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ABSTRACT 

In this paper, we will describe the architecture of an 
innovative generic trajectory determination system. The 
architecture describes a software (SW) platform for the 
optimal determination of trajectories or paths of stochastic 
dynamical systems driven by observations –or 
measurements– and their associated dynamic or static 
models. 

The proposed architecture has been already implemented 
in the NAVEGA SW. NAVEGA has evolved from an 
INS/GPS trajectory determination programme into the 
above more general concept to accommodate the various 
instrument and sensor configurations of modern 
navigation and orientation systems. Thus, NAVEGA can 
be “configured” for any sensor navigation combination, 
as, for example, navigation systems based only in GNSS, 
classical hybrid INS/GNSS systems, INS/GNSS systems 
augmented with other ancillary navigation sensors, 
INS/GNSS/visual aiding systems with multiple IMU or 
multiple GNSS receivers, to mention a few examples. 

INTRODUCTION 

During the last decade, with the popularization of 
smartphone devices, navigation and orientation have 
become an indispensable technology for most of the 

developed countries citizens. This way, the technology 
becomes not only a pre-requisite for enabling advanced, 
professional applications as those found in the remote 
sensing realm but also for the daily needs of every citizen. 
Navigation is applied in so disparate applications as 
pedestrian localization, airborne and marine bathymetry, 
railway track geometry surveying, motorcycle and car 
racing trajectory analysis, stabilization of moving video 
cameras in sport events, precise agriculture, archaeology, 
journalism and airborne photogrammetry and remote 
sensing. This heterogeneous demand translates in higher 
requirements to navigation software systems. As stated in 
[1] and [2], technology has to deal with new sensors –like 
plenoptic or photon-mixing cameras–, new performances 
–like the inertial sensors found in smartphones– and new
environments –like indoor or urban canyons–. 

An overview on current available solutions reveals that 
the market for traditional surveying applications is 
dominated by Applanix (Canada), OXTS (UK), IGI 
GmbH (Germany) and NovAtel (Canada). The first three 
companies provide integrated systems, including both 
HW and SW components that may not be acquired 
separately.  The software components are, moreover, 
monolithic [real-time] navigators or [post-mission] 
orientators. NovAtel provides with integrated HW and 
SW solutions as well (the SPAN family), but also offers 
independent SW systems (GrafNav and Inertial Explorer). 
Yet, even in this case, these SW components are just 
navigators/orientators. The market segment covering new 
devices like smartphones, car driving assistance or 
pedestrian navigation is currently dominated by Garmin 
(Switzerland), Tom Tom (Netherlands), and Magellan 
(Japan). Once again, these are closed systems that do not 
allow the integration of new sensors. The consolidation 
and evolution of smartphones paves the way to a new 
navigation environment. Handheld devices provide the 
HW and the SW APIs while SW developers provide tools 
specifically developed for this kind of systems. The 
efforts to develop such a wide range of tools (from 
professional, to car-oriented or smartphones devices) may 
be measured in thousands of person/months for each 
company, and will keep being like that unless a common 
platform is developed for all of them. Beyond the 
traditional market, it is possible to find now open source 
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tools like RTKlib and GPStoolkit library, able to provide 
good solutions for a single specific sensor, the GNSS 
receiver. 

In this paper we will describe the architecture of an 
innovative generic, modular and extensible trajectory 
determination system based on architectural principles 
successfully applied by the photogrammetric community 
[3],[4],[5]. These principles rely on the abstraction of the 
navigation algorithms in a way that including new sensors 
to the system implies only the development of a toolbox. 
The architecture proposed hereafter describe a SW 
platform for the optimal determination of trajectories or 
paths of stochastic dynamical systems driven by 
observations –or measurements– and their associated 
dynamic or static models. The reader will find firstly the 
requirements of the future Bayesian-based navigation 
systems, and a brief snapshot of the navigation algorithm 
structure. Later on, we present the principles that, from 
our point of view, should rule the next generation of 
navigation system architectures. Finally, we present a 
particular implementation of these architectural principles 
together with a short summary of its performance.  

