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ABSTRACT

Roughly once every 104 years, a star passes close enough to the supermassive black hole Sgr A* at the

center of the Milky Way to be pulled apart by the black holes tidal forces. The star is then spaghettified

into a long stream of mass, with approximately one half being bound to Sgr A* and the other half

unbound. Hydrodynamical simulations of this process have revealed that within this stream, the local

self-gravity dominates the tidal field of Sgr A*. This residual self-gravity allows for planetary-mass

fragments to form along the stream that are then shot out into the galaxy at velocities determined

by a spread of binding energies. We develop a Monte Carlo code in Python that models and plots

the evolving position of these fragments for a variety of initial conditions that are likely realized in

nature. This code utilizes an n-body integrator based in Mathematica to differentially solve for the

position, velocity, and acceleration of each fragment at every time step. From the produced data we

determine the probability distribution of bound and unbound fragments, along with a possible fraction

of fragments end up within a 8 kpc shell around the galactic center. This enables the calculation of

the distance at which the nearest fragment to our sun could potentially lie, which turns out to be

approximately 200 parsecs.
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1. INTRODUCTION

Stars orbiting the supermassive black hole at the center

of our galaxy have the potential to pass too close and be

disrupted by the black hole’s overwhelming gravitational

force. This tidal disruption event (TDE) is dependent

on the star passing within a distance known as the tidal

radius, determined by the mass of the black hole (MBH)

and the stellar mass and radius (M?, R?),

rt ' (R?/R�) ·
(
MBH/106M�
M?/M�

) 1
3

(1)

at which the black hole’s gravity overpowers the star’s

self-gravity (Rees 1988). A full or partially disrupted

star is characterized by the impact parameter β ≡ rt
rp

(where rp is the distance to the pericenter), and results

in a stream of debris whose volume increases linearly with

time.

Hydrodynamical simulations of this process have

demonstrated that the local self-gravity of the tidal

stream dominates the tidal gravity of the hole (Coughlin

& Nixon 2015). This results in the formation of frag-

ments along the stream that are then launched out into
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the galaxy with a range of binding energies. This frag-

mentation process poses various questions regarding the

evolution of these objects. In this paper, we seek to an-

swer: (1) What is the final spatial distribution of the

fragments produced from TDEs originating at the galac-

tic center, and (2) how near is the closest fragment to

our sun? Some fragments may move fast enough to es-

cape the galaxy entirely, with the other extreme being

fragments that remain closely bound to Sgr A*. There

may also be fragments with large elliptical orbits about

the galaxy, allowing them to travel far enough to be de-

posited near our Sun.

Our simulation of these fragments’ motion consists of

an initialization package written in Python and an N-

body integrator based in Mathematica. In Section 2,

we present an analytic analysis of the environmental as-

sumptions underlying our simulation, and in Section 3

describe in more detail the construction and steps taken

with our Python/Mathematica code. Section 4 presents

the results of our simulation and the analysis. We con-

clude in Section 5 with a discussion of our results’ im-

plications and additional questions to be posed regard-

ing fragment observability and the existence of fragments
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produced by TDEs in nearby galaxies.

2. FRAGMENTATION

For the purposes of our simulation, we work under the

assumption that fragments begin to form once the dis-

rupted stream cools to temperatures low enough for hy-

drogen recombination, Tf = 5× 103 K. The initial tem-

perature Ti at the core of the star can be calculated with

the stellar mass and radius, using the microscopic ideal

gas law P = nikbTi where ni = ρ?
µmp

is the initial num-

ber density calculated from stellar density ρ?, the mean

molecular weight of hydrogen µ = 0.5, and the mass of a

proton mp:

Ti =
P

nikb

=

[
1

4πR2
?

(
GM2

?

2R?

)](( 4
3πR

3
?

