
On software architecture concepts for a unified,
generic and extensible trajectory determination

system

M. Eulàlia Parés1, Ismael Colomina2,
1CTTC, Spain

2GeoNumerics, Spain

BIOGRAPHIES

M. Eulàlia P a r é s graduated in Mathematics at the
University of Barcelona, holds an MSc in Meteorology
and Climatology from the University of Barcelona and an
MSc in Airborne Photogrammetry and Remote Sensing
from the Institute of Geomatics. She is a researcher of
the Geomatics division at the CTTC and a PhD candidate.

Dr. Ismael Colomina is GeoNumerics’ director. He
holds a PhD in Mathematics from the University of
Barcelona. Dr. Colomina is a co-chair of the ICWG III/I
“Sensor modelling for Integrated Navigation and
Orientation” of the ISPRS and a member of the GPS
World Editorial Board.

ABSTRACT

In this paper, we will describe the architecture of an
innovative generic trajectory determination system. The
architecture describes a software (SW) platform for the
optimal determination of trajectories or paths of stochastic
dynamical systems driven by observations –or
measurements– and their associated dynamic or static
models.

The proposed architecture has been already implemented
in the NAVEGA SW. NAVEGA has evolved from an
INS/GPS trajectory determination programme into the
above more general concept to accommodate the various
instrument and sensor configurations of modern
navigation and orientation systems. Thus, NAVEGA can
be “configured” for any sensor navigation combination,
as, for example, navigation systems based only in GNSS,
classical hybrid INS/GNSS systems, INS/GNSS systems
augmented with other ancillary navigation sensors,
INS/GNSS/visual aiding systems with multiple IMU or
multiple GNSS receivers, to mention a few examples.

INTRODUCTION

During the last decade, with the popularization of
smartphone devices, navigation and orientation have
become an indispensable technology for most of the

developed countries citizens. This way, the technology
becomes not only a pre-requisite for enabling advanced,
professional applications as those found in the remote
sensing realm but also for the daily needs of every citizen.
Navigation is applied in so disparate applications as
pedestrian localization, airborne and marine bathymetry,
railway track geometry surveying, motorcycle and car
racing trajectory analysis, stabilization of moving video
cameras in sport events, precise agriculture, archaeology,
journalism and airborne photogrammetry and remote
sensing. This heterogeneous demand translates in higher
requirements to navigation software systems. As stated in
[1] and [2], technology has to deal with new sensors –like
plenoptic or photon-mixing cameras–, new performances
–like the inertial sensors found in smartphones– and new
environments –like indoor or urban canyons–.

An overview on current available solutions reveals that
the market for traditional surveying applications is
dominated by Applanix (Canada), OXTS (UK), IGI
GmbH (Germany) and NovAtel (Canada). The first three
companies provide integrated systems, including both
HW and SW components that may not be acquired
separately. The software components are, moreover,
monolithic [real-time] navigators or [post-mission]
orientators. NovAtel provides with integrated HW and
SW solutions as well (the SPAN family), but also offers
independent SW systems (GrafNav and Inertial Explorer).
Yet, even in this case, these SW components are just
navigators/orientators. The market segment covering new
devices like smartphones, car driving assistance or
pedestrian navigation is currently dominated by Garmin
(Switzerland), Tom Tom (Netherlands), and Magellan
(Japan). Once again, these are closed systems that do not
allow the integration of new sensors. The consolidation
and evolution of smartphones paves the way to a new
navigation environment. Handheld devices provide the
HW and the SW APIs while SW developers provide tools
specifically developed for this kind of systems. The
efforts to develop such a wide range of tools (from
professional, to car-oriented or smartphones devices) may
be measured in thousands of person/months for each
company, and will keep being like that unless a common
platform is developed for all of them. Beyond the
traditional market, it is possible to find now open source

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144779576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tools like RTKlib and GPStoolkit library, able to provide
good solutions for a single specific sensor, the GNSS
receiver.

