
inIT – Institute Industrial IT
Hochschule Ostwestfalen-Lippe
University of Applied Sciences

Liebigstraße 87
D-32657 Lemgo

Professorship of Discrete Systems
Prof. Dr.-Ing. Volker Lohweg
Tel.: 05261 / 702-2408
E-Mail: volker.lohweg@hs-owl.de

Discrete Systems Group
M.Sc. Christoph-Alexander Holst
Tel.: 05261 / 702-5592
E-Mail:
christoph-alexander.holst@hs-owl.de

Technical Report

Automated Fusion System Design and
Adaptation Implementation

Author Date Version
Christoph-Alexander Holst 24.03.2017 0.0

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

1/16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144775731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:volker.lohweg@hs-owl.de
mailto:{}\christoph-alexander.holst@hs-owl.de
mailto:{}\christoph-alexander.holst@hs-owl.de

Contents

1 Introduction 3

2 Example Scenarios 5
2.1 Intaglio Printing Unit . 5
2.2 Room Monitoring . 7

3 Implementation 9
3.1 Intelligent Sensors . 9
3.2 System Manager . 9
3.3 System- and Self-Description . 10
3.4 Software Requirements . 11

3.4.1 Development Environment and Source Code 11
3.4.2 Installations on Raspberry Pi . 12
3.4.3 OPC UA Discovery Server . 12

3.5 Starting the Orchestration Software . 13

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

2/16

1 Introduction

This published prototype is an implementation of the automated fusion system design pro-
posed in the journal article [FMH+17]. The implementation orchestrates a distributed infor-
mation fusion system, i. e., it identifies features and attribute supported by the system. The
automated orchestration is carried out at a central device called system manager. Basic ele-
ments of the fusion system are intelligent sensors. Intelligent sensors monitor a system using
elementary sensors (e.g., temperature sensors or acoustic sensors) [MDL+16, FML16]. The
sensor signals of all intelligent sensors are gathered and fused to evaluate the condition (i.e.,
health) of the monitored system. An intelligent sensor is additionally equipped with proces-
sor units, memory, and communication interfaces. It is self-adaptable and self-aware. An
intelligent sensor hosts a semantic self-description stating available elementary sensors and
algorithms. Algorithms are used to extract certain features from sensor signals. This imple-
mentation uses the Raspberry Pi 3B as platform for intelligent sensors [Ras]. The Raspberry
Pis 3B supports several interfaces to read multiple elementary sensor signals. This implemen-
tation reads sensor signals via the Serial Peripheral Interface (SPI). Communication between
intelligent sensors uses the Raspberry Pi’s Ethernet interface. All communication for the or-
ganisation and configuration of the fusion system uses TCP/IP. Process data (sensor signals
and features) are communicated via an Industrial Ethernet in real-time. The process data com-
munication is not part of this publication.

The automated fusion system design is structured into the following four phases:

1. Discovery: The system manager searches for available intelligent sensors. The discov-
ery phase is carried out continuously independent of the other three phases. If a new
intelligent sensor is discovered, the knowledge building phase is triggered.

2. Knowledge Building: Semantic information (self-description of intelligent sensors) is
transferred to a knowledge base at the system manager.

3. Orchestration: The system manager carries out the fusion system configuration auto-
matically.

4. Operation: All intelligent sensors periodically send their sensor signals and features to
the system manager using a real-time Ethernet protocol.

Discovery of intelligent sensors and transfer of semantic information is implemented using
the Open Platform Communication Unified Architecture (OPC UA). OPC UA offers a Local
Discovery Server (LDS), which exposes available OPC UA servers in a local network. As
soon as the system manager has discovered an intelligent sensor, the semantic self-description
is collected and stored in the system manager’s knowledge base. Then, the fusion system is
orchestrated using a rule-based system. The orchestration engine identifies based on available
sensors and algorithms features and different kinds of attributes (physical, module, functional,

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

3/16

quality). For details about the orchestration process and the rule-based system the reader is re-
ferred to the corresponding journal article [FMH+17]. The last step in the orchestration phase
is the creation of an configuration file for the real-time communication. This configuration file
is used to determine the layout of the real-time Ethernet communication network.

