
Fixed Points in the Ambient Logic

Silvano Dal Zilio

Microsoft Research. E-mail:sdal@microsoft.com

Abstract. We present an extension of the ambient logic with fixed points operators in the style of the
µ-calculus. We give a simple syntactic condition for the equivalence between minimal and maximal
fixpoint formulas and show how to subsume spatial analogues of the usual box and diamond operators.

1 Introduction

Theambient calculusof Cardelli and Gordon [4] is a process algebra for describing mobile computation
where processes may reside and move within a hierarchy of locations, called ambients. In this framework,
each location is a cluster of processes and sub-ambients that can move as a group. This calculus serves as
model for theambient logic[3], a new modal logic introduced to express properties of mobile processes.
A key feature of this logic is its ability to describe organizational, as well as behavioral, properties of
processes. In particular, whereas usual logics for concurrent systems, such as the Hennessy-Milner logic,
usually focus on the computational behavior of systems, the ambient logic also provides the ability to
reason about spatial structures (and is therefore more intentional.) Another interest of this logic is its lack
of sensitivity to the details of the process calculus being studied, which make it easily transposable to other
settings, and to theπ-calculus in particular [1].
In this limited abstract, we will only consider the calculus restricted to spatial (and static) operators, and the
subset of the logic associated to this fragment. This corresponds essentially to a logic over finite, unordered,
edge-labelled trees. A contribution of this paper, though, is the extension of the logic with fixed points, in
the style of theµ-calculus [6]. The subset considered here is not simplistic; in particular, it serves as basis
for the definition of a query language for semi-structured databases [2]. The results presented here can be
extended to the calculus and the logic considered in [3].
The first result presented in this paper is a simple syntactical criterion for the equivalence between mini-
mal and maximal fixpoint formulas. While this result is not completely surprising1, it provides a valuable
decidable class of formulas,φ, such thatνX.φ andµX.φ are the same. This result, which answers an
open problem stated in [2], is interesting in the context of a query language implementation: whereas least
fixpoint operators can be implemented using classical iterative techniques, it is not clear how to handle
greatest fixpoints. Moreover, this result allows to simplify negative requests (the query language of [2] has
a negation operator built-in), by replacing occurrences of¬µX.φ with µY.¬φ{X←¬Y}. A second result is
a characterization of the spatial analogues of the usual box and diamond modal operators introduced in [3],
the somewhere and everywhere operators, using recursive formulas.

2 The Static Ambient Calculus and a Modal Logic with Fixed Points

In our simplified setting, a process is a parallel composition of ambients,n[Q], where each ambient has
a name,n, taken from a denumerable setΛ, and encapsulates a sub-process,Q. A process can also be
empty, denoted0. As usual, we consider processes up-to a structural equivalence relation,≡, the smallest
congruence such thatP | Q ≡ Q | P , and(P | Q) | R ≡ P | (Q | R) andP | 0 ≡ P . We useΠ
to denote the set of processes (modulo≡), and2Π for the associated powerset. There is a direct analogy
between processes and (rooted) edge-labeled unordered trees with finite degree, which is at the heart of the
query language of [2].

P,Q,R, . . . ::= 0 n[P ] P | Q
1 Intuitively, minimal and maximal fixpoints are separated by infinite (or divergent) behaviors, and ambient processes

are finite. We formalize this intuition in Section 3.
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Logical formulas,φ, ψ, . . . , are defined by the following grammar, whereη stands for a name,n ∈ Λ, or
a “name variable”,x, y, . . . . We say that a formula is closed whenever it has no free (name) variables and,
for simplicity reason, we only consider closed formulas in this restricted abstract. We also consider a set of
propositional variables, X,Y, . . .

φ, ψ ::= ff φ ∧ ψ ¬φ 0 η[φ] φ | ψ ∃x.φ X µX.φ

The core of the logic is a (first-order) classical propositional logic augmented with spatial connectives and
an existential quantification over names. We useff to denote the false formula, andtt as a shorthand for
¬ff . We introduce a minimal fixpoint operator,µX.φ, whereφ is monotonicin the variable X, that is, X
occurs under an even number of negation. (A maximal fixpoint,νX.φ, is also definable.) The definition of
monotonic formulas can be adapted to the full logic [1].
The meaning of a (closed) formula,φ, is given by a set of processes,[[φ]]v, namely the set of all processes
that satisfy the property denoted byφ. In this definition, we use the symbolsS, T to range over elements
of 2Π , andv

M= {X1←S1, . . . , Xk←Sk} to denote a valuation that maps subsets ofΠ to propositional
variables. Following a set-theoretic approach, we also naturally extend the operators of the calculus to2Π

as follows:n[S] M=
{
n[P ] P ∈ S

}
andS | T M=

{
P | Q P ∈ S, Q ∈ T

}
.