In this paper we will describe the architecture of an
innovative generic, modular and extensible trajectory
determination system based on architectural principles
successfully applied by the photogrammetric community
[3],[4],[5]. These principles rely on the abstraction of the
navigation algorithms in a way that including new sensors
to the system implies only the development of a toolbox.
The architecture proposed hereafter describe a SW
platform for the optimal determination of trajectories or
paths of stochastic dynamical systems driven by
observations –or measurements– and their associated
dynamic or static models. The reader will find firstly the
requirements of the future Bayesian-based navigation
systems, and a brief snapshot of the navigation algorithm
structure. Later on, we present the principles that, from
our point of view, should rule the next generation of
navigation system architectures. Finally, we present a
particular implementation of these architectural principles
together with a short summary of its performance.

NEXT GENERATION TRAJECTORY
DETERMINATION SYSTEMS REQUIREMENTS

Although the main requirements (quality and robustness)
of navigation systems have not varied significantly since
the appearance of the first tools, the technology available
in the market having to comply with these requirements
has. On the other hand, the availability of cheaper micro-
processor and the miniaturization of technology introduce
new requirements to the system (performance,
integrability and extensibility.) Finally, the popularization
of location-based applications has had also a great impact
on navigation requirements evolution (usability):

Quality (precision/accuracy). These terms refer to the
quality of the solution. Back in the early times of
navigation systems, high quality solutions were expected
– in direct correspondence to the high quality of the
measurement systems used by those. Due to the irruption
of COTS systems in recent years, the quality of the
solutions must rely more on algorithms and less in the
characteristics of sensors. Thus, more and more
sophisticated inference algorithms are needed to obtain
similar results with cheaper sensors.

Robustness. This requirement is about the system
resilience to the presence of outliers, the lack of
information or bad initialization. New users or non-
specialized on the field expect for solutions valid in any
environment, and will not be satisfied with system that
behave incorrectly due to issues that they are not even
aware of, such as multipath, magnetic fields or satellite
occlusions. New systems should consider all this
scenarios and their related problematics.

Performance. The owners of handheld devices demand
navigation systems able to position them in the most
singular places and always in real time. This implies to
use a wide range of sensors to be able to provide a
continuous solution but also algorithms with a low
computational cost able to deliver results in short time.
Even when dealing with the most sophisticated sensors,
users expect to have a solution, computed by a micro-
processor, in real time.

Integrability. New users also expect that location-based
applications have access to location service providers.
The new navigation systems should be easily accessible
from external users in order to be easily integrated in non-
geo applications. This translates in clear and manageable
interfaces.

Extensibility. The last requirement, related to the
continuous irruption of new technologies, refers to the
capability of the system to integrate new sensors without
increasing exponentially the development effort. Either
for professional applications or for mass-market ones,
more and/or new sensors are used every year. New
navigation systems should be able to cope with that,
focusing only on sensor modelling and not in the
estimation algorithms.

Usability. The users of navigation system have evolved
from airplane or boat crews and photogrammetry
specialists to millions of citizens requesting for geo-
located services in their daily routines. These new users
have never received (and will never receive) training on
navigation techniques, so the interfaces of navigation
systems should be clear and intuitive. For professional
users and researchers, interfaces should allow the
modification of states controlling the behavior of the
software as well as a deep interaction with the application.
To sum up, the system should be able to deal with a wide
range of users and, at the same time, guarantee the quality
of the solution and its performance.

STATE-SPACE APPROACH FOR TRAJECTORY
DETERMINATION

We will call state-space approach (SSA), the method and
principles of solving the trajectory determination problem
by Bayesian Filtering. The optimal Bayesian sequential
structure is a recursive loop in time where prediction steps
are followed by an updating step and so on. The
prediction step aims at computing states expected values
and errors trough the knowledge of the last state expected
values and errors. Updating step aims at computing this
information by joining the predicted states with external
measurements. For linear problems and
measurements/states Gaussian distributed, this recursive
state algorithm is the standard Kalman filter [6]. For
Gaussian distributed data but (nearly) non-lineal systems,
almost optimal solutions are the Extended Kalman filter
or the Sigma-Point Kalman Filters. For hardly non-linear

and non Gaussian systems, the almost optimal solutions
are obtained through Particle Filters [7]. The architecture
presented in this paper applies for any Bayesian
estimation procedure; we do not focus in any particular
implementation.