NEXT GENERATION TRAJECTORY 
DETERMINATION SYSTEMS REQUIREMENTS 

Although the main requirements (quality and robustness) 
of navigation systems have not varied significantly since 
the appearance of the first tools, the technology available 
in the market having to comply with these requirements 
has. On the other hand, the availability of cheaper micro-
processor and the miniaturization of technology introduce 
new requirements to the system (performance, 
integrability and extensibility.) Finally, the popularization 
of location-based applications has had also a great impact 
on navigation requirements evolution (usability): 

Quality (precision/accuracy). These terms refer to the 
quality of the solution. Back in the early times of 
navigation systems, high quality solutions were expected 
– in direct correspondence to the high quality of the
measurement systems used by those. Due to the irruption 
of COTS systems in recent years, the quality of the 
solutions must rely more on algorithms and less in the 
characteristics of sensors. Thus, more and more 
sophisticated inference algorithms are needed to obtain 
similar results with cheaper sensors.  

Robustness. This requirement is about the system 
resilience to the presence of outliers, the lack of 
information or bad initialization. New users or non-
specialized on the field expect for solutions valid in any 
environment, and will not be satisfied with system that 
behave incorrectly due to issues that they are not even 
aware of, such as multipath, magnetic fields or satellite 
occlusions. New systems should consider all this 
scenarios and their related problematics. 

Performance. The owners of handheld devices demand 
navigation systems able to position them in the most 
singular places and always in real time. This implies to 
use a wide range of sensors to be able to provide a 
continuous solution but also algorithms with a low 
computational cost able to deliver results in short time.  
Even when dealing with the most sophisticated sensors, 
users expect to have a solution, computed by a micro-
processor, in real time.  

Integrability. New users also expect that location-based 
applications have access to location service providers. 
The new navigation systems should be easily accessible 
from external users in order to be easily integrated in non-
geo applications. This translates in clear and manageable 
interfaces. 

Extensibility. The last requirement, related to the 
continuous irruption of new technologies, refers to the 
capability of the system to integrate new sensors without 
increasing exponentially the development effort. Either 
for professional applications or for mass-market ones, 
more and/or new sensors are used every year. New 
navigation systems should be able to cope with that, 
focusing only on sensor modelling and not in the 
estimation algorithms. 

Usability. The users of navigation system have evolved 
from airplane or boat crews and photogrammetry 
specialists to millions of citizens requesting for geo-
located services in their daily routines. These new users 
have never received (and will never receive) training on 
navigation techniques, so the interfaces of navigation 
systems should be clear and intuitive. For professional 
users and researchers, interfaces should allow the 
modification of states controlling the behavior of the 
software as well as a deep interaction with the application. 
To sum up, the system should be able to deal with a wide 
range of users and, at the same time, guarantee the quality 
of the solution and its performance.  

STATE-SPACE APPROACH FOR TRAJECTORY 
DETERMINATION 

We will call state-space approach (SSA), the method and 
principles of solving the trajectory determination problem 
by Bayesian Filtering. The optimal Bayesian sequential 
structure is a recursive loop in time where prediction steps 
are followed by an updating step and so on. The 
prediction step aims at computing states expected values 
and errors trough the knowledge of the last state expected 
values and errors. Updating step aims at computing this 
information by joining the predicted states with external 
measurements. For linear problems and 
measurements/states Gaussian distributed, this recursive 
state algorithm is the standard Kalman filter [6]. For 
Gaussian distributed data but (nearly) non-lineal systems, 
almost optimal solutions are the Extended Kalman filter 
or the Sigma-Point Kalman Filters. For hardly non-linear 



and non Gaussian systems, the almost optimal solutions 
are obtained through Particle Filters [7]. The architecture 
presented in this paper applies for any Bayesian 
estimation procedure; we do not focus in any particular 
implementation. 

 
NEXT GENERATION SYSTEMS ARCHITECTURE 
PRICIPLES 
 
In order to achieve the current requirements of 
extensibility and modularity we have revisited the 
previous algorithm, which has gone through a process of 
abstraction and generalization. As stated in [5], simple 
and extensible software design requires correct 
abstraction levels. Abstraction is the process of expressing 
a quality or characteristic apart from any specific object 
or instance. Thus, we have identified the navigation 
software characteristics apart from its actual 
implementations. According to [5] “insufficient or 
needless abstraction leads to complex systems, wrong 
abstraction leads to non extensible systems but correct 
abstract models are, therefore, the key to simple and 
extensible systems.” Because of this abstraction exercise 
on navigation systems, we have arrived to some principles 
that will drive the definition of our new architecture:  
 