The remaining parts of this publication are structured as follows. Chapter 2 presents two
exemplary application scenarios. The application scenarios are described in detail regard-
ing monitored system, applied intelligent sensors, identified features, and identified attributes.
Chapter 3 focuses on the implementation specifics. There, the structure of the provided soft-
ware, the system- and self-descriptions, and software requirements are detailed. This chapter
provides furthermore instructions for starting the orchestration application.

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

4/16

2 Example Scenarios

This chapter describes two application scenarios. In the first scenario an intaglio printing unit
is monitored and its condition assessed, whereas in the second scenario a room in a private
home with a sleeping infant is observed. It is specified for each scenario which intelligent
sensors, elementary sensors, and algorithms are applied. Furthermore, it is shown which
features and attributes are identified by the orchestration process. This publication provides
the necessary semantic self-description files for the intelligent sensor.

2.1 Intaglio Printing Unit

The automated fusion design system proposed in [FMH+17] is evaluated with respect to an
intaglio printing unit demonstrator. Intaglio is the prevalent technique for manufacturing se-
curity prints such as banknotes. Main component in an intaglio printing unit is a plate cylinder
carrying the printing ink. The printing pattern is etched into the cylinder surface. The cylinder
rotates through an ink container absorbing the ink into the etchings. The actual printing takes
place by pressing the rotating plate cylinder against the printing substrate. Frequently occur-
ring errors result from the plate cylinder carrying too much ink. This surplus ink is wiped off
by a wiping cylinder, pressed against the plate cylinder and rotating in the opposite direction.
The wiping cylinder is linearly movable with a motor to adjust the contact force with which it
presses against the plate cylinder.

The hierarchy of the modules is shown in Figure 2.1. The overall monitored system is the
printing unit. Its sub-modules are the plate and wiping cylinder. The plate cylinder consists
of the module motor1 which rotates the cylinder, whereas the wiping cylinder contains the
module motor2 for rotating and module motor3 for moving the cylinder linearly. In total
seven elementary sensors are applied to monitor characteristics of the demonstrator. The tem-
perature and electric current of motor1 and motor2 are measured by four elementary sensors.
The wiping cylinder is equipped with two additional sensors capturing solid-borne sound and
contact force. These determine if the wiping cylinder is pressed against the plate cylinder
correctly. The last sensor measures the acoustic of the total printing unit. The printing unit
demonstrator is equipped with three intelligent sensors. All applied sensors, their measured
physical quantities, monitored modules, related intelligent sensors, and input channel are pre-
sented in Table 2.1.

The intelligent sensors additionally provide algorithms for feature computation. In this
example scenario two algorithms are implemented. Algorithm A1 is a mean operator, whereas
algorithm A2 is a variance operator. These are detailed in Table 2.2. Algorithms are only
applicable to sensor signals with matching physical quantity and dimensionality.

Table 2.3 shows the set of available intelligent sensors and the implemented elementary
sensors and algorithms.

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

5/16

Printing Unit

Plate Cylinder Wiping Cylinder

Motor 1 Motor 2 Motor 3

Figure 2.1: Hierarchical representation of the printing unit demonstrator.

Table 2.1: Available sensors and their characteristics.
Solid Sensor Physical Quantity Associated Object Intelligent Sensor Input

S1 temperature motor 1 Intelligent Sensor 3 SPI Channel 0
S2 temperature motor 2 Intelligent Sensor 2 SPI Channel 0
S3 electric current motor 1 Intelligent Sensor 1 SPI Channel 0
S4 electric current motor 2 Intelligent Sensor 1 SPI Channel 2
S5 solid-borne sound wiping cylinder Intelligent Sensor 2 SPI Channel 2
S6 contact force wiping cylinder Intelligent Sensor 1 SPI Channel 4
S7 acoustic printing unit Intelligent Sensor 2 SPI Channel 4

Table 2.2: Available algorithms and their characteristics.
Algorithm Type Physical Phenomena

A1 mean operator temperature, electric current
A2 variance operator acoustic, solid-borne sound, contact force

Table 2.3: Intelligent sensors and their equipment.
Intelligent Sensor Elementary Sensors Algorithms
Intelligent Sensor 1 S1 A1
Intelligent Sensor 2 S3,S4,S6 ∅
Intelligent Sensor 3 S2,S5,S7 A2

Based on the available elementary sensors and algorithms, the orchestration engine infers
features. Sensors Sj are assigned to algorithms Ak resulting in a set of features F. Table 2.4
lists the set of inferred features with respect to the previously mentioned system set-up.