NEXT GENERATION SYSTEMS ARCHITECTURE
PRICIPLES

In order to achieve the current requirements of
extensibility and modularity we have revisited the
previous algorithm, which has gone through a process of
abstraction and generalization. As stated in [5], simple
and extensible software design requires correct
abstraction levels. Abstraction is the process of expressing
a quality or characteristic apart from any specific object
or instance. Thus, we have identified the navigation
software characteristics apart from its actual
implementations. According to [5] “insufficient or
needless abstraction leads to complex systems, wrong
abstraction leads to non extensible systems but correct
abstract models are, therefore, the key to simple and
extensible systems.” Because of this abstraction exercise
on navigation systems, we have arrived to some principles
that will drive the definition of our new architecture:

Separation between estimation and modelling.
Bayesian estimation processes ingredients are data
(measurements/states), the relations between data and the
specific algorithm used to estimate the states [8]. Current
navigation systems implementations do not take into
account this process conceptual segmentation, leading to
very efficient but hardly reusable SW tools. We propose
to define an architecture where estimation algorithms
(procedure) and modelling (data and its relation) are
implemented as separated components. The separation of
the “numerical cruncher” and the equations allow a quick
extension of the software when new sensors appear.
Roughly speaking, “configuring” the system implies
“loading” components related to the specific navigation
sensors and setting a number of mission related states.
Still roughly speaking, "configuring" the system for a
specific instrument has no effect on the computational
kernel even if new sensors come into play. The actual
implementation of this concept could take benefit from
dynamic libraries. While the common elements of the
state-space approach should be implemented directly in
the “number crunching” kernel, the uncommon ones
should be materialized in dynamic libraries. An
implementation like this one, has a lot of benefits such as
minimizing the required amount of RAM in run time,
since only the needed sensors are loaded; minimizing the
development time, since the inclusion of new sensors
imply the development of relatively small fragments of
code and, finally, minimizing the time needed to train
developers, since these should only have a deep
knowledge about the sensor but not about Bayesian

filters. Furthermore quality performance and robustness
will not only not decrease but can even increase since
more efforts can be placed on the development of the
“number crunching” kernel.

Sensor/measurements abstract reference model.
Focusing on the information related to the navigation
system, we distinguish four elements: (input)
measurements, (input) auxiliary instrument constant
values, (output) states and (equations) models relating all
those elements. Available technology allows us to have
several sensors providing different kind of observations
which purpose is to estimate same states type (e.g.
magnetometers and star trackers both aims to determine
orientation in space). Technology evolution, provide users
with same principle sensors but a wide range of quality
performances, the purpose of all this sensors, however, is
to estimate same states type (e.g. navigation-grade to
MEMS inertial sensors for position and orientation
estimation). The modelling of the information component
in four categories (observation/measurement, state, model
and instrument) avoids code repetition and allows the use
of object-oriented modelling, its inheritance,
encapsulation and polymorphism mechanisms [4], [5]. A
clear stateization of measurements, states, equations and
auxiliary values elements is a powerful mechanism that
allows the simplification of the system and consequently
will help developers to implement quickly new sensor
measurement and state models in the SW.

Computational strategy object. Navigation solution
performance depends not only on the equipment but also
on the environmental conditions [1][2]. Some years ago,
this last factor was not taken into account in navigation
systems, mainly focused on airborne environments.
Nowadays, since the number of non-airborne users is
growing exponentially, such systems should include a
mechanism able to deal not only with sensors but also
with scenarios, a context awareness strategy object. Users
should be able to inform the system about its
environmental context through an options file. In
situations where the user is not able to provide with this
kind of information, the strategy object should be capable
to determine such context by itself (e.g. the qualitative
analysis of the data provided by inertial sensors mounted
in a car should allow the system to determine this
environment by itself). Strategy should also be aware of
the environment to be able to add to the system, if needed,
contextual information (e.g. vertical velocity restrictions
for terrestrial platforms or sudden direction changes
restrictions in fixed-wing airplanes.) Strategy must also
decide at any moment of the process if the system is able
to provide the required solution out of the available
information and, if it is not possible, decide how to
proceed. If the object detects that the provided
information is not enough to compute a solution, it must

be able to choose between delivering a partial solution or
warning the user that the system is not able to provide an
acceptable one and that more information is required.
Once again, the software must reflect the conceptual
difference of this object and the estimation and modelling
objects; thus, the strategy object should not be integrated
in the “numerical cruncher”, but implemented as a
separate component. An approach like this will allow the
use of the same sensor models for several platforms and
environments without having to implement them
repeatedly. This implementation have multiple benefits
like minimizing the system RAM requirements and
simplifying the development process, since developers
can tune its strategies independently of the estimation
process.