Separation between estimation and modelling. 
Bayesian estimation processes ingredients are data 
(measurements/states), the relations between data and the 
specific algorithm used to estimate the states [8]. Current 
navigation systems implementations do not take into 
account this process conceptual segmentation, leading to 
very efficient but hardly reusable SW tools. We propose 
to define an architecture where estimation algorithms 
(procedure) and modelling (data and its relation) are 
implemented as separated components. The separation of 
the “numerical cruncher” and the equations allow a quick 
extension of the software when new sensors appear. 
Roughly speaking, “configuring” the system implies 
“loading” components related to the specific navigation 
sensors and setting a number of mission related states. 
Still roughly speaking, "configuring" the system for a 
specific instrument has no effect on the computational 
kernel even if new sensors come into play. The actual 
implementation of this concept could take benefit from 
dynamic libraries. While the common elements of the 
state-space approach should be implemented directly in 
the “number crunching” kernel, the uncommon ones 
should be materialized in dynamic libraries. An 
implementation like this one, has a lot of benefits such as 
minimizing the required amount of RAM in run time, 
since only the needed sensors are loaded; minimizing the 
development time, since the inclusion of new sensors 
imply the development of relatively small fragments of 
code and, finally, minimizing the time needed to train 
developers, since these should only have a deep 
knowledge about the sensor but not about Bayesian 

filters. Furthermore quality performance and robustness 
will not only not decrease but can even increase since 
more efforts can be placed on the development of the 
“number crunching” kernel.  

 
Sensor/measurements abstract reference model. 
Focusing on the information related to the navigation 
system, we distinguish four elements: (input) 
measurements, (input) auxiliary instrument constant 
values, (output) states and (equations) models relating all 
those elements. Available technology allows us to have 
several sensors providing different kind of observations 
which purpose is to estimate same states type (e.g. 
magnetometers and star trackers both aims to determine 
orientation in space). Technology evolution, provide users 
with same principle sensors but a wide range of quality 
performances, the purpose of all this sensors, however, is 
to estimate same states type (e.g. navigation-grade to 
MEMS inertial sensors for position and orientation 
estimation). The modelling of the information component 
in four categories (observation/measurement, state, model 
and instrument) avoids code repetition and allows the use 
of object-oriented modelling, its inheritance, 
encapsulation and polymorphism mechanisms [4], [5]. A 
clear stateization of measurements, states, equations and 
auxiliary values elements is a powerful mechanism that 
allows the simplification of the system and consequently 
will help developers to implement quickly new sensor 
measurement and state models in the SW. 

 
Computational strategy object. Navigation solution 
performance depends not only on the equipment but also 
on the environmental conditions [1][2]. Some years ago, 
this last factor was not taken into account in navigation 
systems, mainly focused on airborne environments. 
Nowadays, since the number of non-airborne users is 
growing exponentially, such systems should include a 
mechanism able to deal not only with sensors but also 
with scenarios, a context awareness strategy object. Users 
should be able to inform the system about its 
environmental context through an options file. In 
situations where the user is not able to provide with this 
kind of information, the strategy object should be capable 
to determine such context by itself (e.g. the qualitative 
analysis of the data provided by inertial sensors mounted 
in a car should allow the system to determine this 
environment by itself). Strategy should also be aware of 
the environment to be able to add to the system, if needed, 
contextual information (e.g. vertical velocity restrictions 
for terrestrial platforms or sudden direction changes 
restrictions in fixed-wing airplanes.) Strategy must also 
decide at any moment of the process if the system is able 
to provide the required solution out of the available 
information and, if it is not possible, decide how to 
proceed. If the object detects that the provided 
information is not enough to compute a solution, it must 



be able to choose between delivering a partial solution or 
warning the user that the system is not able to provide an 
acceptable one and that more information is required. 
Once again, the software must reflect the conceptual 
difference of this object and the estimation and modelling 
objects; thus, the strategy object should not be integrated 
in the “numerical cruncher”, but implemented as a 
separate component. An approach like this will allow the 
use of the same sensor models for several platforms and 
environments without having to implement them 
repeatedly. This implementation have multiple benefits 
like minimizing the system RAM requirements and 
simplifying the development process, since developers 
can tune its strategies independently of the estimation 
process.  