[[ff ]]v M= ∅ [[0]]v M= {0} [[¬φ]]v M= Π − [[φ]]v [[φ ∧ ψ]]v M= [[φ]]v ∩ [[ψ]]v

[[n[φ]]]v M= n[[[φ]]v] [[φ | ψ]]v M= [[φ]]v | [[ψ]]v [[∃x.φ]]v M=
⋃

n∈Λ[[φ{x←n}]]v

[[X]]v M= v(X) [[µX.φ]]v M=
⋂ {
S ⊆ Π [[φ]]v{X←S} ⊆ S

}
We useφ(X) for a formulaφ with a free propositional variable X andφ(ψ) for the formulaφ{X←ψ}. A
simple induction on the definition ofφ is enough to prove that ifφ is monotonic in X, then the function
λS.([[φ]]v{X←S}) is monotonic (and continuous) on the complete lattice(2Π ,∩,∪). Therefore, by the
well-known Knaster-Tarski theorem, wheneverφ is monotonic in X, we have thatµX.φ and νX.φ are
well-defined and:

[[µX.φ]]v =
⋃
k∈N

[[φk(ff )]]v and [[νX.φ]]v =
⋂
k∈N

[[φk(tt)]]v (2.1)

Whereφk(X) stands for thekth iteration ofφ (Note that, since parallel composition only introduces finite
branching degrees, we can avoid transfinite iterations.)
Based on the semantics of formulas, we say thatP satisfiesφ, writtenP |= φ, if P ∈ [[φ]]v for all possible
valuationv. We say thatφ entailsψ, writtenφ ` ψ, if and only if [[φ]]v ⊆ [[ψ]]v for all v or, equivalently,
[[φ⇒ ψ]]v = [[tt]]v.
The structure defined by the spatial operators is not without interest, in particular,(Π,⊆,∨, | ,0) is a
quantale [5].

3 Equivalence Between Minimal and Maximal Fixpoint Formulas

We define thedepthof a process,d(P ), as the depth of its underlying (spatial) tree, that is, the function
inductively defined by:d(0) = 0, d(n[P ]) = 1 + d(P ) andd(P | Q) = max{d(P ),d(Q)}. We extend
the notion of depth to formulas, withd(φ) defining the minimal depth of the processes satisfyingφ :

d(φ) M= min
{
d(P ) P |= φ

}
. In particular,ff is of infinite depth andn[tt] has depth1.

We say that the formulaφ is guardedin X, if X always occurs under a location operator,η[ ].
Let φ− ψ denotes the formulaφ ∧ ¬ψ.

Lemma 1. If φ is guarded and monotonic in X and ifP |= φ(ψ1)− φ(ψ2), thend(P ) ≥ 1 + d(ψ1 − ψ2).
Conversely, ifφ is anti-monotonic andP |= φ(ψ1)− φ(ψ2), thend(P ) ≥ 1 + d(ψ2 − ψ1).

Lemma 1 allows us to prove that the minimal and maximal fixpoint of guarded formulas are equal.

Theorem 1. If φ is monotonic and guarded in X thenνX.φ = µX.φ.



Proof. It is enough to prove thatνX.φ ` µX.φ, that is,[[νX.φ− µX.φ]]v = ∅. Letψk
M= (φk(tt)− φk(ff )).

Sinceφ is monotonic, we have[[φk(ff )]]v ⊆ [[φk+1(ff )]]v ⊆ [[φk+1(tt)]]v ⊆ [[φk(tt)]]v, and therefore
ψk+1 ` ψk for all k. Moreover, by a direct corollary of Knaster-Tarski theorem, see (2.1), we have:
[[νX.φ− µX.φ]]v =

⋂
k∈N[[ψk]]v (3.1).