Generic/adaptable user interface. The definition of the
interface (be it file or network) of modern navigation
systems shall be funded in the fact that the interface
should not complicate the extensibility of the system.
Therefore, the definition of such interfaces should take
into account future extensions of the system. An incorrect
interface definition leads to an under-utilization of the
capabilities of the system and to an increase on
development efforts. Currently, when integrating new
sensors into a navigation system, not only the source code
must be modified but also the user interface definition and
layer. As the eyes are the mirror of the soul, the interface
should be the mirror of the system. For this reason, we
propose that the definition of the interface take into
account all the abstraction processes presented in previous
premises. Analogously to what has been discussed until
this moment, we will separate the user interface –control
of the estimation process— and the data interface –
generic description of the rules to provide and read data
from the system. [4]— Nowadays, trajectory SW can be
used by such different users like geophysics,
photogrammetrists, wedding recorders or pedestrian
shoppers. We can classify trajectory determination SW
users in three groups: lab, workshop, factory [9]. By lab
users we refer to the ones that intend to develop new
models for new sensors. They need to have access to all
SW configuration states in order to find the best
configuration to solve a specific problem. On the other
side, a civilian user that intends to use the navigation
system to go for a dinner in a restaurant is not worried
about what are the sensors used by the navigation system
or how these have to be calibrated. Between both users
we can find the workshop ones, typically professional
navigation system users that want to get the best available
performance of the system. A successful SW should be
useful for all of them. It must be able to deal with several
dialects. This translates into the fact that system should be
completely configurable (for lab users) but should allow
external interfaces with restricted configuration access
(for factory users). Concerning data interface, it should

reflect the abstraction exercise performed in previous
sections and its foundations should be the sensor,
measurement, state and model concepts. With a definition
like that, the long-term development costs will be reduced
since the interface, once defined, will be suitable to
incorporate any new sensor

Table 1 summarize the contribution of each principle to
the fulfilment of the system requirements, through the
traceability matrix confronting requirements and
principles. Note that the performance requirement is not
specifically considered by any principle. Since we are
proposing an object-oriented implementation it could be
stated that performance will suffer a heavy with respect to
the use of sequential programming approaches. This is
true but it can be demonstrated that the penalty to pay for
the use of an object-oriented approach is almost
negligible. Furthermore, the strength of new computer
processors makes this overhead less significant when
compared to the overall system performance.

E
st

im
at

io
n

vs

m
od

el
lin

g
Se

ns
or

s
ab

st
ra

ct

m
od

el
lin

g
A

da
pt

ab
le

us

er

in
te

rf
ac

e

St
ra

te
gy

ob

je
ct

Precision/accuracy X X X
Robustness X X
Performance
Integrability X X X
Extensibility X X X X
Usability X X

Table 1: Requirements vs architecture principles

traceability matrix

PROPOSED ARCHITECTURE DEFINITION

Based on the design principles presented in the above
section hereafter we propose an architecture that complies
with that design.

System components and activity diagram
Our system is based on four components (Figure 1):
computation kernel (or “numerical cruncher”), trajectory
(this component is the one includes modelling and
supervisor), interfaces and a driver to control all the
process. These components should be implemented using
both static and dynamic libraries -when operative system
allows it. Static libraries should be used to implement the
procedure (“number crunching” kernel) while the
modelling/strategy should be resort to dynamic libraries -
thus, only the classes related to the requested sensors will
be loaded in run time. To extend the system,
incorporating new sensors, is as simple as writing new
classes – that should be included in new dynamic libraries
- adhering to the API defined by the system.

Figure 1: Architecture components diagram

The system inputs are not only sensor observations and
generic context, as in common trajectory determination
tools but also a list of requested states/states, a list of
desired models/equations to compute these states and a
specific computation context or strategy. All this
information should be collected through the interface
layer. The control component is in charge of loading all
the requested objects (the aforementioned dynamic
libraries.) The strategy object should analyse the
feasibility of computing the target states from the set of
given observations. If the computation is possible all the
data should be sent to the estimation subcomponent to
process it; otherwise a warning message should be sent to
the user. There will be situations where only a subset of
the desired states can be computed; should this happen,
the strategy object should decide whether to compute
what is possible to compute or to send a warning
message. The output of the estimation subcomponent is
delivered to the user through the interface component.

