefore, an upper bound on the achievable
SINR without PN compensation, which represents a best case
scenario. First, the contribution to the desired signal of each
frequency offset is calculated. Afterwards, this contribution is
integrated over the Power Spectral Density (PSD) of the PN.
For this calculation, we assume that all contributions add up
coherently, therefore, the derived formula is a lower bound of
the interference power. The PN of an oscillator is measured
in dBc, where the reference is the desired carrier frequency.
To predict the performance of an OFDM, DFT-s-OFDM and
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FBMC system in the presence of phase noise, we calculate
the ICI power from the measured phase noise power spectral
density.

In an MC system the received symbol Rk,` after the
demodulation on subcarrier k and on symbol ` can be defined
as

Rk,` = ejφ`(ε)α(ε)Hk,`Xk,` + Ik,`(ε) +Wk,`. (1)

Here Xk,`, Hk,`, Wk,` and Ik,`(ε) represent the transmitted
signal, the channel, the AWGN and the interference cause by
the frequency offset. The coefficient α(ε) represents the atten-
uation of the signal and the frequency offset ε is normalized
by the subcarrier spacing.

For the following derivations, we assume that the effects
of the channel Hk,` = 1 are perfectly compensated by
channel estimation and ZF-equalization for all k and `, i.e. for
mildly frequency selective channels. This will also include the
common phase error ejφ`(ε). We can then reduce (1) to

Rk,` = α(ε)Xk,` + Ik,`(ε) +Wk,`. (2)

The PSD of an FBMC transmit signal with N subcarriers,
subcarrier spacing ∆f and overlapping factor M is defined
for each subcarrier as

xTx(f) =

M−1∑
m=−(M−1)

gm
sin
(
π
(
fM
∆f −m

))
sin
(
π
(
fM
∆f −m

)
/ (MN)

)
MN

,

(3)
where the gms are the filter coefficients in the frequency
domain and f the frequency variable. Here, we are only
interested in the shape of the PSD of the transmitted signal,
therefore, this formula does not contain the symbols transmit-
ted in each subcarriers, which are assumed to be uni-modular
constants.

The receive signal is filtered by the discrete time receive
filter GRx(f) defined as

GRx(f) =

M−1∑
m=−(M−1)

gmδ

(
f − m∆f

M

)
, (4)

where δ (f) is a Dirac impulse. The signal attenuation α(ε)
due to a frequency offset ε can be calculated as

α(ε) =

∞∫
−∞

xTx(f + ε∆f)GRx(f)df. (5)

If we plug-in the definition of GRx(f) from (4) into (5), the
integral is reduced to the sum

α(ε) =

M−1∑
mRx=−(M−1)

gmRxxTx

(
mRx∆f

M
+ ε∆f

)
. (6)

By plugging (3) into (6) we get (7). For the special case of
a conventional OFDM system, M is equal to one and (7) is
reduced to

α(ε) =
sin (πε)

sin (πε/N))N
, (8)

which is the same result presented in [4]. It is important
to keep in mind that, without frequency offset there is no
attenuation of the signal, i.e. α(0) = 1.

In general, the phase noise is described by its PSD S(ε).
Two examples showing typical normalized PN PSDs are
shown in Fig. 2. By integrating over the contributions at each
frequency offset, we can calculate the upper bound of the
signal attenuation A after demodulation and in the presence
of phase noise. A is then given by

A ≤ Pfc + 2

εmax∫
0

α2(ε)S(ε)dε, (9)

where Pfc is the power at the carrier frequency. This cal-
culation assumes that the contributions to the desired signal
from each frequency offset add up coherently. Therefore, the
presented formula is an upper bound of the signal power and,
the more components contribute to it, the looser this bound
will get. Since the phase noise is assumed to be symmetric, it
is sufficient to integrate from 0 to εmax and multiply the result
by two. The value of S(ε) at ε = 0 is zero, because this is
the desired signal and, consequently, not part of the PSD of
the PN. As the PN is a random phase rotation of the signal, it
does not change the power of the signal. Because the PSD of
the phase noise is usually measured in relative power levels
(dBc), we need to convert them to absolute power levels. First,
we need to calculate the integrated PN power relative to the
carrier frequency power

Pr = 2

εmax∫
0

Sr(ε)df. (10)

The total power should stay constant and, as a consequence,
the sum of the power at the carrier frequency Pfc plus the
power of the PN P must be equal to one, i.e.

