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Abstract

Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under

future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data

from the Continuous Plankton Recorder program, one of the longest running and most extensive marine biological

monitoring programs, to investigate the reliability of predicted plankton distributions. We apply three commonly

used SDMs to 20 representative plankton species, including copepods, diatoms, and dinoflagellates, all found in the

North Atlantic and adjacent seas. We fit the models to decadal subsets of the full (1958–2012) dataset, and then use

them to predict both forward and backward in time, comparing the model predictions against the corresponding

observations. The probability of correctly predicting presence was low, peaking at 0.5 for copepods, and model skill

typically did not outperform a null model assuming distributions to be constant in time. The predicted prevalence

increasingly differed from the observed prevalence for predictions with more distance in time from their training

dataset. More detailed investigations based on four focal species revealed that strong spatial variations in skill exist,

with the least skill at the edges of the distributions, where prevalence is lowest. Furthermore, the scores of traditional

single-value model performance metrics were contrasting and some implied overoptimistic conclusions about model

skill. Plankton may be particularly challenging to model, due to its short life span and the dispersive effects of con-

stant water movements on all spatial scales, however there are few other studies against which to compare these

results. We conclude that rigorous model validation, including comparison against null models, is essential to assess

the robustness of projections of marine planktonic species under climate change.
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Introduction

Global climate change has led to a sustained increase in

ocean temperatures in the last decades (IPCC, 2013):

sea surface temperature (SST) in the North Atlantic, for

instance, has increased by about 0.5 °C during the past

50 years. Climate change profoundly alters the living

conditions for marine organisms through changes in

water temperature, water column stratification, acidity,

and gas exchange (Barton et al., 2013). Marine organ-

isms react to this stress by changing their distribution

and phenology, as has been observed for planktonic

and benthic invertebrates, fish and mammals

(Poloczanska et al., 2013). To foresee emerging prob-

lems and mitigate potential damage, model-based pro-

jections of the impact of climate change on marine

ecosystems are gaining increasing currency (Brander

et al., 2013). However, such projections are inherently

uncertain and cannot be directly validated (Araujo

et al., 2005; Elith & Leathwick, 2009). A careful

assessment of the expected accuracy and a cautious

communication of the associated uncertainties, includ-

ing the various components that contribute to the total

uncertainty, are therefore crucial (Ladle et al., 2004;

Brander et al., 2013; Payne et al., 2016).

Projections of biogeographical change are often based

on species distribution models (SDMs). SDMs are statis-

tical tools to analyze and predict geographical ranges of

species based on observed correlations with environ-

mental variables (Guisan & Zimmermann, 2000). SDM

extrapolations to future conditions are, however, asso-

ciated with considerable uncertainty (Elith & Leath-

wick, 2009). SDMs are inherently empirical in nature

and limited by the observations and datasets at hand:

they typically cannot incorporate processes such as the

response of an organism to novel or extreme environ-

mental conditions, nor processes that are not parame-

terized, such as biotic interactions and dispersal

limitations. On the other hand, it has been suggested

that some of these limitations may be of less importance

for planktonic organisms, which are at the mercy of

their environment (Robinson et al., 2011; Beaugrand
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et al., 2013). However, the actual skill of planktonic dis-

tribution projections in the real world has not been

thoroughly evaluated.

The validation of species distribution predictions has

been the subject of controversy (Planque et al., 2011),

particularly with regard to three main problems.

Firstly, validations typically summarize model skill by

single-number metrics, which have been repeatedly

criticized for their inability to capture the multifaceted

nature of model performance (Fielding & Bell, 1997;

Allouche et al., 2006; Lobo et al., 2008; Peterson et al.,

2008; Mouton et al., 2010). More meaningful validations

of presence/absence predictions may be possible by

employing a multimetric approach (Liu et al., 2011;

Jim�enez-Valverde, 2012). However, developing a spe-

cies distribution model is only worthwhile if its predic-

tions are more accurate and precise than an

approximation that assumes constant distribution (i.e.

‘no change’). Secondly, independent testing datasets,

where they exist, are typically restricted in length and

rarely exceed 20 years. Directly investigating the per-

formance of predictions with lead times of 50–
100 years, as they are used to project climate change

impacts, is therefore usually not possible. Thirdly, the

common validation approaches summarize skill over

large, heterogeneous environments without consider-

ing the spatial distribution of model errors (Lobo et al.,

2008; Rocchini et al., 2011).