Table 2.4: Generated features of the orchestration procedure.
Feature Sensor Algorithm Algorithm Type Physical Phenomenon Associated Object

F1 S1 A1 mean operator temperature motor 1
F2 S2 A1 mean operator temperature motor 2
F3 S3 A1 mean operator electric current motor 1
F4 S4 A1 mean operator electric current motor 2
F5 S5 A2 variance operator solid-borne sound wiping cylinder
F6 S6 A2 variance operator contact force wiping cylinder
F7 S7 A2 variance operator acoustic printing unit

The automated orchestration results in four attributes, two physical (a1, a2) and two module
attributes (a3, a4). Physical attribute a1 relates to the measured quantity temperature, while a2
relates to the quantity electric current Attribute a3 evaluates the health of the wiping cylin-

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

6/16

der, whereas a4 evaluates the plate cylinder. Additionally, functional attribute a5 is designed
manually. The functional attribute is specified in the file “FunctionalAttributes.csv” located in
the provided source package at ./Orchestration/Java/SystemManager/System/PrintingUnit/. It
assesses the running smoothness of the overall printing unit. All attributes are listed in Table
2.2.

Table 2.5: Resulting attributes of the orchestration.
Attribute Attribute Type Characteristic Associated Object Cai

a1 physical temperature printing unit {F1, F2}
a2 physical electric current printing unit {F3, F4}
a3 module wiping cylinder {F2, F4, F5, F6}
a4 module plate cylinder {F1, F3}
a5 functional running smoothness printing unit {F3, F4, F5, F7}

2.2 Room Monitoring

The second example scenario included in this publication describes a condition monitoring
system of an infant sleeping in a domestic room. In this scenario temperature, acoustics, and
light are measured to determine if everything is fine with the sleeping infant. The monitored
system comprises two modules, the room itself and a sub-module window which describes
the area of the room around its window. The condition of the room is captured with two
temperature, one acoustic, and one light sensor. The window area is again monitored by two
temperature sensors. The sensors are assigned to two intelligent sensors and are read via the
SPI interface. Details to all sensor are show in Table 2.6.

Table 2.6: Available sensors and their characteristics.
Solid Sensor Physical Phenomenon Associated Object Intelligent Sensor Input

S1 temperature window Intelligent Sensor 1 SPI Channel 4
S2 temperature window Intelligent Sensor 1 SPI Channel 6
S3 light / brightness room Intelligent Sensor 1 SPI Channel 0
S4 acoustic room Intelligent Sensor 1 SPI Channel 2
S5 temperature room Intelligent Sensor 2 SPI Channel 4
S6 temperature room Intelligent Sensor 2 SPI Channel 6

Similar to the printing unit scenario, the intelligent sensors in this example provide two
algorithms, a mean and a variance algorithm, as listed in Table 2.7.

Table 2.7: Available algorithms and their characteristics.
Algorithm Type Physical Phenomena

A1 mean operator temperature, electric current
A2 variance operator acoustic, solid-borne sound, contact force, light

The assignment of sensors and algorithms to each intelligent sensor is shown in Table 2.8.
The orchestration results in six features and three attributes. Automatically identified at-

tributes are two physical stating the condition regarding temperature in the room and at the

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

7/16

Table 2.8: Intelligent sensors and their equipment.
Intelligent Sensor Solid Sensors Algorithms
Intelligent Sensor 1 S1,S2,S3,S4 A1, A2
Intelligent Sensor 2 S5,S6 ∅

window. Additionally, the functional attribute is sleeping is defined manually which deter-
mines if the infant is still sleeping. The functional attribute relies on the acoustic sensor (infant
is crying) and the light sensor (infant managed to switch the light on). Identified features are
listed in Table 2.9 and identified attribute are shown in Table 2.9.