 
Generic/adaptable user interface. The definition of the 
interface (be it file or network) of modern navigation 
systems shall be funded in the fact that the interface 
should not complicate the extensibility of the system. 
Therefore, the definition of such interfaces should take 
into account future extensions of the system. An incorrect 
interface definition leads to an under-utilization of the 
capabilities of the system and to an increase on 
development efforts. Currently, when integrating new 
sensors into a navigation system, not only the source code 
must be modified but also the user interface definition and 
layer. As the eyes are the mirror of the soul, the interface 
should be the mirror of the system. For this reason, we 
propose that the definition of the interface take into 
account all the abstraction processes presented in previous 
premises. Analogously to what has been discussed until 
this moment, we will separate the user interface –control 
of the estimation process— and the data interface –
generic description of the rules to provide and read data 
from the system. [4]— Nowadays, trajectory SW can be 
used by such different users like geophysics, 
photogrammetrists, wedding recorders or pedestrian 
shoppers. We can classify trajectory determination SW 
users in three groups: lab, workshop, factory [9]. By lab 
users we refer to the ones that intend to develop new 
models for new sensors. They need to have access to all 
SW configuration states in order to find the best 
configuration to solve a specific problem. On the other 
side, a civilian user that intends to use the navigation 
system to go for a dinner in a restaurant is not worried 
about what are the sensors used by the navigation system 
or how these have to be calibrated. Between both users 
we can find the workshop ones, typically professional 
navigation system users that want to get the best available 
performance of the system. A successful SW should be 
useful for all of them. It must be able to deal with several 
dialects. This translates into the fact that system should be 
completely configurable (for lab users) but should allow 
external interfaces with restricted configuration access 
(for factory users). Concerning data interface, it should 

reflect the abstraction exercise performed in previous 
sections and its foundations should be the sensor, 
measurement, state and model concepts. With a definition 
like that, the long-term development costs will be reduced 
since the interface, once defined, will be suitable to 
incorporate any new sensor  

 
Table 1 summarize the contribution of each principle to 
the fulfilment of the system requirements, through the 
traceability matrix confronting requirements and 
principles. Note that the performance requirement is not 
specifically considered by any principle. Since we are 
proposing an object-oriented implementation it could be 
stated that performance will suffer a heavy with respect to 
the use of sequential programming approaches. This is 
true but it can be demonstrated that the penalty to pay for 
the use of an object-oriented approach is almost 
negligible. Furthermore, the strength of new computer 
processors makes this overhead less significant when 
compared to the overall system performance. 
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Precision/accuracy X X  X 
Robustness X   X 
Performance     
Integrability  X X X  
Extensibility X X X X 
Usability   X X 

 
Table 1: Requirements vs architecture principles 

traceability matrix 
 
 
PROPOSED ARCHITECTURE DEFINITION 
 
Based on the design principles presented in the above 
section hereafter we propose an architecture that complies 
with that design. 
 
System components and activity diagram 
Our system is based on four components (Figure 1): 
computation kernel (or “numerical cruncher”), trajectory 
(this component is the one includes modelling and 
supervisor), interfaces and a driver to control all the 
process. These components should be implemented using 
both static and dynamic libraries -when operative system 
allows it. Static libraries should be used to implement the 
procedure (“number crunching” kernel) while the 
modelling/strategy should be resort to dynamic libraries -  
thus, only the classes related to the requested sensors will 
be loaded in run time. To extend the system, 
incorporating new sensors, is as simple as writing new 
classes – that should be included in new dynamic libraries 
- adhering to the API defined by the system. 



 

 
 

Figure 1: Architecture components diagram 
 
The system inputs are not only sensor observations and 
generic context, as in common trajectory determination 
tools but also a list of requested states/states, a list of 
desired models/equations to compute these states and a 
specific computation context or strategy. All this 
information should be collected through the interface 
layer. The control component is in charge of loading all 
the requested objects (the aforementioned dynamic 
libraries.) The strategy object should analyse the 
feasibility of computing the target states from the set of 
given observations. If the computation is possible all the 
data should be sent to the estimation subcomponent to 
process it; otherwise a warning message should be sent to 
the user. There will be situations  where only a subset of 
the desired states can be computed; should this happen, 
the strategy object should decide whether to compute 
what is possible to compute or to send a warning 
message. The output of the estimation subcomponent is 
delivered to the user through the interface component. 
 