)
µmp

M?kb

)
Due to the dynamics of the stream’s expansion, the

change in volume is proportional to T
3
2 . Thus we calcu-

late an expansion factor α =
(
Tf

Ti

) 3
2

to determine the fi-

nal gas density when fragmentation occurs, given a value

β for our tidal disruption event

nf =
0.5 ni C(β)

α
(2)

where

C(β) ≡

exp
[
3.1647−6.3777β+3.1797β2

1−3.4137β+2.4616β2

]
, 0.5 ≤ β ≤ 0.9

1, β > 0.9

describes the fraction of stellar mass removed by the dis-

ruption (Guillochon & Ramirez-Ruiz 2015). The mass of

each fragment is simply the Jean’s mass:

Mfrag =
π

6

c3s
G3/2ρ1/2

(3)

= 1.74× 10−8MJ c
3
s n
− 1

2

f (4)

where cs =
√

γkbTf

µmp
is the sound speed, with γ = 5

3 for a

gas-pressure dominated polytropic fluid, and ρ = ρ∗/α.

The number of fragments can then be calculated by

dividing the fraction of stellar mass removed in the dis-

ruption (M = M? · C(β) given a specific β value) by the

mass of the fragment as determined in Equations (3-4):

Nfrag =
0.5 M? C(β)

Mfrag
(5)

Given the initial position and velocity vectors for a

fragment (the determination process of this is described

in Section 3), we solve for the evolution of a fragment’s

position ~r(t) through the second order differential force

equation mfrag · ~r′′(t) =
∑N
i=1 Fi at each time step 0 ≤

t ≤ tmax. The forces that a fragment experiences include

the gravitational attraction of Sgr A* and forces derived

from the gravitational potential of the Milky Way, as

described in Kenyon et al. (2014):

Fi = (FBH)i + (Fb)i + (Fc)i + (Fd)i + (Fh)i (6)

where i = 1, 2, 3 indicates the x, y, and z component of

the force, and

(FBH)i =
−GMBH~ri

r3
(7)

(Fb)i =
−GMb~ri
r2(rb + r)

(8)

(Fc)i =
−2GMBH~ri

max(rc, r) · r2
(9)

(Fd)i =
−GMd~ri

(x2 + y2 + [ad + z2 + b2d]
2)1.5

(10)

(Fh)i = −GMh~ri ·

(
ln(1 + r

rh
)

r3
− 1

r2(r + rh)

)
(11)

are the forces due to Sgr A*, the galaxy bulge, cluster,

disk, and halo (respectively). The necessary parameters

are set as defined in Kenyon et. al (2014): for the bulge,

disk, and halo, Mb = 3.76× 109M�, Md = 6× 1010M�,

and Mh = 1012M�. The radius of the halo and bulge are

rh = 20 kpc and rb = 0.1 kpc. The parameters ad = 2.75

kpc and bd = 0.3 kpc are set such that the disk potential

matches a circular velocity of 235 km s−1 at the position

of the sun.

3. METHODS

Our simulation is first initialized through a package

written in Python, which inputs the user-driven variables

of number of stars disrupted. The main ”TDESim” ini-

tializing class defined within the package randomly draws

the necessary parameters that define the star being dis-

rupted (e.g. stellar mass, radius, tidal radius), and the

disruption itself (β, the number of fragments produced,

the specific binding energy spread). It then calculates,

using these parameters, an initial position and velocity

vector for each fragment . These values are written into a

JSON file that is uploaded into Mathematica, and used

as starting positions for a integrator written within a

Mathematica notebook. This integrator outputs as so-

lutions for each fragment an interpolation function de-

scribing the evolution of x, y, and z positions over the

integrated time.

3.1. Python Initialization

The mass of Sgr A* is initialized as MBH = 4×106M�.

For each star, the stellar mass is randomly drawn over

the interval [0.1M�, 100M�] using an inverted cumula-

tive distribution function derived from Salpeter’s initial

mass function. The stellar radius is calculated through a



Spatial distribution of fragments formed from tidally disrupted stars 3

mass-radius power law R? ∝M0.8
? , with the tidal radius

determined from MBH and the stellar mass and radius.

To calculate the number of fragments produced in

a given simulated TDE, β is drawn over the interval

[0.5, 2.5] from the appropriate distribution. The mass

of the fragment is then calculated as a function of β and

used to determine the number of fragments given the

stellar mass.

We then set the position vector ~r? of the star using

random sphere point picking at a distance rp away from

the galactic center. rp signifies the periapse of the star’s

orbit and is determined by the relation β = rt
rp

. To deter-

mine the position vectors of fragments produced in each

simulated TDE, we take the same directional vector r̂?
of the disrupted star, multiply this unit vector by the

magnitude of the stellar radius, and partition it evenly

based on the number of fragments being produced.

