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Abstract—Demand-side energy storage management is stud-
ied from a joint privacy-energy cost optimization perspective.
Assuming that the user’s power demand profile as well as the
electricity prices are known non-causally, the optimal energy
management (EM) policy that jointly increases the privacy of the
user and reduces his energy cost is characterized. The backward
water-filling interpretation is provided for the optimal EM policy.
While the energy cost is reduced by requesting more energy when
the prices are lower, energy consumption privacy is achieved
by a smoother output load. It is shown that both gains can be
achieved by using a limited size storage unit. The optimal trade-
off between the user’s privacy and energy cost is characterized,
and the impact of the size of the storage unit and the resolution
of the smart meter readings on this trade-off is studied.

I. INTRODUCTION

Smart meters (SMs) measure the power consumption of the

users connected to the power grid and transmit their readings

to the utility provider (UP) in almost real-time. This allows the

UPs to closely monitor the grid and provide potential benefits

in reliability, robustness and efficiency [1]. For example, the

UPs can support dynamic electricity pricing based on SM

readings and encourage the users to dynamically shift their

demands to off-peak hours with the promise of reducing their

energy costs. However, the possible misuse of these fine-

grained readings by the UP or other third parties raise serious

privacy and security concerns for the consumers [2].

Various techniques have been studied in the literature to

provide a certain level of privacy to SM users. On the one

hand, privacy can be provided by tampering the SM readings

before being reported to the UP. Following this approach, [3]

proposes the compression of SM data before being transmitted

to the UP, and [4] considers adding random noise to SM

readings to protect user’s privacy. On the other hand, without

tampering the SM readings, privacy can also be achieved by

demand-side management with the utilization of storage units,

such as rechargeable batteries (RBs) [5]–[10], and alternative

energy sources [7], [10], [11]. In [5], a heuristic algorithm

is proposed with the utilization of an RB to protect privacy,

while in [6] and [7], user’s privacy is protected by using an

RB and an energy harvesting device, respectively, from an

information theoretic perspective. The joint optimization of
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Fig. 1. A smart-meter (SM) system diagram.

privacy and energy cost for SMs is addressed in [8] and [9].

Authors propose an online control algorithm and a dynamic

programming with the utilization of an RB, respectively.

We consider the SM system depicted in Fig. 1. The energy

management unit (EMU) satisfies the power demands of the

appliances from the power grid and the RB. We do not allow

outages or shifting of user demands. The SM measures the

output load, Yi, and reports its readings to the UP at certain

time instants. Assuming that the electricity price is time-

varying, the EMU utilizes the RB to reduce the user’s energy

consumption cost, as well as to mask the power consumption

profile from the UP and other third parties. We assume that

the future power demands as well as the electricity prices are

known non-causally by the EMU. Exploiting this information

the EMU can store extra energy into the RB in advance in

order to achieve these gains. We assume that perfect privacy

can be achieved if a constant SM reading is reported to the

UP over time [5]. Consequently, we measure user privacy

in terms of the deviation of the output load, Yi, from the

average power demand over the period of interest. On the other

hand, the average energy cost is measured with a time-varying

electricity pricing model. Our goal here is to characterize the

optimal energy management (EM) policy that jointly optimizes

privacy and energy cost over a given period of time under an

RB capacity constraint. Note that an EM policy corresponds

to power values requested by the EMU from the grid over the

given time window.

We first formulate the joint privacy-energy cost minimiza-

tion as a convex optimization problem. The optimal solution

is characterized as the backward water-filling algorithm, in

which the energy received from the grid can only be shifted to

earlier time slots (TSs), and the water levels can be equalized

to the extend the RB capacity allows. We characterize the
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Fig. 2. Illustration of the timelines with variations in the total power
consumption and the cost per unit energy.

trade-off between the user’s privacy and energy cost for the

optimal EMU operation. The operating point on this trade-off

can be chosen based on the user’s requirements on privacy and

energy cost. We also investigate the impact of the RB capacity

and the resolution of the SM readings on this trade-off.