The aim of this study is to perform a real-world test

of the performance of SDM predictions of plankton,

which thoroughly addresses all three problems men-

tioned above. We use 54 years of observational data in

the North Atlantic from the Continuous Plankton

Recorder, one of the world’s longest running and most

extensive marine biological monitoring programs

(Richardson et al., 2006), together with three common

SDMs following current best-practices. Firstly, we

report detailed results for four representative focus spe-

cies of phyto- and zooplankton (two copepods, one

dinoflagellate and one diatom) representing a range of

typical North Atlantic plankton types that have under-

gone significant changes in abundance/distribution in

recent decades. We follow the recommendations of

Jim�enez-Valverde (2012) and Liu et al. (2011) and report

multiple measures of model performance. We investi-

gate the predictive skill of SDMs for increasing tempo-

ral separation between the prediction and training

datasets and compare it to the skill of ‘no change’ fore-

casts. Moreover, we assess the spatial distribution of

the predictive skill. Secondly, we repeat the main analy-

ses on an extended set of 20 species to both identify

general overarching patterns and compare predictive

skill between different plankton groups. Together,

these results give us a novel insight into the true skill of

SDM predictions for plankton, and therefore their use-

fulness in projecting the impacts of climate change in

marine systems.

Materials and methods

CPR data

The Continuous Plankton Recorder (CPR) survey is a monitor-

ing program that provides long-term data on plankton in the

North Atlantic and adjacent seas (Fig. S1) (Batten et al., 2003;

Richardson et al., 2006). The CPR is towed by ships of oppor-

tunity at a nominal depth of 7 m and, being equipped with a

filtering mesh of 270 lm, is adapted to sample relatively large

phytoplankton and mesozooplankton taxa. Each CPR sample

corresponds to 10 nautical miles and approximately 3 m3 of

seawater filtered. From 1958 to 2012, about 500 phytoplankton

and zooplankton taxa have been identified in more than

200 000 CPR samples analyzed.

We used presence/absence observations of 20 representa-

tive plankton species from the CPR survey (Johns, 2015),

including 10 copepods, 5 diatoms, and 5 dinoflagellates

(Appendix S2). All species included have a clear taxonomic

identification and were actively sampled during the entire

time span (except Coscinodiscus wailesii, see below). Further-

more, they are relatively common in the North Atlantic with

distributions centered in different parts of the investigated

area. From this set, we chose four well-known ‘focus’ species

with contrasting distributions for more detailed analyses:

Calanus finmarchicus is a key zooplankton species in the food

web and its spatial distribution has been investigated in

numerous studies (e.g., Helaou€et & Beaugrand, 2007; Rey-

gondeau & Beaugrand, 2011; Chust et al., 2013; Hinder et al.,

2014). Calanus helgolandicus is another common copepod, that

is morphologically very similar to C. finmarchicus but with a

more southern center of distribution. Ceratium tripos is a com-

mon dinoflagellate in the North Atlantic, and Coscinodiscus

wailesii is a large disc-shaped diatom. C. wailesii is thought to

be invasive in the northeastern North Atlantic, where it was

first recorded in the English Channel in 1977, (Edwards et al.,

2001), although other hypotheses for its sudden appearance

exist as well (G�omez & Souissi, 2010).

The focus area of this study was the North Atlantic and

adjacent seas, extending from 80°W to 20°E and 25°N to 73°N.

Raw CPR sample data from within this region was aggregated

to the same temporal (monthly) and spatial (1° 9 1°) resolu-
tion as the environmental data (see below) although with sep-

aration maintained between day and night: every grid cell

with at least one presence observation was defined as a pres-

ence cell. The number of samples per grid cell was also

recorded, and used to correct for variations in sampling effort

in time and space.

Environmental variables

We used six environmental factors to describe the occurrence

of the plankton species: sea surface temperature (SST), sea sur-

face salinity (SSS), bathymetry, westerly winds, day length,
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and time (day or night) of the sample. SST, SSS, and bathyme-

try have previously been shown to be powerful predictors of

the distributions of copepods in the North Atlantic (Helaou€et

& Beaugrand, 2007; Beaugrand & Helaou€et, 2008; Reygondeau

& Beaugrand, 2011; Beaugrand et al., 2013). Wind-induced

mixing may be particularly relevant for phytoplankton but the

occurrence of important copepods like C. finmarchicus has also

been linked to westerly wind stress (Fromentin & Planque,

1996; Henson et al., 2009). We extend the set by day length, a

proxy for light availability which is crucial to phytoplankton

photosynthesis, and time of sampling, a variable that accounts

for the impact of diel vertical migration of copepods on the

sampling device (Hays, 1994).