Pfc + P = 1. (11)

The term P can be replaced by PrPfc. Then (11) can be
reformulated to

Pfc =
1

1 + Pr
. (12)

With this result we can calculate the PSD S(ε) out of the
measured relative PSD Sr(ε). Now, we have obtained all
necessary components of (9), which changes to

A ≤ Pfc

1 + 2

εmax∫
0

α2(ε)Sr(ε)dε

 (13)

after considering the relative PSD of the PN.
If we assume that the transmit signal power is σ2

s , the signal
and noise power after demodulation are bounded by

PS ≤ Aσ2
s and PI ≥ (1−A)σ2

s . (14)

The SIR represents the maximum system SINR in the high
SNR regime, if the system is limited by the PN, i.e.

SIR ≤ PS
PI
. (15)



α(ε) =

M−1∑
mRx=−(M−1)

gmRx

M−1∑
mTx=−(M−1)

gmTx

sin (π (mRx −mTx + εM))

sin (π (mRx −mTx + εM) / (MN))MN
. (7)
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Fig. 2. Phase noise PSD measurements.

Now, we compare the results of the theoretically calculated
interference power to the results of a Monte Carlo simulation,
where the PN is modeled according to the equivalent baseband
model in Fig. 1. The phase noise is generated by taking
Gaussian noise and then shaping it in the frequency domain
according to the PSD of the phase noise. Afterwards, we
convert it to the time domain. This generation process has
the disadvantage that, if the linear spacing of the frequency
domain samples become too large, it will not be possible to
completely cover the shape of the PSD. This means that the
model becomes less and less accurate the higher the subcarrier
spacing is.

The PN PSDs are taken from the examples of oscillators at
60 GHz in Fig. 2. The filter described in [5] with M equal to
2 is used in the FBMC system. In the simulations, the inter-
carrier interference is calculated in a system without AWGN.
In this high SNR regime, the system performance is limited by
the interference power, as a consequence, the SIR is shown and
compared to the theoretically calculated SIR. The results are
shown in Figs. 3 and 4 for the same PN PSDs with different
carrier spacing ∆f . We can see that the PN power close to
the carrier frequency is higher for measurement 1, but it starts
to decrease rapidly after 200 kHz. In contrast, the PN power
of measurement 2 remains almost constant until 1 MHz. This
is also reflected in the simulated and calculated phase noise
power in Figs. 3 and 4 for different subcarrier spacings. We can
clearly see that for measurement 1, the SIR is much smaller
if the carrier spacing is small. But as soon as the subcarrier
spacing reaches 0.5 MHz, the performance is better compared
to the phase noise in measurement 2.

In Figs. 3 and 4, for a certain range of subcarrier-spacing,
the bound is tight to the simulated results. Another reason for
the increasing gap between the simulation and the analytical
upper bound is the model of the colored noise. The higher the
sampling frequency and, therefore, the subcarrier spacing ∆f ,
the more problematic it is to model the colored noise by a
filtered AWGN noise. Overall, we can see that FBMC offers
a similar robustness towards PN compared to CP-OFDM for
the setup evaluated.
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Fig. 3. SIR phase noise with different subcarrier spacings, PN PSD 1
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Fig. 4. SIR phase noise with different subcarrier spacings, PN PSD 2

III. CODED AND UNCODED BER RESULTS

In a MC system with PN, the interference does not neces-
sarily follow a Gaussian distribution. For OFDM, the authors
of [6] showed that the probability density function (PDF) of
the ICI in an OFDM system has a much stronger tail than
in the Gaussian distribution. Due to the fact that in FBMC
the symbols are spread over a longer period of time, there
are more independent symbols contributing to the ICI. This
means that according to the Central Limit Theorem (CLT) [7],
the PDF of the ICI converges closer to a Gaussian distribution,
therefore, the tail of the PDF is similar to the one of a Gaussian



distribution. A detailed investigation of this matter is left for
a future contribution.