Table 2.9: Generated features of the orchestration procedure.
Feature Sensor Algorithm Algorithm Type Physical Phenomenon Associated Object

F1 S1 A1 mean operator temperature window
F2 S2 A1 mean operator temperature window
F3 S3 A2 variance operator light room
F4 S4 A2 variance operator acoustic room
F5 S5 A1 mean operator temperature room
F6 S6 A1 mean operator temperature room

Table 2.10: Resulting attributes of the orchestration.
Attribute Attribute Type Characteristic Associated Object Cai

a1 physical temperature window {F1, F2}
a2 physical temperature room {F5, F6}
a3 functional is sleeping system {F3, F4}

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

8/16

3 Implementation

This chapter outlines the structure of the implemented software for intelligent sensors and
the system manager. Furthermore, all system- and self-description files are discussed. It is
described where changes need to be made to the description files in order to add or alter sensors
and algorithms. Following this, the chapter outlines software requirements and necessary
installation steps. Finally, instruction on how to start the orchestration application are given.

3.1 Intelligent Sensors

Intelligent sensors are implemented as OPC UA servers. The source code is provided at the
directory ./Orchestration/Java/IntelligentSensor/src/. The source coded is structured into six
packages. The fileManager package implements a function for reading the intelligent sen-
sor’s self-description. The fileManager uses a Java implementation of SensorML. The fu-
sion.manager package holds Java classes that are required to carry out the information fusion.
Intelligent sensors, solid sensors, algorithms, and features are implemented as separate ob-
jects. Each object holds semantic information that is read from the self-description. The fu-
sion.manager.aggregation package implements a unimodal potential function and fuzzy mem-
bership function necessary to fuse features into attributes. The gpioreader package includes
several interfaces to read signals from solid sensors. The package supports to connect solid
sensors to a Raspberry Pi via Universal Asynchronous Receiver Transmitter (UART), Serial
Peripheral Interface Bus (SPI), and Universal Serial Bus (USB). The interface of a specific
sensor is specified in its self-description. It is automatically initialised after start-up of the in-
telligent sensor. To access the interfaces the Pi4J [Pi4] library is implemented. The remaining
packages refer to OPC UA. The main class ServerMain.java of the implementation is available
from the opcua.server package. The OPC UA part of the application initialises the server and
generates OPC UA nodes for the exchange of semantic information of the intelligent sensor.
The initialisation is carried out in the class MyNodeManager.java. All opcua.types packages
are auto-generated from the OPC UA information model.

3.2 System Manager

The system manager is implemented as an OPC UA client. The source code is provided at
the directory ./Orchestration/Java/SystemManager/src/. The source coded is structured into
four packages. The fusion.manager package holds Java classes that represent objects for the
fusion system (sensors, algorithms, features, and attributes). Note that the implementation is
not equal to the package of the server. Attribute fusion is carried out only at the system man-
ager. Thus, the fusion.manager.aggregation package implements the BalTLCS and IIWOWA

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

9/16

operator (cf. [Mön17] for details about these operators). The overall application is a knowl-
edge based system. The knowledge base is implemented in the fusion.orchestration package.
All information required for self-configuration is stored in this knowledge base. It serves as
basis for the orchestration procedure. Similarly to the intelligent sensor implementation, the
remaining packages refer to OPC UA and include the main class of the project. The Client-
Main class implements both the routine for detection of intelligent sensors and the transfer
of semantic information. The remaining opcua.types packages are auto-generated following
from the OPC UA information model.

The system manager includes the specified functional attributes in the file “FunctionalAt-
tributes.csv” located at ./Orchestration/Java/SystemManager/System/"Scenario". It is read au-
tomatically by the system manager application.