It is important to note here that the process is valid either
for forward, backward and smoothing processes. Thus, a
few (and simple) modification of both (1) the (unique)
source code implementing this process and (2) the
interface component, make possible to use the same
algorithm for either real-time or post-processing work
modes

Platform component
The platform component includes not only the driver
subcomponent but also the two filtering steps
subcomponents: the prediction component (e.g. stochastic
dynamical systems solver for Kalman filter family
estimators) and the update component (e.g. correction
step for Kalman filter family estimators). The platform
component is responsible for loading computation options
and start the desired trajectory estimation processes
(forward, backward and/or smoothing.) These processes
mainly relies on the two numerical estimation
subcomponents, prediction and correction.

The API must allow the inclusion of new numerical
methods that may be of interest to the final user
(extensibility criterion). In this way, both the prediction
and the update components should be able to incorporate
any related numerical method implementation. Through
the interface layer, the user should be able to select
among the available methods. Furthermore, it is
important to remind that, as stated in previous sections,
each of these implementation should be independent of
the actual set of equations to solve; these should be
designed to interface efficiently with the modelling
objects (observations, equations, states and constant
values) to retrieve values, to allocate and properly fill in
vectors and matrices that will allow state estimation.

Modelling component
We propose a sensor/measurements model like the one
presented in [5], where the fundamental reference model
is based on four abstract categories (i.e. classes):
instruments, observations, states and mathematical
models. It is important to remark here that when we talk
about observations and states we refer not to a single
observation/state item but a group of them. Every new
kind of sensor to be integrated in the system will probably
collect measurements not available for other sensors.
These measurements will be related to some unknown
states, probably position or orientation. The relation
between the observations and the states, maybe with the
participation of the instrument auxiliary constants, is
materialized by the mathematical models (stochastic
equations). In order to extend the system, is necessary to
identify the instrument and its characteristic values, to list
its related measurements, to identify the states and the
mathematical models that relate them. Once this is done,
specific classes that inherit from the fundamental
reference model can be reused or newly developed.

 EXAMPLE – magnetometer modelling

• Instrument. The magnetic declination should be taken

into account to correct the measurements. This value
can be entered as a constant to the system through the
instrument object. Also the boresight matrix between
magnetometer and trajectory reference frames.

• Observation. Attitude values.

• States. Orientation values.

• Model. Rotation matrix that measurements of

magnetometer and trajectory orientation. Please note
that the model should take into account that trajectory
and magnetometer reference frames could not be the
same.

Strategy component
When designing the strategy component three issues
arise: context awareness, context conditioning and
computation feasibility.

The strategy component should be implemented, if
possible, in classes stored in dynamic libraries. These
classes are closely related to the sensors involved in a
particular computation. All strategy specific
implementation classes will be derived (inherit) from the
same class, so all of them should have the interface. This
component is aware of several strategy issues,
highlighting context awareness determination, context
conditioning and computation feasibility. In this way,
several strategies (strategy classes) may be implemented
and be able to deal, in different ways, with the same kind
of data (e.g. IMU and GNSS), taking into account issues
like the quality of the sensors, its performance or the
environment.

Context awareness refers to the capability of the system
to be aware of the environment and to add constrains to
the system if required. The context awareness can be
provided by the user or automatically detected by the SW
itself. In the second case, a qualitative analysis of
available data should be performed. Thus, for example if
an IMU is involved in the computation and the signal
output by the IMU matches (in a qualitative sense) the
typical movement patterns related to the behaviour of
human beings [10], a pedestrian environment can be
assumed. This context awareness analysis should be done
periodically to assure correct environmental assumptions
during the processing of the whole trajectory.

Context conditioning refers to the capability of the system
to include conditions to the system that depend on the
environment. In our approach, instead of implementing
condition equations, we add observation equations to the
system. This reduces computation complexity and allow
reusing all the implemented estimation algorithm without
any additional changes. In order to do this, condition
equations should be transformed to observation equations
by assuming a reduced noise in the condition. The smaller
the noise, the most restrictive the condition will be. For
each environment, a set of additional condition equations
are defined and added to the intrinsic sensor observation
equations.