The symbols on adjacent subcarriers are assumed to be
uncorrelated, so in the case of OFDM and FBMC the ICI
is also uncorrelated. On the other hand, in the case of DFT-s-
OFDM, the signals on adjacent subcarriers are correlated and
therefore the interference is correlated. The additional DFT
despreading operation provokes a random phase shift of the
signal and additional noise. This phase shift depends on the
actual transmitted symbol and the effect of PN on DFT-s-
OFDM is, consequently, similar to the effect on a single carrier
modulation with additional interference.

The difference between the modulation schemes can be
seen in Fig. 5, where the uncoded BER performance of the
three different systems with and without PN are shown. We
have used in the simulations a 16-QAM constellation and a
subcarrier spacing of ∆f = 0.75 MHz. We can conclude that
the performance of FBMC, OFDM and DFT-s-OFDM over
a AWGN channel is the same and, therefore, from now on
only the case of OFDM without PN is shown as a reference.
We can clearly see that at the point where the PN becomes
the dominant source of error, the BER performance of FBMC
further improves, while the performance of OFDM and DFT-
s-OFDM starts to saturate. In comparison with OFDM, the
DFT-s-OFDM performance is worse in terms of uncoded BER.
This is because the phase rotation brings the symbol closer to
the decision border than a Gaussian noise would do.

The differences between FBMC, OFDM and DFT-s-OFDM
can be more clearly seen in the coded BER evaluation. We
have used here the turbo code with rate matching defined in
the LTE standard [8]. Moreover, we have employed subcarrier
spacing of ∆f =0.75 MHz and 1.5 MHz with the PN
measurement 2 shown in Fig. 2.

Figs. 6 and 7 show the coded BER performance
for 64-QAM with various code rates. The coding rates
{0.36, 0.43, 0.50, 0.59, 0.66, 0.74} were used. We can see that,
as we increase the code rate, the additional interference
introduced by the PN has a larger impact on the coded BER
performance. As the code rate gets higher, the performance
gain of FBMC becomes more and more visible. In fact,
for high coding rates in the 64-QAM case, the coded BER
performances of FBMC shows no error floor above 10−4.
In the case of OFDM and DFT-s-OFDM, this error floor
is relatively high. There are two reasons why FBMC has a
substantially better performance than OFDM for high code
rates. First, as shown in Fig. 5, at the SNR range where the
uncoded BER performance is dominated by the PN, FBMC
has a lower BER. The second reason is that, if a bit error
occurs, FBMC has a much lower probability of surpassing the
decision by a very large amount, which OFDM has due to its
thicker tail in the ICI CDF shown in Fig. 8.

IV. CONCLUSION

We have shown that phase noise has a severe impact on the
performance of multicarrier systems. Especially in the high
SNR regime, where the performance will be limited by the ICI.
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We derived a method to analytically calculate an upper bound
of the ICI power and compared it with Monte Carlo based
simulations. In the case of smaller subcarrier spacing, the
results agree quite well. Therefore, this calculation method can
be used to evaluate the performance impact of the subcarrier
spacing in an MC system.

Since choosing a subcarrier spacing has a strong impact
on the behavior of the system, in many ways this enables a
fast theoretical evaluation of the performance depending on the
PN. Finally, we have showed that the performance of FBMC is
only significantly superior to OFDM and DFT-s-OFDM, if the
coding rate is relatively high. It is worth noting that, we have
not considered here the loss of spectral efficiency resulting
from a CP that is necessary in OFDM systems operating in

multipath fading channels.
The constraints on the subcarrier spacing of OFDM and

FBMC are quite different. For an OFDM system, it is essential
to make the subcarrier spacing as small as possible to limit
the overhead of the CP. But this makes OFDM more sensitive
to PN and synchronization errors. Therefore, to design an
OFDM system, only a careful evaluation of this trade-off
leads to a good performance in the desired scenarios. In
contrast, an FBMC system does not need a CP, thus only the
scheduling granularity and the desired length of the equalizer
for each subcarrier puts an upper limit to the subcarrier
spacing. Overall, that means an FBMC system should have a
larger subcarrier spacing than an OFDM system for the same
application. This leads to more robustness towards PN and
synchronization errors.
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