II. SYSTEM MODEL

We consider a discrete-time power consumption model in

a household (see Fig. 2(a)). In this model, each appliance

consumes constant power for an arbitrary duration when it

is active. Appliances can be in active or inactive state at any

time. Let tp0 = 0 < tp1 < · · · < tp(K−1) < T be the time

instants at which there is a change in the state of at least

one appliance. We denote the total power consumption within

[tp(k−1), t
p
k] by Xp

k (kW) for k = {1, 2, . . . ,K}.

We also consider a time-varying electricity pricing model

in which the cost per unit energy changes over time at certain

time instants, and remains constant in between (see Fig. 2(b)).

Let tc0 = 0 < tc1 < · · · < tc(M−1) < T be the time instants

at which the cost of energy changes. We denote the cost

per unit energy within [tc(m−1), t
c
m] by Cc

m (cent/kWh) for

m = {1, 2, . . . ,M}. We can combine the time instants at

which the power consumption or the cost per unit energy

changes into a single time series t0 = 0 < t1 < · · · < tN−1 <
tN = T (see Fig. 2(c)). The duration of the TS between two

consecutive time instants is denoted by τi , ti − ti−1 (sec),

for i = 1, 2, . . . , N . We denote the total power consumption

and the cost per unit energy within TS i as Xi (kW) and Ci

(cent/kWh), respectively. Note that for any two consecutive

TSs, either the power demand or the cost per unit energy

or both may change, whereas they remain constant within

each TS. In our model, TSs do not necessarily have the same

duration.

Hinged on the discrete-time power consumption and pricing

model illustrated in Fig. 2, we study the power input/output

system depicted in Fig. 1. We consider an SM that reports the

output load, Yi (kW), to the UP at each TS i1. We integrate

an RB with a finite capacity B (kWh), and an EMU which

1Here, we assume that Yi remains constant within each TS i. In the sequel,
we will show that this assumption is indeed optimal. Accordingly, there is no
loss of information on the UP side when SM reports once per each TS.

manages the power flow. The EMU can use both the power

grid and the RB to satisfy the user’s power demand, i.e., the

input load Xi, as Xi = Yi + Pi, where Pi (kW) is the power

charged to (Pi < 0), or discharged from (Pi > 0) the RB

during TS i, and Yi ≥ 0. We consider an EM policy that

jointly optimizes the privacy and energy cost of the user within

the time frame [0, T ] by utilizing the RB. Note that an energy

management policy corresponds to the vector of output loads

[Y1, Y2, . . . , YN ]. We are interested in offline optimization, that

is, we assume that the EMU knows the power demand, Xi,

and the cost per unit energy, Ci, for all TSs within [0, T ] in

advance at t0 = 0.

We assume that perfect privacy is achieved if the output

load Yi at each TS is equal to the user’s average power demand

within [0, T ]. Ideally, if the user has a flat power demand from

the grid at all times, we assume that the UP can not learn

anything about the user’s energy consumption behaviour [5].

Accordingly, we define the average power demand of the user

as Ē , 1
T

N
∑

i=1

τi · Xi. Then, the privacy provided by an EM

policy is measured by the load variance, which is defined as :

V ,
1

T

N
∑

i=1

τi · (Yi − Ē)2. (1)

Observe that perfect privacy is achieved when V = 0, in which

case Yi = Ē for all TSs.

The energy consumption cost obtained by an EM policy is

measured by the average energy cost, which is defined as :

C ,
1

T

N
∑

i=1

τi · Yi · Ci. (2)

We assume that all the power demands of appliances must

be satisfied at the time that they are requested, i.e., we

guarantee that the appliances do not incur any outages and

we do not allow rescheduling; hence, assuming that the RB

is empty at t = 0, the output load values have to satisfy the

following constraints :

n
∑

i=1

τi ·Xi ≤

n
∑

i=1

τi · Yi, n = 1, . . . , N. (3)

On the other hand, the energy that has been drawn prior to

the demand of the appliances needs to be stored in the RB.