The system manager can either be installed on a separate device (Raspberry Pi or windows
machine), but can also run in parallel to an intelligent sensor application, i. e., a single device
(Raspberry Pi) can serve both as an intelligent sensor and as the system manager.

3.3 System- and Self-Description

The orchestration of an information fusion system is based on semantic descriptions of the
monitored system, available sensors and algorithms. The descriptions are written in Sen-
sorML, which is a XML-based description language specifically designed for use in the sen-
sor domain. A complete introduction to SensorML and its implementation can be found in
[BoR14]. SensorML files are used to describe four types of objects: intelligent sensors, solid
sensors, algorithms, and modules. Each object (also referred to as component) is specified in
a separate SensorML file. Files describing the intelligent sensor, solid sensors, and algorithms
are stored at an intelligent sensor. The files are located, e. g., for the printing unit scenario
at ./Orchestration/Java/IntelligentSensor/System/PrintingUnit/ . Files for all modules of the
monitored system are stored at the system manager. These are located for the printing unit
scenario at ./Orchestration/Java/SystemManager/System/PrintingUnit/Modules/ . Each Sen-
sorML file is structured into different sections (e. g., header or system description). In the
following the most important sections for each component type (intelligent sensor, module,
etc.) are outlined.

All four component types make use of the system description section. It provides gen-
eral information about the described object. The system description consists of a description
and a name entry, which are human-understandable text strings, and an identifier entry. The
identifier provides the UID of the component which has to be unique in the fusion system.

An intelligent sensor SensorML file is the basis for the self-description of an intelligent
sensor (e. g., file “INTELLIGENT_SENSOR1.xml” for the printing unit scenario provided at
directory ./Orchestration/Java/SystemManager/System/PrintingUnit/). It includes and links to
separate solid sensor and algorithm descriptions in the components section. A SensorML com-
ponent specifies a name (e. g., current1), a title (e. g., inIT:sensors:current1) and a role (sensor
or algorithm). It provides additionally a reference to the SensorML file of the component.

The description of a solid sensor states for example its manufacturer, physical characteris-
tics, signal characteristics and monitored module. Most important for the orchestration process
are the monitored module, the captured physical quantity and dimensionality of the signal. The

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

10/16

monitored module is specified using the featuresOfInterest section. It provides a textual title
of the module and a link to the associated SensorML file. For example, the temperature sensor
2 from the printing unit scenario has the feature of interest inIT:modules:motor2 whose ex-
plicit description is available at the local directory specified by the href attribute. The captured
physical quantity is stated in two sections, first in the classification section at the term Physi-
calQuantity and second in the outputs section at the field named type. To change the captured
physical quantity of a solid sensor, both entries need to be altered. The dimensionality of the
sensor signal is also stated in the outputs section. There, it is to be found at the field named
dimensionality.

An algorithm description file states the allowed characteristics of input signals and the char-
acteristics of the extracted feature. Allowed input signals are specified in the inputs section
comprising dimensionality and a list of physical quantities. The output feature is defined in
the outputs section stating the dimensionality and the type of the feature (e. g., mean or vari-
ance). For instance, the mean algorithm allows one-dimensional input signals capturing the
temperature or electric current of the observed object. It applies a mean operator and outputs
a one-dimensional feature.

A module file includes besides the system description a section stating child and parent
modules with regard to the hierarchy of the observed system. For example , motor2 in the
printing unit scenario has the parent inIT:modules:Wiping Cylinder. The child and parent
identifiers are used by the orchestration engine to build the hierarchy of the monitored system.

3.4 Software Requirements

This section details necessary software installations for the involved computer systems. The
following assumes that the system manager and intelligent sensors run on Raspberry Pis. The
OPC UA Local Discovery Server needs to run on an external windows machine.

3.4.1 Development Environment and Source Code

The code for the implementation was written using the Eclipse IDE for Java Developers in
version Neon.2 Release (4.6.2)1. The implemented program depends on libraries and code
from the Prosys OPC UA Java SDK 2 toolkit. The Prosys software is licensed proprietarily,
and is hence not provided in this publication. In order to compile and run the fusion design
software, it is necessary to acquire the OPC UA Java SDK software from Prosys directly. We
used an evaluation license in version 2.1.0-436. As soon as the Prosys software is available,
the following files need to be copied to their intended directories:

– Library jar-file: The library file Prosys-OPC-UA-Java-SDK-Client-Server-*.jar needs
to be copied to ./Orchestration/Java/SystemManager/lib/ and ./Orchestration/Java/Intel-
ligentSensor/lib/ .