It is important to note here that the process is valid  either 
for forward, backward and smoothing processes. Thus, a 
few (and simple)  modification of both (1) the (unique) 
source code implementing this process and (2) the 
interface component, make possible to use the same 
algorithm for either real-time or post-processing work 
modes 
 
Platform component  
The platform component includes not only the driver 
subcomponent but also the two filtering steps 
subcomponents: the prediction component (e.g. stochastic 
dynamical systems solver for Kalman filter family 
estimators) and the update component (e.g. correction 
step for Kalman filter family estimators ). The platform 
component is responsible for loading computation options 
and start the desired trajectory estimation processes 
(forward, backward and/or smoothing.) These processes 
mainly relies on the two numerical estimation 
subcomponents, prediction and correction.  
 

The API must allow the inclusion of new numerical 
methods that may be of interest to the final user 
(extensibility criterion). In this way, both the prediction 
and the update components should be able to incorporate 
any related numerical method implementation. Through 
the interface layer, the user should be able to select 
among the available methods. Furthermore,  it is 
important to remind that, as stated in previous sections, 
each of these implementation should be independent of 
the actual set of equations to solve; these should be 
designed to interface efficiently with the modelling 
objects (observations, equations, states and constant 
values) to retrieve values, to allocate and properly fill in 
vectors and matrices that will allow state estimation. 
 
Modelling component 
We propose a sensor/measurements model like the one 
presented in [5], where the fundamental reference model 
is based on four abstract categories (i.e. classes): 
instruments, observations, states and mathematical 
models. It is important to remark here that when we talk 
about observations and states we refer not to a single 
observation/state item but a group of them. Every new 
kind of sensor to be integrated in the system will probably 
collect measurements not available for other sensors. 
These measurements will be related to some unknown 
states, probably position or orientation. The relation 
between the observations and the states, maybe with the 
participation of the instrument auxiliary constants, is 
materialized by the mathematical models (stochastic 
equations). In order to extend the system, is necessary to 
identify the instrument and its characteristic values, to list 
its related measurements, to identify the states and the 
mathematical models that relate them. Once this is done, 
specific classes that inherit from the fundamental 
reference model can be reused or newly developed.  
 
 
        EXAMPLE – magnetometer modelling            
 
• Instrument. The magnetic declination should be taken 

into account to correct the measurements. This value 
can be entered as a constant to the system through the 
instrument object. Also the boresight matrix between 
magnetometer and trajectory reference frames. 

 
• Observation. Attitude values. 
 
• States. Orientation values.  
 
• Model. Rotation matrix that measurements of 

magnetometer and trajectory orientation. Please note 
that the model should take into account that trajectory 
and magnetometer reference frames could not be the 
same. 

 
 
 
 
 



Strategy component   
When designing the strategy component three issues 
arise: context awareness, context conditioning and 
computation feasibility. 
 
The strategy component should be implemented, if 
possible, in classes stored in dynamic libraries. These 
classes are closely related to the sensors involved in a 
particular computation. All strategy specific 
implementation classes will be derived (inherit) from the 
same class, so all of them should have the interface. This 
component is aware of several strategy issues, 
highlighting context awareness determination, context 
conditioning and computation feasibility. In this way, 
several strategies (strategy classes) may be implemented 
and be able to deal, in different ways, with the same kind 
of data (e.g. IMU and GNSS), taking into account issues 
like the quality of the sensors, its performance or the 
environment. 
 
Context awareness refers to the capability of the system 
to be aware of the environment and to add constrains to 
the system if required. The context awareness can be 
provided by the user or automatically detected by the SW 
itself. In the second case, a qualitative analysis of 
available data should be performed. Thus, for example if 
an IMU is involved in the computation and the signal 
output by the IMU matches (in a qualitative sense) the 
typical movement patterns related to the behaviour of  
human beings [10], a pedestrian environment can be 
assumed. This context awareness analysis should be done 
periodically to assure correct environmental assumptions 
during the processing of the whole trajectory.  
 
Context conditioning refers to the capability of the system 
to include conditions to the system that depend on the 
environment. In our approach, instead of implementing 
condition equations, we add observation equations to the 
system. This reduces computation complexity and allow 
reusing all the implemented estimation algorithm without 
any additional changes. In order to do this, condition 
equations should be transformed to observation equations 
by assuming a reduced noise in the condition. The smaller 
the noise, the most restrictive the condition will be. For 
each environment, a set of additional condition equations 
are defined and added to the intrinsic sensor observation 
equations. 
 