Since the RB capacity is finite, we require :

n
∑

i=1

τi · (Yi −Xi) ≤ B, n = 1, . . . , N. (4)

It is possible to show that the set of all achievable (V , C)
pairs under constraints (3) and (4) form a convex region. Then

the optimal operating points are characterized by the Pareto

boundary of this region. Hence, we use the weighted average



of V and C to identify all the points on the Pareto boundary.

The optimization problem can be written as follows :

min
Yi≥0

N
∑

i=1

[

θ · τi ·
(

Yi − Ē
)2

+ (1− θ) · τi · Yi · Ci

]

(5)

s.t. (3) and (4),

where 0 ≤ θ ≤ 1 is the parameter that adjust the trade-off

between privacy and energy cost. The value of θ can be set in

advance by the user. If θ = 1, then the user is interested only

in maximizing the privacy; if θ = 0, the user intends only

to minimize the energy cost. Since the cost per unit energy

and the input load remain constant over each TS, it follows

from the convexity of the objective function that the optimal

output load must remain constant within a TS [12]. Hence, the

assumption of having the SM report only once per TS does not

lead to any loss of information on the UP side. Since (5) is a

convex optimization problem, it can be solved by the classical

Lagrangian methods [13]. In the following section, we will

provide some specifics of the optimal solution along with a

water-filling interpretation for 0 < θ ≤ 1. For θ = 0, we obtain

the optimal solution by using classical linear programming

techniques since the objective function in (5) becomes linear

in this case.

III. OPTIMAL ENERGY MANAGEMENT (EM) POLICY

Here, we provide the optimal EM policy that minimizes the

privacy-energy cost function in (5). We define the Lagrangian

function with the Lagrangian multipliers λi ≥ 0, µi ≥ 0 and

vi ≥ 0, as follows :

L =

N
∑

i=1

[

θτi
(

Yi − Ē
)2

+ (1− θ)τiYiCi

]

+

N
∑

j=1

λj

(

j
∑

i=1

τi(Xi − Yi)
)

+

N
∑

j=1

µj

(

(

j
∑

i=1

τi(Yi −Xi)
)

−B

)

−

N
∑

j=1

vjYj . (6)

Corresponding complementary slackness conditions are :

λj

( j
∑

i=1

τi(Xi − Yi)

)

= 0, j = 1, . . . , N, (7)

µj

(

(

j
∑

i=1

τi(Yi −Xi)
)

−B

)

= 0, j = 1, . . . , N, (8)

vjYj = 0, j = 1, . . . , N. (9)

We apply the KKT conditions on the Lagrangian function :

∂L

∂Yi

= 2θτi
(

Yi − Ē
)

+ (1− θ)τiCi

+ τi

N
∑

j=i

(µj − λj)− vi = 0. (10)
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Fig. 3. Depiction of the backward water-filling algorithm for the optimal
output loads with (a) infinite, and (b) finite capacity RBs, respectively, and
the trade-off parameter θ = 1/3.

Then the optimal output load in TS i, Y ∗
i , is found in terms

of the Lagrange multipliers, the cost per unit energy, and the

trade-off parameter θ, as follows :

Y ∗
i =

[

αi −
(1 − θ)Ci

2θ

]+

, 0 < θ ≤ 1 , ∀i. (11)

where [x]+ is equal to x if x ≥ 0, and 0 otherwise, and the

water level in TS i is defined as :

αi ,

N
∑

j=i

(λj − µj)

2θ
+ Ē, 0 < θ ≤ 1 , ∀i. (12)

We first consider the special case when the RB capacity is

infinite, i.e., B → ∞. For this case, the constraints in (4) are

satisfied without equality; and thereby, we have µj = 0 for

∀j, from the slackness conditions in (8). Since λi ≥ 0 for

∀i, it follows from (12) that the water level is monotonically

decreasing with time, i.e., αi ≥ αi+1. This implies that the

water (power) can only flow backwards in our model, because

the input load in a TS has to be satisfied within that TS, i.e.,

the output load can only be assigned to previous TSs, rather

than to the future ones. If the RB is not empty after satisfying

all input loads up to TS i, this implies that the i-th constraint

in (3) is satisfied with strict inequality. It follows from the

slackness condition in (7) that λi = 0; which gives rise to

the fact from (12) that the water level remains constant, i.e.,

αi = αi+1.