The direction of the each fragments’ velocity vector is

randomly determined on a plane perpendicular to ~r? us-

ing an rotation angle φ randomly drawn from a uniform

distribution over the interval [0, 2π). The magnitude of

each velocity is determined by the spread of binding en-

ergy of the fragments. This binding energy spread is

calculated using our drawn β to interpolate a proper en-

ergy distribution associated with this value. Given the

number of fragments, the binding energy of each frag-

ment is calculated by partitioning the interval [0,1] into

Nfrag points and evaluating our interpolated energy dis-

tribution at each point. This binding energy is then mul-

tiplied by an energy scale, and the scaled energy is used

to calculate total velocity of the fragment,

vfrag = v∞ + vh =
√

2E +
2GMBH

rt
(12)

To transfer all this data describing the initial position

and velocity vectors of each fragment produced in each

simulated TDE, the initialization code writes it into a

JSON file. The JSON file is formatted as a nested list,

with the elements being dictionaries associated with each

star. Within each dictionary are the keys x, y, z, vx,

vy, vz; the values associated with these keys are lists

containing the x/y/z/vx/vy/vz values of each fragment

produced in the indexed star’s disruption.

3.2. Mathematica-Based N-body Integrator

Mathematica possesses a powerful capacity for integra-

tion and is unparalleled by open-source but numerically

limited n-body integrators based in Python. Namely, it

can calculate arbitrary order solutions which allow for

accurate resolution on a range of scales, i.e. solutions

that model both short-range distances when the force

of the black hole overpowers all other contributions, and

long-range distances when the forces of the disk and halo

dominate. For this reason, we were compelled to utilize

this program as our main machinery in integrating, as

our simulation consists of thousands of particles expe-

riencing such complicated forces. We define necessary

constants in cgs units (e.g. 1 M�, 1 year, 1 parsec) and

the forces that each particle is experiencing due to the

black hole, the galactic bulge, cluster, disk, and halo.

The JSON data file is then imported, with the number

of stars extracted from the length of the data file, and

each Nfrag varying based on the index of the star.

The integrator uses the Do iteration within

Mathematica to iterate over each index 1 ≤ i ≤ Nstars.

The number of fragments is determined from the ith

element of our data set (which is a dictionary containing

the initial values associated with each fragment), and

serves as the range of our second iteration. The initial

position and velocity components are then extracted

utilizing this indexed dictionary, and are extracted for

all fragments by iterating over 1 ≤ j ≤ Nfrag.
Once the inital values for each fragment are extracted,

the integrator uses NDSolve to find a solution for the frag-

ment’s F = ma equations with each time-step. NDSolve

is parameterized by a maximum integration time (1010

years), a maximum number of steps (104), and an ”Event

Method” which stops the integrator if a negative radial

velocity is calculated. This is to avoid the repeated calcu-

lation of a bounded fragment’s orbit. Thus, we calculate

a fragment’s position up to the time at which the frag-

ment is the farthest away from the galactic center.

Our solutions x(t), y(t), and z(t) are in the form in-

terpolated functions, with varying domains of t. These

solutions are organized within a nested list, in which a

solution is indexed by the star and the fragment. Simi-

larly, the maximum time for each fragments interpolated

solution is stored within a nested list. Remark that for

unbounded fragments, tmax = 1010 years, whereas for

bounded fragments, tmax < 1010 years. We use this dis-

tinction to separate the unbounded from the bounded

fragments into nested lists objects. Data is visualized

via Histogram and Plot methods.

4. RESULTS

A set of 50 tidal disruptions were simulated, with the

number of fragments per disruption determined from

the randomly drawn stellar mass and beta through the

method described in Section 2. Bound and unbound frag-

ments were separated and plotted in a combined his-

togram and two separate histograms. For the bound

fragments, the histogram binned the length of the frag-

ments’ apoapsis, while the histogram of unbound frag-

ments binned the distance of the fragment from the

galactic center at time tmax = 1010 years.