Last issue refers to computation feasibility. In order to
decide if the system is able to provide a solution out of the
available information we should check the degree of
freedom of the problem and the update observations’
matrix. If not enough observations are provided, the
strategy object checks the suitability of performing a
reduced adjustment with (pre-selected) fundamental
states. If this is not possible, computation is finished and
control is returned to the user. On the other hand, it could
happen that there are enough measurements but the
system is not robust enough to converge properly. This
can be detected by means of covariance matrix analysis.

Each strategy object, should include a set of relevant and
non relevant states, with covariance thresholds to
determine whether those states can be estimated or not.

 EXAMPLE – Strategy for IMU/GNSS/MAGN

• Context awareness. IMU signal qualitative analysis. Fit

with predefined patterns to deduce, pedestrian,
terrestrial vehicle or fixed-wing airplane environment.

• Context conditioning. For pedestrian navigation include

observation equations to limit maximum velocity. For
terrestrial vehicles include observation equations to
limit vertical and lateral velocities. For fixed-wing
airplane include observation equations to avoid
backward movement

• Computation feasibility. Initial state estimations will be

derived from GNSS (position and velocity), and
magnetometer (orientation). IMU calibration values will
be derived form a combination of magnetometer data
and IMU data. Position, velocity and attitude are the
fundamental states; the system will not try to solve IMU
calibration values until the standard deviations of the
first ones are below predefined thresholds.

Interface component
The interface component based on three clearly
distinguishable concepts: the Application Program
Interface, the Data Interface and the User/Options
Interface.

Application Program Interface design is totally driven by
the system extensibility requirement. This translates into
object oriented principles, inheritance capability and the
use of dynamic libraries for the modelling and strategy
components. Since the modelling and strategy component
classes inherit from five basic classes (instrument,
observation, state, model and strategy) the interfaces are
the ones defined by these classes. New classes must
completely adhere to this API. Regarding the platform
interface with other systems, its design is as simple as
possible. The tool should executed just with a “go”
command and loading a configuration options file
(explained at the end of this subsection).

Since the design principle of the Data Interface is based
on is adaptability - to incorporate easily and painlessly
new instruments, measurements, models or states - we
have defined an interface (equivalent for network TCP/IP
sockets and file interfaces) based on the generic
description of observations and models. Each observation
is described through a time tag, its value (expectation), its
estimated error (standard deviation) and some auxiliary
values that can be useful for computation purposes. When
using a file interface – based on the XML standard - the

way to introduce these values in the SW is through the
<l> tag shown below:

<l> obs_code obs_id time a1…an e1…en s1…sn </l>

where obs_code refers to the unique identifier for a
specific observation type (for example, GNSS position)
and obs_id refers to the sensor identifier. time refers to
the acquired data time tag, {ai} refers to auxiliary values,
{ei} refer to the acquired set of values and {si} refer to its
standard deviation.

The observation equation to be used relates observations
and states. Again, when using the XML file interface, the
way to introduce these values in the SW is through a the
<o> tag:

<o> model_code time par1..parn obs1…obsn</o>

where model_code refers to the unique identifier of the
model class that relates a certain set of state types with
observation types. Time refers to the time to perform the
calculus, {pari} refers to the identifiers of the states to
solve (the type of this state is known by the model class)
and {obsi} refers to the identifiers of the observations to
involve (again, the type of this observations is known by
the model class). This data interface is common (uniform)
for the two different data channels implemented by the
system: (disk) files or TCP/IP sockets. This allows for
remote (in the cloud) execution, being possible to capture
data in whatever the place providing that a network
connection is available. The advantages of this approach
are manifold: perhaps the most important one is ubiquity
(data may be captured everywhere); another advantage to
consider is the reduction of the computational power
needed by the processor in charge of computing the
navigation solution, since it will not be responsible of
managing the sensors acquiring data. For extended details
on the interface definition, please contact the authors.

The user/options interface is designed as a two-layer
interface. The lower one is based on files and interacts
directly with the platform component. On top of this one,
a user oriented interface (generally a command line or a
graphical user interface) is developed. This second
interface allows the SW dealer to modify determined
configuration states depending on the user needs. Thus,
for example, in a lab environment, the GUI should allow
the configuration of all the computation states, while, in a
factory environment, these options should be restricted to
the minimum. In this way the software can be used in
lab/research/factory environments by just changing the
most external layer, the GUI.