Next, we prove that ifP |= ψk thend(P ) ≥ k. The proof is by induction onk. If k = 0 thenψ0
M= tt

and therefored(ψ0) = 0. Assumek ≥ 1 andP |= ψk. ThenP |= (φ(φk−1(tt)) − φ(φk−1(ff ))) and,
by Lemma 1,d(P ) ≥ 1 + d(ψk−1), as required. Since every process has a bounded depth, it must be the
case that, for all processP ∈ Π, there exists an integerk0 such thatP 6|= ψk0 , and therefore, by (3.1)
and antimonotonicity of([[ψk]]v)k∈N, we have that for all processP ∈ Π, P 6∈ [[νX.φ− µX.φ]]v, which
implies[[νX.φ− µX.φ]]v = ∅, as required.

4 Somewhere and Everywhere

We define a new operator,✧φ, or somewhereφ,a long the lines of [3]:

✧φ
M= µX.(φ ∨ ∃x.(x[X] | tt)) (where X does not occurs free inφ.)

We also consider its DeMorgan’s dual, the everywhere modality:◊φ M= ¬✧¬φ. Note that, since∃x.(x[X] |
tt) is monotonic and guarded in X, Theorem 1 allows us to deduce that:

Theorem 2. We have:◊φ = µX.(φ ∧ ∀x.¬(x[¬X] | tt)), where X does not occurs free inφ.

We define the spatial reduction relation,P ↓ Q, to mean thatQ resides inside an ambient ofP . More
formally,P ↓ Q if there existsn,R such thatP ≡ n[Q] | R. The relation⇓ is the reflexive and transitive
closure of↓. Just like the spatial operator,n[φ], and the spatial reduction relation,↓, can be interpreted as
analogues of the operator〈n〉φ and relation,→∗, often found in semantics of theµ-calculus. It is possible
to draw a parallel between the (temporal logic) sometimes modality,♦φ, and its spatial counterpart,✧φ.
Some differences exist, though, like the use of the logical operator,0, which can be interpreted as the
equivalent of a “time-stop” modality, and the presence of quantification over names,∃n.φ.
We prove that the set of processes satisfying✧φ correspond to the definition given in [3].

Theorem 3. We have[[✧φ]]v =
{
P ∈ Π ∃P ′ ∈ [[φ]]v.P ⇓ P ′}.

Proof. Let S✧ be the set
{
P ∈ Π ∃P ′ ∈ [[φ]]v.P ⇓ P ′} andF denotes the functionλS.([[φ]]v ∪

⋃
n∈Λ

(n[S] | Π)). It is enough to prove thatS✧ is a fixpoint ofF (for all v.) Then, since the minimal and
maximal fixpoint ofF are equal, it must be the case thatµS.F (S) = S✧, and therefore:[[✧φ]]v = S✧.

An interesting property of this new characterization of the modalities used in [3], is that it becomes possible
to prove some theorems (of the ambient logic), which where proved directly previously, using traditional
induction and co-induction principles. For example, we can prove that✧ obeys the rule of S4 modalities,
like: ◊(φ⇒ ψ) ` (◊φ)⇒ (◊ψ); ◊φ ` φ; ◊φ ` ◊◊φ; or φ ` ψ ⇒ ◊φ ` ◊ψ.
Another interesting proof method is based on our result on the equivalence of fixpoints (Theorem 1).
Indeed, it is enough to prove thatψ ` φ ∧ ∀x.¬(x[¬ψ] | tt), to obtainψ ` ◊φ and◊φ ` ψ.
A combination of these two methods can be used to prove more “exotic” axioms, like:✧φ | ψ ` ✧(φ | tt);
✧✧φ ` ✧φ; andn[✧φ] ` ✧φ.

References

1. L. Cardelli and L. Caires. A spatial logic for concurrency. submitted for publication, 2001.
2. L. Cardelli and G. Ghelli. A query language based on the ambient logic. InProc. of ESOP ’01, Lecture Notes in

Computer Science. Springer-Verlag, 2001. to appear.
3. L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. InProc. of POPL ’00 – 27th

Annual ACM Symposium on Principles of Programming Languages, pages 365–377. ACM Press, Jan. 2000.
4. L. Cardelli and A. D. Gordon. Mobile ambients.Theoretical Computer Science, 240:177–213, 2000.
5. U. Engberg and G. Winskel. Linear logic on petri nets. Technical Report RS-94-3, BRICS, 1994.
6. D. Kozen. Results on the propositionalµ-calculus.TCS, 27(3):333–354, 1983.