There were a total of 613 fragments characterized as

bound and 10,860 characterized as unbound. Approx-

imately 50.9% of the bound fragments had an apoap-
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Figure 1: Histogram plots of bound and unbound frag-

ments. The log10 of r defines each bin. For the bound

fragments, r signifies the fragments apoapsis. For the un-

bound fragments, r signifies the final distance the frag-

ment has travelled. Each bin r has a height equal to

log10(P (r)), where P (r) = Count(r)
N with N representing

the total number of bound [unbound] fragments.

sis within 0.1pc. Furthermore, approximately 88.9% of

bound fragments had an apoapsis less than or equal to

100 pc. Thus, the vast majority of bound fragments end

up being very closely bound to the black hole. A siz-

able drop in fragment count occurred past the 103 par-

secs, with only 38 total fragments possessing an apoapsis

within the range 103 − 104 pc (1-10 kpc). However, re-

stricting to the 103 pc - 106 pc range, we find a small

bump in fragment count: 3.425% of fragments having an

apoapsis in the range 104 − 105 pc, while 2.773% and

1.794% lie within the range 103 − 104 pc and 105 − 106

pc respectively.

For the unbound fragments, the probability count of

each bin increases in a practically logarithmic fashion.

Thus, the majority of the fragments (77.514%) end up

at a distance 107 − 108 pc from the galactic center. The

maximum distance traveled by an unbound fragment is

1.334× 108 pc, with 21.63% of unbound fragments trav-

elling a distance within the range 108 − 109 pc from the

galactic center. Only 93 unbound fragments (0.856 %)

traveled a distance less than 107 pc from the galactic

center.

To estimate a minimal distance at which a fragment

might be deposited near our sun, we must first have a

sense of how many bound fragments have been produced

by tidal disruption throughout Hubble time, Ntot. We

can visualize a certain fraction F of these bound frag-

ments having an apoapsis rf in the range 7 kpc to 9 kpc,

i.e. a fraction of bound fragments being deposited within

a spherical shell of δ = 1 kpc at a distance 8 kpc from the

galactic center. If we position ourselves at the sun and

denote a ”surveying radius” r in parsecs, we can calculate

the amount of fragments deposited within our surveying

sphere by taking the number of fragments within our 1

kpc thick spherical shell, Nf = Ntot ·F , and multiplying

it by the ratio of the volume of our surveying sphere and

the volume of the spherical shell:

f(r) = Nf

4
3πr

3

Vδ

= (Ntot · F )
4
3πr

3

4
3π(9000)3 − 4

3π(7000)3

= (Ntot · F )
r3

3.86× 1011

Thus, by setting f(r) = 1 in the above equation, we can

solve it for the minimal distance r:

1 = (Ntot · F )
r3

3.86× 1011

From our data regarding bound fragments, we can cal-

culate the approximate fraction bound of fragments pro-

duced by a tidal disruption that are deposited with a

spherical shell of thickness δ = 103 pc at a distance 8×103

pc from the galactic center:

F =
# of bound fragments, 7000 < rf < 9000

# of bound fragments

= 3.26× 10−3

The data also provides an approximate number of bound

fragments produced per tidal disruption event,

nbound =
# of bound fragments in simulation

# of stars disrupted in simulation

= 12.26

Assuming that tidal disruption events occur at a rate

Γ = 10−4 yr−1, we surmise the total number of bound

fragments produced from every tidal disruption that oc-

curs in 1010 years:

Ntot = nbound Γ tmax = 1.226× 107

The distance in parsecs of the nearest fragment to our

sun is the solution to the equation

1 = (Ntot · F )
r3

3.86× 1011

=
4× 104

3.86× 1011
r3

= (1.04× 10−7) r
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We find a solution to the above with r = 212.9 parsecs.

5. DISCUSSION

5.1. Observability

Given the existence of fragments produced in tidal dis-

ruption events, along with their potential proximity to

our solar system, our work motivates questions regard-

ing their observability. Namely, is it possible to observe

one of these fragments considering their material compo-

sition and evolution and our own limited observational

instruments? To answer this question requires additional

insights into the process of cooling that each fragment

inevitable undergoes as it is ejected out of the galactic

center.