Architecture strengths and weakness
Since the proposed architecture fully relies on the
principles presented in previous sections, we can state that
it satisfies the requirements of the new generation of
navigation systems concerning quality assessment,
robustness, performance, extensibility, integrability and

usability. In the next section we present an
implementation of this architecture were we have been
able to demonstrate empirically that these requirements
are fulfilled.

As any other approach, the one proposed in this paper has
some drawbacks. In this case, at the implementation level.
For example, since we want to accommodate an
undetermined number of sensors in each execution we
have to take into account that the amount of memory used
will change from execution to execution, so dynamic
memory allocation should be used. Moreover, we can not
fine-tune the Kalman filter to improve matrix
management, since we do not know their dimensions a
priori. Thus, special attention on the computational
burden of the algorithms implemented must be paid.

A SAMPLE IMPLEMENTATION – NAVEGA

We have implemented the aforementioned architecture in
a SW system called NAVEGA. It is coded in C++ and
provides real time and post-processing trajectory
estimation under Windows and Linux operating system
running in different processor architectures like x86,
LEON3 and ARM. Currently the system includes a family
of Kalman filter algorithms and provides with Gaussian
states, this is the output are expected values and
covariance matrices. Furthermore, it also provides the
user with residuals expected and standard deviation
values, suitable for a posteriori trajectory analysis.

Until this moment, NAVEGA has been proved to be
extensible since it has already been used to process data
provided by several types of sensors like IMUS [11],
GNSS [12], redundant IMUS [11], LIDAR [13], camera
images [14] and odometers [15]. Since not all the
implemented sensor models are available in commercial
systems we validate NAVEGA solutions using indirect
methods. Using NAVEGA as positioning provider to
remote sensing platforms (like photogrammetry systems);
we compare the NAVEGA georeferenced data with
topographic measurements. Up to now, these comparisons
have shown the success of NAVEGA, that is, the
predicted state error estimation corresponds to actual state
error, or, in other words, the expected quality is achieved.
NAVEGA has also been successfully used for processing
data collected in a wide range of environments: airplanes,
helicopters [11] and terrestrial vehicles, either outdoors
and indoors [15].

Regading robustness issues, the implemented analysis
tools has been proven able to deal with odometers and
camera outliers. When working with GNSS modelling,
the system is able to detect outliers when these affect just
one satellite. At this moment, more than one outlier
cannot be properly detected.

NAVEGA has also been proven to be integrable since it
has been used in several projects as the location provider

of different services like a mobile mapping system [16] or
a GNSS receiver with tight coupling capabilities. [17]

With the previous examples we have been able to verify
that NAVEGA’s performance is suitable for a wide
range of platforms. NAVEGA is able to process
INS/GNSS solutions at 5000 Hz in Real Time when
running on an Odroid-XU3 with a negligible latency.

Last but not least, due to its file interface the system is
completely usable either for Kalman filter experts to
unexperienced users, through several GUIs.

CONCLUSIONS AND FURTHER RESEARCH

We have designed a trajectory determination modular,
generic and extensible system requiring only dynamic
libraries to be able to incorporate new sensors. We believe
that this approach responds to some of the challenges
posed by the design of modern system. The design
starting point is the abstraction of the traditional state-
space approach navigation algorithm in two main
components: estimation and modelling. This concept
translates into a SW component that allows for fast and
incremental modelling of multi-sensor navigation
systems. We expect that the current tool will benefit both
navigation and geomatic communities, particularly the
Earth Observation (EO), mapping and surveying teams
that perform primary data acquisition in kinematic mode
be it from airborne, terrestrial and marine manned and
unmanned vehicles.

Although a lot of effort has been devoted in the definition
of this architecture and its implementation, more efforts
need to be devoted to the implementation of the strategy
object. At this moment we have clearly defined the
principles on which this design is based and have
implemented the context adaptation concept, but we have
not analysed yet which is the best implementation for that
object in terms of performance. Our future research will
also be oriented to implement the context auto-
identification capability.