Last issue refers to computation feasibility. In order to 
decide if the system is able to provide a solution out of the 
available information we should check the degree of 
freedom of the problem and the update observations’ 
matrix. If not enough observations are provided, the 
strategy object checks the suitability of performing a 
reduced adjustment with (pre-selected) fundamental 
states. If this is not possible, computation is finished and 
control is returned to the user. On the other hand, it could 
happen that there are enough measurements but the 
system is not robust enough to converge properly. This 
can be detected by means of covariance matrix analysis. 

Each strategy object, should include a set of relevant and 
non relevant states, with covariance thresholds to 
determine whether those states can be estimated or not.   
 
 
 
       EXAMPLE – Strategy for IMU/GNSS/MAGN  
 
• Context awareness. IMU signal qualitative analysis. Fit 

with predefined patterns to deduce, pedestrian, 
terrestrial vehicle or fixed-wing airplane environment. 

 
• Context conditioning. For pedestrian navigation include 

observation equations to limit maximum velocity. For 
terrestrial vehicles include observation equations to 
limit vertical and lateral velocities. For fixed-wing 
airplane include observation equations to avoid 
backward movement  

 
• Computation feasibility. Initial state estimations will be 

derived from GNSS (position and velocity), and 
magnetometer (orientation). IMU calibration values will 
be derived form a combination of magnetometer data 
and IMU data. Position, velocity and attitude are the 
fundamental states; the system will not try to solve IMU 
calibration values until the standard deviations of the 
first ones are below predefined thresholds. 

 
 
 
Interface component 
The interface component based on three clearly 
distinguishable concepts: the Application Program 
Interface, the Data Interface and the User/Options 
Interface. 
 
Application Program Interface design is totally driven by 
the system extensibility requirement.  This translates into 
object oriented principles, inheritance capability and the 
use of dynamic libraries for the modelling and strategy 
components. Since the modelling and strategy component 
classes inherit from five basic classes (instrument, 
observation, state, model and strategy) the interfaces are 
the ones defined by these classes. New classes must 
completely adhere to this API. Regarding the platform 
interface with other systems, its design is as simple as 
possible. The tool should executed just with a “go” 
command and loading a configuration options file 
(explained at the end of this subsection). 
 
Since the design principle of the Data Interface is based 
on is adaptability - to incorporate easily and painlessly 
new instruments, measurements, models or states - we 
have defined an interface (equivalent for network TCP/IP 
sockets and file interfaces) based on the generic 
description of  observations and models. Each observation 
is described through a time tag, its value (expectation), its 
estimated error (standard deviation) and some auxiliary 
values that can be useful for computation purposes. When 
using a file interface – based on the XML standard - the 



way to introduce these values in the SW is through the 
<l> tag shown below: 
 

<l> obs_code obs_id time a1…an e1…en s1…sn </l> 
 
where obs_code refers to the unique identifier for a 
specific observation type (for example, GNSS position) 
and obs_id refers to the sensor identifier. time refers to 
the acquired data time tag, {ai} refers to auxiliary values, 
{ei} refer to the acquired set of values and {si} refer to its 
standard deviation. 
 
The observation equation to be used relates observations 
and states. Again, when using the XML file interface, the 
way to introduce these values in the SW is through a the 
<o> tag: 
 

<o> model_code time par1..parn obs1…obsn</o> 
 

where model_code refers to the unique identifier of the 
model class that relates a certain set of state types with 
observation types. Time refers to the time to perform the 
calculus, {pari} refers to the identifiers of the states to 
solve (the type of this state is known by the model class) 
and {obsi} refers to the identifiers of the observations to 
involve (again, the type of this observations is known by 
the model class). This data interface is common (uniform) 
for the two different data channels implemented by the 
system:  (disk) files or TCP/IP sockets. This allows for 
remote (in the cloud) execution, being possible to capture 
data in whatever the place providing that a network 
connection is available. The advantages of this approach 
are manifold: perhaps the most important one is ubiquity 
(data may be captured everywhere); another advantage to 
consider is the reduction of the computational power 
needed by the processor in charge of computing the 
navigation solution, since it will not be responsible of 
managing the sensors acquiring data. For extended details 
on the interface definition, please contact the authors. 
 
The user/options interface is designed as a two-layer 
interface. The lower one is based on files and interacts 
directly with the platform component. On top of this one, 
a user oriented interface (generally a command line or a 
graphical user interface) is developed. This second 
interface allows the SW dealer to modify determined 
configuration states depending on the user needs. Thus, 
for example, in a lab environment, the GUI should allow 
the configuration of all the computation states, while, in a 
factory environment, these options should be restricted to 
the minimum. In this way the software can be used in 
lab/research/factory environments by just changing the 
most external layer, the GUI.  
 