In Fig. 3(a), we present a graphical interpretation of the

optimal EM policy for three TSs in the presence of an infinite

capacity RB. Selecting θ = 1/3, the height of the rectangles

correspond to the costs per unit energy, Ci’s, while their widths

correspond to the TS durations, τi’s, for TSs i = 1, 2, 3.

Fig. 3(a) depicts the optimal water-filling solution and the

optimal output load values, Y ∗
i , which is given by the height

of the total dashed areas below the water level and above

Ci. The input load Xi at TS i is given by the height of

the corresponding dashed areas. Accordingly, the first power

demand X1 corresponds to the height of the first dashed area

above C1, and is satisfied from the grid within that TS, as seen

in the figure. For the input load X2, the output load is allocated

by using the water-filling algorithm in reverse direction as



seen in Fig. 3(a). Since the cost per unit energy is relatively

expensive in the second TS, part of X2 is drawn in advance

within the first TS, i.e., the height of the second dashed area

above C1, and stored into the RB. The rest of X2 is drawn

from the grid within the second TS, i.e., the height of the

dashed area above C2. Hence, X2 is satisfied both from the

RB and the grid. The power demand in the third TS, X3, is

satisfied from the grid within that TS. Thus, the optimal output

load in the first TS, Y ∗
1 , depends on the input loads and the

costs per unit energy in the following TSs. For N TSs, the

optimal output load values can be obtained by N iterations

of the water-filling algorithm. Since each input load can be

satisfied by backward power allocation over the current and

the previous TSs, we call this algorithm as backward water-

filling.

Next we consider the general case when the RB capacity

is finite. For this case, since the constraints in (4) can be

satisfied with or without equality, we also need to consider the

Lagrangian multipliers µj ≥ 0 in (12). The optimal solution

is similar to the backward water-filling solution; however, the

amount of water that can be poured into the previous TSs is

now bounded by the RB capacity. If the RB is full in a TS,

the excess drawn power would be wasted. Therefore, the RB

capacity introduces an upper bound on the output load at each

TS. Since λi ≥ 0 and µi ≥ 0 ∀i, it follows from (12) that the

water level is not necessarily decreasing with time, and can

increase or decrease among two consecutive TSs. For example,

if the RB is full after satisfying all the input load demands up

to TS i, then this implies that the i-th constraint in (3) is

satisfied with strict inequality while the i-th constraint in (4)

is satisfied with strict equality. It follows from the slackness

conditions in (7) and (8) that λi = 0 and µi ≥ 0, respectively;

which lead to the fact from (12) that the water level increases,

i.e., αi ≤ αi+1.

In Fig. 3(b), we depict the graphical interpretation of the

optimal EM policy for three TSs in the presence of a finite

capacity RB. Differently from the infinite capacity RB case in

Fig. 3(a), the portion of the input load in the second TS drawn

in advance within the first TS is limited by the RB capacity.

In other words, the amount of water that can be poured from

the second TS to the first is bounded by the RB capacity.

Therefore, the water levels can be equalized to the extend the

water-filling direction and the RB constraints allow. Observe

in Fig. 3(b) that the water level increases from the first TS to

the second, which implies that the RB is full at the end of first

TS.

IV. NUMERICAL RESULTS

In this section, we provide further insights about the optimal

EM policy through some numerical results. We numerically

analyze the trade-off between the user’s privacy and energy

cost as well as the effect of the RB capacity and the SM resolu-

tion on this trade-off. We consider the real power consumption

data obtained from [14] with a time resolution varying on the

order of three seconds. For our simulations we randomly take

a whole-day power consumption data of one household, and
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Fig. 4. The load variance, V , versus the average energy cost, C, for the RB
capacities, B = 1 kWh, B = 1.5 kWh and B = 2 kWh, respectively.

convert the load profile to a time resolution of one-minute. To

be consistent with our power consumption model, we assume

that the sampling times of the original power data correspond

to the discrete time-instants in Fig. 2(a). We set the electricity

price by considering real pricing tariffs [15]. We assume that

the electricity price can only change at the sampling times of

the original power data. Accordingly, we set the off-peak price

as 5 cent per kWh during 00:00 to 12:00, the on-peak price as

20 cent per kWh during 12:00 to 20:00 and the medium-peak

price as 10 cent per kWh during 20:00 to 00:00.