– codegen folder: The content of the codegen folder (included in the Prosys software)
needs to be copied to ./Orchestration/Java/SystemManager/codegen/ and ./Orchestra-

1Eclipse website (2017-03-31) https://eclipse.org/
2ProSys OPC Ua Java SDK (2017-03-31) https://www.prosysopc.com/products/opc-ua-java-sdk/

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

11/16

https://eclipse.org/
https://www.prosysopc.com/products/opc-ua-java-sdk/

tion/Java/IntelligentSensor/codegen/ . Please note, the codegen.properties file must not
be replaced in the copying process.

– demo files: The Prosys software is delivered with a demo application in the folder named
samples. The samples folder includes a com folder. The com folder needs to be copied
to ./Orchestration/Java/IntelligentSensor/src/ .

3.4.2 Installations on Raspberry Pi

Before a Raspberry Pi can be used as an intelligent sensor or as the system manager, sev-
eral libraries and toolkits have to be installed first. The following list shows all necessary
installations and configurations:

– Java JDK: The implementation of an automated fusion design requires a Java Devel-
opment Toolkit (JDK) version 8 installed, preferable the JDK distributed by Oracle.
New stock Raspberry Pis running Raspbian or NOOBS (operating system specifically
designed for the Raspberry Pi) as of release date 2017-03-03 have an Oracle JDK8 pre-
installed. However, it can be manually installed using:

sudo a p t - g e t i n s t a l l o r a c l e - j a v a 8 - j d k

The Java JDK needs to be installed on intelligent sensors and the system manager.

– Pi4J: Reading analogue signals via the SPI interface requires additional software. We
use the Pi4J library to access the SPI interface and to read analogue signals [Pi4]. The
Pi4J library needs to be installed on each Raspberry Pi prior to executing the orches-
tration software. An installation guide is available from the Pi4J project-webpage at
http://pi4j.com/install.html. The Pi4J library needs only to be installed on devices serv-
ing as intelligent sensor. By default SPI is disabled on Raspberry Pis. To enable SPI,
access the Raspberry Pi’s configuration tool by typing “raspi-config”, select “advanced
options”, then select “A6 SPI”, and confirm with “yes”.

3.4.3 OPC UA Discovery Server

The OPC UA Local Discovery Server (LDS) needs to be installed on an external windows
machine which needs to be available in the local network. The LDS software is distributed
freely by the OPC Foundation3. In this implementation the version 1.02.335.1 is used. The
following steps are necessary for the installation of the LDS.

– Unzip installation file at windows machine.

– Execute msi-file and follow the OPC installation wizard.

– The LDS uses a certificate-based encryption for communication with the intelligent sen-
sors. The certificates are provided at ./Orchestration/OPCUA/Certificates/ . They need
to be copied to directory C:\ProgramData\OPCFoundation\UA\Discovery\pki\trusted.

3OPC UA LDS (2017-03-23) https://opcfoundation.org/developer-tools/developer-kits-unified-architecture/
local-discovery-server-lds

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

12/16

http://pi4j.com/install.html
C:\ProgramData\OPC Foundation\UA\Discovery\pki\trusted
https://opcfoundation.org/developer-tools/developer-kits-unified-architecture/local-discovery-server-lds
https://opcfoundation.org/developer-tools/developer-kits-unified-architecture/local-discovery-server-lds

At this point all preliminary installations are completed. The following section describes
the required steps to start the orchestration.