ACKNOWLEDGMENTS

The research reported in this paper started around eight
years ago at the former Institute of Geomatics and has
been funded by means of several European projects. We
would like to highlight IADIRA, ATENEA, ENCORE,
CLOSE-SEARCH, GAL and GINSEC. The authors
would also like to thank Deimos for their support. Last
but not least, the authors would like to thank Dr. Marta
Blàzquez, Mr Pere Molina and Dr. José Antonio Navarro
for their time, patience and helpful comments.

REFERENCES

[1] Groves P. D, Wang L., Walter D., Martin H., and

Voutsis K. “Toward a Unified PNT — Part 1,

Complexity and Context: Key Challenges of
Multisensor Positioning.” GPS World, October 2014.

[2] Groves P. D, Wang L., Walter D., Martin H., and
Voutsis K.”Toward a Unified PNT — Part 2,
Ambiguity and Environmental Data: Two Further Key
Challenges of Multisensor Positioning.” GPS World,
October 2014.

[3] Elassal, A.A. “Generalized adjustment by least

squares (GALS).” Photogrammetric Engineering and
Remote Sensing, Vol.49, Issue 2. 1983.

[4] Colomina, I., Navarro, J.A., Térmens, A., “GeoTeX: a

general point determination system”. XVIIth
International Congress of the ISPRS (International
Society for Photogrammetry and Remote Sensing),
1992.8.2-14, Washington DC.

[5] Colomina I., Blázquez, M., Navarro J.A., Sastre J.,

“The need and keys for a new generation network
adjustment software”, International Archives of the
Photogrammetry, Remote Sensing and Spatial
Information Sciences. 2012.

[6] Kalman,R.E. “A new approach to linear filtering and

prediction problems”. Transactions of the ASME,
Journal of Basic Engineering, Vol. 82, pp. 42-45.
1960.

[7] Ristic, Arulampelam, Gordon, 2004. ”Beyond Kalman

filter”. Ed. Artech House.

[8] Schön, Thomas B., et al. "Sequential Monte Carlo

Methods for System Identification." arXiv preprint
arXiv:1503.06058. 2015.

[9] Navarro, J., “Object oriented technologies and beyond

for software generation and integration in Geomatics.”
PhD. Thesis. November 1998.

[10] Molina, P. et al, “Qualitative Motion Analysis:

INS/GNSS in Care-Giving Applications” GPS world,
January 2011.

[11] Molina P., et al. “Drones to the rescue”,

InsideGNSS, pp. 36-47, July 2012.

[12] Silva P., Colomina,I. Miranda,C. Parés,M.E.,

“ENCORE: Enhanced Galileo Code Receiver for
Surveying Applications”, ION GNSS 2011.

[13] Montaño, J., et al. “Validation of inertial and

imaging navigation techniques for space applications
with UAVS”. Proceeding of the DASIA 2015
conference. Barcelona 2015

[14] Angelats E., Molina,P., Parés,M.E. Colomina,I.,

“A parallax-based robust image matching for

http://gpsworld.com/toward-a-unified-pnt-part-1/
http://gpsworld.com/toward-a-unified-pnt-part-1/
http://gpsworld.com/wirelesspersonal-navigationqualitative-motion-analysis-10885/
http://gpsworld.com/wirelesspersonal-navigationqualitative-motion-analysis-10885/
http://www.cttc.es/publication/drones-to-the-rescue/

improving multisensor navigation in GNSS-denied
environments”, in Proceedings of the ION GNSS+,
08-12 September 2014, Tampa, Florida (USA)

[15] Angelats,E. Parés,M.E. Colomina, I. “Methods,

algorithms and tools for precise terrestrial navigation”,
In Proceedings of 9th International Geomatic Week,
15-17 March 2011, Barcelona (Spain).

[16] Fernandez, A., et al. "ATENEA: Advanced

Techniques for Deeply Integrated GNSS/INS/LiDAR
Navigation," Proceedings of the 24th International
Technical Meeting of The Satellite Division of the
Institute of Navigation (ION GNSS 2011), Portland,
OR, September 2011, pp. 2395-2405

[17] Silva, P.F. da, et al., "IADIRA: Inertial Aided

Deeply Integrated Receiver Architecture,"
Proceedings of the 19th International Technical
Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS 2006), Fort Worth, TX,
September 2006, pp. 2686-2694.