The fragments produced in a tidal disruption event can

be broadly thought of as Jupiter-sized masses comprised

pure hydrogen and helium, with the existence of other

elements depending on where exactly in the stream the

fragment forms. It has no core and thus no source of

internal energy, and will be hottest right at the onset

of its collapse. We propose that given their probable

material composition and cold temperature, these frag-

ments would look somewhat like extremely cold brown

dwarfs. Additional insight into the evolution of the ma-

terial composition of tidally disrupted stellar fragments

could be gained from utilizing stellar evolution simula-

tion codes, such as MESA, to simulate this process more

in depth.

For the purpose of this discussion, we can roughly de-

scribe the cooling curve of the fragment, with the lumi-

nosity proportional to the mass of the fragment M and
1
t (Marleau & Cumming 2014):

L = 7.85× 10−6L�
(M/3 MJ)2.641

(t/10 Myr)1.297

From this, we derive the luminosity-time dependency for

a 1.5 Jupiter-mass fragment:

L = 7.85× 10−6L�
(1.5/3)2.641

(t/10 Myr)1.297

=
1.26× 10−6

(t/10 Myr)1.297
L�

An obvious result is that the older the fragment is, the

less luminous it will be. Considering our oldest frag-

ments, which will have existed no longer than Hubble

time (104 Myr), the luminosity of such objects would be

around 1.62 × 10−10 L�, which corresponds to an ab-

solute magnitude of 29.25. At 212.9 parsecs, an object

with this magnitude would have an apparent magnitude

of 35.88. This apparent magnitude is on the order of the

the faintest objects observed optically by the European
Extremely Large Telescope, meaning that with our most

sensitive telescopes, a stellar fragment could possibly be

detected optically. More certainly would such objects be

detectable in the infrared spectrum, having cooled down

significantly (1,000 - 10,000 K) as it traveled through the

galaxy. An additional technique that could be used to

identify these objects is microlensing, with the fragment

serving as the lens to some bright background source

(e.g. a star). The characteristic angle for gravitational

lensing scales as θE ∼
√
Mfrag, and given that most

fragments move at speeds on the order of 1000 km s−1,

a microlensing event can be transient enough for the ap-

parent change in the source’s brightness to be detected.

5.2. Intergalactic TDE Fragments

Our simulations have demonstrated that a majority

of fragments produced by tidal disruptions in our galaxy

are unbound to the black hole and traveling at relativistic

speeds - the fastest of these being shot out at velocities

on the order of 1×107 m s−1! Fragments that are bound

are more likely to possess tightly bound orbits around

Sgr A*, with only 0.326 % of fragments ever traveling

within a spherical shell of thickness 103 pc at a distance

8 × 103 pc from the galactic center. It is the frequency

of tidal disruption events in our galaxy that allow for

large enough fragment production, such that fragments

are adequately deposited in this shell and we can derive

the nearest fragment to be 212.9 parsecs from our sun.

However, the sheer magnitude of unbound hyperveloc-

ity fragments produced by TDEs in our galaxy, all of

which definitively escape our galaxy, pose the question:

to what extent is the Milky Way populated by stellar

fragments produced by TDEs originating in other galax-

ies? Consider the Virgo cluster, a cluster of roughly 2000

galaxies lying approximately 2 × 107 parsecs away from

the Milky Way. As our data demonstrated, we could

possibly conjecture that over 70% of the unbound frag-

ments produced by tidal disruption events originating

from galaxies within the virgo cluster travel the neces-

sary distance to reach our own galaxy. Singular galaxies

that lie a similar distance from our own include NGC

1300 (1.87× 107 pc) and the Tadpole galaxy (1.29× 108

pc).

REFERENCES

Coughlin, E. R., & Nixon, C. 2015, ApJL, 808, L11

Guillochon, J., & Ramirez-Ruiz, E. 2015, ApJ, 809, 166
Kenyon, S. J., Bromley, B. C., Brown, W. R., & Geller, M. J.

2014, ApJ, 793, 122
Marleau, G.-D., & Cumming, A. 2014, MNRAS, 437, 1378

Rees, M. J. 1988, Nature, 333, 523

http://dx.doi.org/10.1088/2041-8205/808/1/L11
http://dx.doi.org/10.1088/0004-637X/809/2/166
http://dx.doi.org/10.1088/0004-637X/793/2/122
http://dx.doi.org/10.1093/mnras/stt1967
http://adsabs.harvard.edu/abs/1988Natur.333..523R