Architecture strengths and weakness  
Since the proposed architecture fully relies on the 
principles presented in previous sections, we can state that 
it satisfies the requirements of the new generation of 
navigation systems concerning quality assessment, 
robustness, performance, extensibility, integrability and 

usability. In the next section we present an 
implementation of this architecture were we have been 
able to demonstrate empirically that these requirements 
are fulfilled. 
 
As any other approach, the one proposed in this paper has 
some drawbacks. In this case, at the implementation level. 
For example, since we want to accommodate an 
undetermined number of sensors in each execution we 
have to take into account that the amount of memory used 
will change from execution to execution, so dynamic 
memory allocation should be used. Moreover, we can not 
fine-tune the Kalman filter to improve matrix 
management, since we do not know their dimensions a 
priori. Thus, special attention on the computational 
burden of the algorithms implemented must be paid. 
 
 
A SAMPLE IMPLEMENTATION – NAVEGA  
 
We have implemented the aforementioned architecture in 
a SW system called NAVEGA. It is coded in C++ and 
provides real time and post-processing trajectory 
estimation under Windows and Linux operating system 
running in different processor architectures like x86, 
LEON3 and ARM. Currently the system includes a family 
of Kalman filter algorithms and provides with Gaussian 
states, this is the output are expected values and 
covariance matrices. Furthermore, it also provides the 
user with residuals expected and standard deviation 
values, suitable for a posteriori trajectory analysis.  
 
Until this moment, NAVEGA has been proved to be 
extensible since it has already been used to process data 
provided by several types of sensors like IMUS [11], 
GNSS [12], redundant IMUS [11], LIDAR [13], camera 
images [14] and odometers [15]. Since not all the 
implemented sensor models are available in commercial 
systems we validate NAVEGA solutions using indirect 
methods. Using NAVEGA as positioning provider to 
remote sensing platforms (like photogrammetry systems); 
we compare the NAVEGA georeferenced data with 
topographic measurements. Up to now, these comparisons 
have shown the success of NAVEGA, that is, the 
predicted state error estimation corresponds to actual state 
error, or, in other words, the expected quality is achieved. 
NAVEGA has also been successfully used for processing 
data collected in a wide range of environments: airplanes, 
helicopters [11] and terrestrial vehicles, either outdoors 
and indoors [15].  
 
Regading robustness issues, the implemented analysis 
tools has been proven able to deal with odometers and 
camera outliers. When working with GNSS modelling, 
the system is able to detect outliers when these affect just 
one satellite. At this moment, more than one outlier 
cannot be properly detected. 
 
NAVEGA has also been proven to be integrable since it 
has been used in several projects as the location provider 



of different services like a mobile mapping system [16] or 
a GNSS receiver with tight coupling capabilities. [17] 
 
With the previous examples we have been able to verify 
that NAVEGA’s performance is suitable for a wide 
range of platforms. NAVEGA is able to process 
INS/GNSS solutions at 5000 Hz in Real Time when 
running on an Odroid-XU3 with a negligible latency. 
 
Last but not least, due to its file interface the system is 
completely usable either for Kalman filter experts to 
unexperienced users, through several GUIs. 
 
 
CONCLUSIONS AND FURTHER RESEARCH 
 
We have designed a trajectory determination modular, 
generic and extensible system requiring only dynamic 
libraries to be able to incorporate new sensors. We believe 
that this approach responds to some of the challenges 
posed by the design of modern system. The design 
starting point is the abstraction of the traditional state-
space approach navigation algorithm in two main 
components: estimation and modelling. This concept 
translates into a SW component that allows for fast and 
incremental modelling of multi-sensor navigation 
systems. We expect that the current tool will benefit both 
navigation and geomatic communities, particularly the 
Earth Observation (EO), mapping and surveying teams 
that perform primary data acquisition in kinematic mode 
be it from airborne, terrestrial and marine manned and 
unmanned vehicles. 
 
Although a lot of effort has been devoted in the definition 
of this architecture and its implementation, more efforts 
need to be devoted to the implementation of the strategy 
object. At this moment we have clearly defined the 
principles on which this design is based and have 
implemented the context adaptation concept, but we have 
not analysed yet which is the best implementation for that 
object in terms of performance. Our future research will 
also be oriented to implement the context auto-
identification capability. 
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