3.5 Starting the Orchestration Software

The fusion system design program uses an information model modelled with the Unified
Automation UaModeler. This information model is provided as two XML-files (./Orches-
tration/Java/IntelligentSensor/codegen/intelligentsensor.xml and ./Orchestration/Java/System-
Manager/codegen/intelligentsensor.xml). The model needs to be made available for the Java
implementation which is done by the codegen software provided by Prosys SDK. It takes
the XML representation of the information model, derives Java classes, and adds them au-
tomatically to the Java project. The code generation is either executed as an ant build in a
development environment (in Eclipse: right click on build.xml, Run As, Ant Build) or as a
standalone Java application (by invoking codegen-2.0.0-standalone.jar). The codegen folder
and the build.xml file are shown in Figure 3.1. The code generation has to be executed once

Figure 3.1: Java code generation from external information models.

for the system manager code and once for the intelligent sensor code. If the generation is
successful, java-files are generated at ./Orchestration/Java/IntelligentSensor/src/opcua/types
and ./Orchestration/Java/SystemManager/src/opcua/types as shown in Figure 3.2. Detailed
instructions for this code generation are given in the Readme.md file located in the codegen
folder.

Now the program code needs to be compiled and exported as a runnable jar file. The export
procedure is depicted in Fig. 3.3. A context menu is available after right clicking the project
in Eclipse. The menu shows an Export functionality, which has to be selected (cf. Fig. 3.3a).
An export window opens that includes a directory Java where the option Runnable Jar file
needs to be selected. In the following window, specifics for the export have to be defined
(cf. Fig. 3.3b). The project has to be selected and the destination folder has to be defined.

After export, the client implementation (provided at ./Orchestration/Java/SystemManager/

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

13/16

Figure 3.2: Java code generation from external information models.

(a) (b)

Figure 3.3: Runnable jar file export. (a) Project context menu. (b) Export options.

) needs to be copied to the system manager, whereas the server implementation (provided
at ./Orchestration/Java/IntelligentSensor/) needs to be copied to each intelligent sensor. The
System and Terms folders include semantic information and the vocabulary of the orchestra-
tion system. In ExternalJavaFiles the actual implementation of algorithms is available. The
PKI folder holds certificates for securing the OPC UA communication.

Additionally, the intelligent sensors need to be equipped with their self-description file. The
application scenarios provide the self-description files for all involved intelligent sensors. For
example, the printing unit scenario includes three files. The Java implementation of an intelli-
gent sensors expects a file named INTELLIGENT_SENSOR.xml. Thus, the provided files need
to be renamed at each intelligent sensor. For instance, the file INTELLIGENT_SENSOR1.xml
needs to be renamed to INTELLIGENT_SENSOR.xml at Intelligent Sensor 1.

The orchestration implementation is now ready to be executed. The client implementation
is carried out at the system manager with the following command:

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

14/16

Listing 3.1: Execution of the system manager application.

Usage : sudo j a v a - j a r c l i e n t R P I . j a r

- d IP D ef i ne t h e D i s c o v e r y S e r v e r U r l (IP) t o r e g i s t e r t h e a p p l i c a t i o n t o
- desc ’ f o l d e r ’ S e t f o l d e r name of sys tem d e s c r i p t i o n s f o r t h e use c a s e s c e n a r i o .

The f i l e s have t o be a v a i l a b l e from t h e ’ System ’ f o l d e r t h a t has t o be
l o c a t e d i n t h e same d i r e c t o r y as t h e program f i l e . F u n c t i o n a l a t t r i b u t e s
a r e d e f i n e d i n an e x t e r n a l csv - f i l e i n t h i s d i r e c t o r y .

- ? ; - h ; - h e l p Show t h i s h e l p t e x t

Example :
sudo j a v a - j a r c l i e n t R P I . j a r - d 1 9 2 . 1 6 8 . 1 . 1 5 0 - desc RoomMonitoring

The server implementation needs to be started at each intelligent sensor:

Listing 3.2: Execution of the intelligent sensor application.

Usage : sudo j a v a - j a r s e r v e r R P I . j a r

- d u r l D e f i ne t h e D i s c o v e r y S e r v e r U r l (IP) t o r e g i s t e r t h e a p p l i c a t i o n t o
- s I n i t i a l i z e i n t e r f a c e f o r s e n s o r d a t a a c c e s s (GPIO , UART, USB (S e r i a l))
- de sc ’ f o l d e r ’ S e t f o l d e r name of sys tem d e s c r i p t i o n s f o r t h e use c a s e s c e n a r i o .