In Fig. 4, we characterize the trade-off between the user’s

privacy and energy cost for RB capacities B = {1, 1.5, 2}
kWhs, respectively. The Pareto optimal trade-off curves be-

tween the load variance and the average energy cost are formed

by varying θ from 0 to 1. The average energy cost increases

and the load variance diminishes as θ → 1, and vice versa, as

θ → 0. When θ = 1, the load variance achieves its minimum

value; on the other hand, the average energy cost achieves its

minimum value before θ reaches to 0. Observe in Fig. 4 that,

while the average energy cost cannot be reduced further after

a particular θ value (as θ → 0), the load variance continues to

increase. However, the user does not operate in this regime,

and the operating point can be chosen elsewhere on the trade-

off curve according to the requirements of the user. In Fig. 4,

we also investigate the effect of the RB capacity on this trade-

off. Observe that the Pareto optimal trade-off curve moves

towards the origin as the RB capacity increases. This implies

that with increasing RB capacity, the load variance can be

reduced further under a fixed average energy cost, and the

average energy cost can be reduced further under a fixed load

variance. Both gains can be achieved by virtue of the degree-

of-freedom provided by the RB.

Next, we compare the original load profile with the load

profiles resulting from the optimal EM policy under the RB

capacity, B = 2 kWh, and θ = {0, 0.002, 1}, in Fig. 5. When

θ = 0, the EM policy minimizes only the energy cost of the

user. As seen in Fig. 5, the EM policy stores extra energy in the

RB in the off-peak price period and satisfies the demand of the

on-peak price period from the RB as much as possible in order

to reduce the cost. When θ = 1, the EM policy maximizes
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Fig. 5. Comparison of the original load profile with the load profiles resulting
from the optimal EM policy under the RB capacity, B = 2 kWh, and θ = 0,
θ = 0.002 and θ = 1, respectively.

only the privacy of the user. We can see that the EM policy

generates a smooth load profile with which the peaks arising

from on-off switching of appliances in the original load profile

are masked. When θ = 0.002, the EM policy jointly optimizes

the user’s privacy and energy cost.

Finally, we investigate the impact of the SM resolution on

the trade-off between the user’s privacy and energy cost. To

that end, we modify the original load profile into new load

profiles with lower resolutions. Accordingly, the new load

profiles have time resolutions varying on the order of 5, 10,

15 minutes, and 1 hour, respectively. We then characterize

the Pareto optimal trade-off between the total load variance,

NV , and the average energy cost, C, for the load profiles

with given resolutions and the RB capacity B = 1.5 kWh in

Fig. 6. We see that the Pareto optimal trade-off curve moves

downwards as the SM resolution gets lower. This implies that

with a decreasing resolution, the EM policy can provide higher

energy consumption privacy under a fixed average energy cost.

This is due to the fact that a load sampled at a lower-resolution

is smoother, and has a smaller variance compared to the same

load sampled at a higher-resolution.

V. CONCLUSIONS

We studied the optimal demand-side EM policy that mini-

mizes the joint privacy-energy cost measure in an SM system

in the presence of a finite-capacity energy storage unit. We

considered a discrete-time power demand profile, i.e., input

load, for the user as well as time-varying electricity prices.

We assumed that the user’s input load profile along with the

electricity prices are known non-causally at the EMU, and

the power demands of the appliances have to be satisfied

without any outages or rescheduling. We characterized the

optimal EM policy that jointly increases the user’s privacy and

reduces the energy cost. The RB is utilized in order to achieve

both gains with an adaptive EM policy. We showed that the

optimal solution is characterized as the backward water-filling
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Fig. 6. The total load variance, NV , versus the average energy cost, C, for
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algorithm. We characterized the optimal trade-off between the

user’s privacy and the energy cost, and investigated the impact

of the RB capacity and the SM resolution on this trade-off.
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