The f i l e s have t o be a v a i l a b l e from t h e ’ System ’ f o l d e r t h a t has t o be
l o c a t e d i n t h e same d i r e c t o r y as t h e program f i l e .

- ? ; - h ; - h e l p Show t h i s h e l p t e x t

Example :
sudo j a v a - j a r s e r v e r R P I . j a r - s - d 1 9 2 . 1 6 8 . 1 . 1 5 0 - desc RoomMonitoring

The command-line argument -desc specifies which application scenario is used, i. e., where
to find the self- and system-description files. This publication provides two example scenar-
ios as described in Section 2. The printing unit scenario is selected with -desc PrintingUnit
and the room monitoring scenario with -desc RoomMonitoring. All intelligent sensors now
register themselves at the discovery server at the specified IP-address (in this example: -d
192.168.1.150). The system manager queries the discovery server periodically for available
intelligent sensors. As soon as all intelligent sensors are known to the system manager, it
orchestrates the information fusion system. The identified attributes are outputted to the ter-
minal. A successful orchestration for the room monitoring scenario is shown in Figure 3.4.

Figure 3.4: Output at system manager after completed orchestration for the room monitoring example.

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

15/16

Bibliography

[BoR14] BOTTS, Mike ; ROBIN, Alexander: OGC SensorML: Model and XML Encoding
Standard. Open Geospatial Consortium, 2014

[FMH+17] FRITZE, Alexander ; MÖNKS, Uwe ; HOLST, Christoph-Alexander ; LOHWEG,
Volker: An Approach to Automated Fusion System Design and Adaptation.
In: Sensors 17 (2017), Nr. 3, 601. http://dx.doi.org/10.3390/s17030601. – DOI
10.3390/s17030601

[FML16] FRITZE, Alexander ; MÖNKS, Uwe ; LOHWEG, Volker: A Support System for
Sensor and Information Fusion System Design. In: 3rd International Conference
on System-Integrated Intelligence - New Challenges for Product and Production
Engineering, Paderborn, Germany, 2016

[MDL+16] MÖNKS, Uwe ; DÖRKSEN, Helene ; LOHWEG, Volker ; HÜBNER, Michael:
Information Fusion of Conflicting Input Data. In: Sensors (Basel, Switzerland) 16
(2016), Nr. 11. http://dx.doi.org/10.3390/s16111798. – DOI 10.3390/s16111798.
– ISSN 1424–8220

[Mön17] MÖNKS, Uwe: Information Fusion Under Consideration of Conflicting Input
Signals. 1st ed. 2017. Berlin : Springer Berlin and Springer Vieweg, 2017 (Tech-
nologien für die intelligente Automation). – ISBN 9783662537510

[Pi4] PI4J - JAVA I/O LIBRARY FOR THE RASPBERRY PI: http://pi4j.com/ , accessed
2017-03-17. http://pi4j.com/

[Ras] RASPBERRY PI FOUNDATION: https://www.raspberrypi.org/ , accessed 2016-
11-30. https://www.raspberrypi.org/

Hochschule Ostwestfalen-Lippe · University of Applied Sciences
Liebigstr. 87 · D-32657 Lemgo

16/16

http://dx.doi.org/10.3390/s17030601
http://dx.doi.org/10.3390/s16111798
http://pi4j.com/
http://pi4j.com/
https://www.raspberrypi.org/
https://www.raspberrypi.org/

	1 Introduction
	2 Example Scenarios
	2.1 Intaglio Printing Unit
	2.2 Room Monitoring

	3 Implementation
	3.1 Intelligent Sensors
	3.2 System Manager
	3.3 System- and Self-Description
	3.4 Software Requirements
	3.4.1 Development Environment and Source Code
	3.4.2 Installations on Raspberry Pi
	3.4.3 OPC UA Discovery Server

	3.5 Starting the Orchestration Software