We used the HadISST1 data product (Rayner et al., 2003) for

monthly SST for each year between 1958 and 2012. Monthly

SSS data were obtained from the World Ocean Atlas 2013

(Zweng et al., 2013): six individual climatologies of SSS were

available covering roughly one decade each (1955–1964, 1965–
1974, 1975–1984, 1985–1994, 1995–2004 and 2005–2012). Bathy-
metry data stems from the ETOPO1 Global Relief Model

(Amante & Eakins, 2009). Monthly westerly wind data, i.e. the

west component of wind velocities, was merged from two

re-analysis products from the European Centre for Medium-

Range Weather Forecasts: for the period 1958–2010 the ERA-

20CM model ensemble estimates were used (Hersbach et al.,

2015) and for the years 2011 and 2012 we used the

ERA-Interim model ensemble estimates (Dee et al., 2011). Both

products were regridded to a 1° 9 1° resolution and normal-

ized and standardized to correct for biases. The Pearson corre-

lation coefficient of the two products during the overlapping

period 1979–2010 was 0.99. Day length and day/night condi-

tions were estimated with the ‘MAPTOOLS’ package (Bivand &

Lewin-Koh, 2015) within R (R Core Team, 2013) for all samples

based on the geographic location, date, and time of sampling.

Species distribution modeling techniques

We employ three common species distribution models with

differing properties: MaxEnt (Phillips et al., 2004, 2006), gener-

alized additive models (Hastie & Tibshirani, 1990; Wood,

2006) and random forests (Breiman, 2001; Cutler et al., 2007).

We fitted MaxEnt models using the MAXENT software 3.3.3e

(http://www.cs.princeton.edu/~schapire/maxent/). We dis-

abled threshold features to avoid overly complex model fits

which could reduce the predictive quality of the models. Since

MaxEnt is a presence-only model, we discarded confirmed

absence observations for model fitting (but not for validation)

and instead supplied information about background condi-

tions in the North Atlantic based on 20 000–100 000 randomly

selected pixels, distributed uniformly in time and space. Con-

sequently, we also removed the two predictors linked to sam-

pling procedure: time of sampling (day or night) and number

of samples taken per grid cell. MaxEnt models were therefore

fitted based on a subset of the information supplied to the

other SDMs.

Generalized additive models (GAMs) were fitted with the

‘MGCV’ package in R (Wood, 2006). We assumed our presence/

absence data to follow a binomial error distribution and used

the logit link function. We included the numerical variables

(SST, SSS, depth, westerly wind, day length and number of

samples) as smooth terms and time of sampling (day or night)

as a factor.

Random forest is a statistical method based on classification

trees (Breiman, 2001; Cutler et al., 2007). Classification trees

are built by recursive partitioning of a class variable (here

presence/absence) into subgroups with binary decisions. The

decisions are based on one of the predictor variables and opti-

mized for a maximum homogeneity within the subgroups

(Breiman et al. 1984). In random forest, an ensemble of classifi-

cation trees is fitted, each on a subset of both the training

observations and the predictor variables. Presence/absence

probabilities are then predicted based on majority votes of the

ensemble. We used the R package ‘RANDOMFOREST’ to fit the ran-

dom forest models (Liaw & Wiener, 2002).

Spatial interpolations

We used spatial interpolations to produce overall distribution

estimates and to generate decade-wise average-distributions

used as ‘no change’ forecasts. For the decadal averages, we

grouped presence/absence observations by months and for

each decade before interpolating. We interpolated spatially to

1° 9 1° grids using inverse-squared-distance weighting, fol-

lowing the protocol of Beaugrand & Reid (2012). The search

radius was restricted to 250 km and estimates were only made

for pixels with a minimum of five samples within the search

radius.

Model performance

Threshold-dependent metrics. Threshold-dependent model

performance metrics were derived from the confusion matrix,

a 2 by 2 matrix summarizing the four possibilities of the rela-

tionship between presence/absence model predictions and

testing dataset (Table 1).

The prevalence error is the normalized difference between

observed prevalence and predicted prevalence:

Prevalence error ¼
aþc�ðaþbÞ
aþbþcþd

aþc
aþbþcþd

¼ c� b

aþ c
ð1Þ

where a�d are the elements of the confusion matrix from

Table 1. The positive predictive value (PPV), the probability of

Table 1 Confusion matrix for the validation of presence/

absence data; a: correctly predicted presences; b: erroneously

predicted presences (commission errors); c: erroneously pre-

dicted absences (omission errors); d: correctly predicted

absences

Testing data

Presence Absence

Model

Presence a b

Absence c d
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observing a species at locations where the model predicts

presences, is:

PPV ¼ a

aþ b
ð2Þ

and the negative predictive value (NPV), the probability that

the species is not detected where the model predicts absences,

is given by:

NPV ¼ d

cþ d
ð3Þ

True skill statistic, an overall performance metric (TSS;

Allouche et al., 2006), is estimated as

TSS ¼ sensitivityþ specificity� 1; ð4Þ
where sensitivity is the fraction of correctly predicted pres-

ences

Sensitivity ¼ a

aþ c
ð5Þ

and specificity is the fraction of correctly predicted absences

Specificity ¼ d

bþ d
ð6Þ

Model outputs and spatial interpolations were converted

into binary presence/absence predictions by selecting a

threshold probability: if the probability of occurrence exceeds

this value, it is considered as a presence for the purpose of

evaluating model performance. Several criteria to select

thresholds exist, and the choice can strongly affect the result-

ing model performance (Freeman & Moisen, 2008). Here, we

chose the threshold probability for which the predicted preva-

lence is identical to the observed prevalence, a criterion that

has been shown to yield good presence/absence predictions

performance (Freeman & Moisen, 2008).

Area under the curve. We supplemented our set of thresh-

old-dependent model performance metrics with another

overall performance metric, the area under the receiver

operating characteristic curve (AUC), which is perhaps the

most common model performance metric in species distri-

bution modeling (Jim�enez-Valverde, 2012). AUC is a thresh-

old-independent method that indicates the average value of

sensitivity over all possible values of specificity (Liu et al.,

2011).

Analyses

We investigated the predictive skill of our models in two

phases (Table 2). In the first phase, we investigated the skill of

SDM projections in detail for our focal species: we first fitted

the models to the observations of the full time period to assess

achievable skill with all available information. Then, we split

the observations into decadal subsets, fitted the model to these

datasets, and made predictions forward and backward in time

to assess how predictive performance changes with temporal

distance between the training and validation datasets. Finally,

we used the decadal predictions to assess the spatial varia-

tions in model performance.

In the second phase, we repeated the main analyses on the

full set of 20 plankton species. The aim here was to identify

general patterns and to compare model predictions of cope-

pods, diatoms, and dinoflagellates.

Phase one included four different procedures (Table 2).

Firstly (phase 1a), model skill for the full time span was

assessed by performing fivefold cross-validations. In total 111

351 presence/absence observations could be matched up with

environmental data and were used to model the distributions

of C. finmarchicus, C. helgolandicus, and C. tripos. For C. waile-

sii, we only considered the time span after its first occurrence

in the CPR data in 1977 (62 769 observations). The years

within the considered time spans were randomly split into

five equally sized groups to generate the cross-validation sub-

sets. We report means and 95% confidence intervals of TSS,

AUC, PPV, and NPV. We used the full datasets (not cross-vali-

dation subsets) to create distribution estimates, visualizing the

average distributions for the periods investigated.

We then (phase 1b) applied the analysis described above

to the individual decades (training) and use the models to

make projections into all the other decades (validation).

We evaluate model skill within the same decade again

with fivefold cross-validation. From this evaluation we

additionally obtain the necessary thresholds to divide the

continuous model predictions into binary presence/absence

predictions. We thus determine the thresholds at the time

where the model was trained and not at the time where

we evaluate it (since this would be the unknown future in

a practical application). Temporal projections are based on

models tuned on the full data of the decade (not 80% as

used for within-decade cross-validation). We evaluated all

model projections and grouped them based on the tempo-

ral difference between the time when the model was

trained and the time when it was evaluated. For each

group we report means and standard deviations of TSS,

PPV, and prevalence error. TSS scores for each group were

then further compared to the scores of ‘no change’ fore-

casts (phase 1c) using two-sided, paired t-tests (6, 10, 8, 6,

4, and 2 data pairs for 0, 10, 20, 30, 40, and 50 years abso-

lute time difference). Finally (phase 1d), we used all tem-

porally extrapolated predictions from the best model and

aggregated them into one by one degree cells to examine

how performance varies in space. TSS scores are reported

for cells for which at least five match-ups exist between

model predictions and both presence and absence observa-

tions.

Phase 2 consisted of repeating phases 1a to 1c for the full

set of 20 species (Table 2). We assessed TSS and PPV for the

best models trained on the full time period. Based on these

results, we also compared SDM skill between copepods, dia-

toms and dinoflagellates using Tukey honest significant differ-

ence (HSD) tests. Finally, for all species we produced decadal

SDM projections and evaluated their absolute prevalence error

and TSS as a function of temporal projection distance.

Obtained TSS scores were compared again with ‘no change’

forecasts using t-tests to examine for which plankton groups,

and for which models the most useful SDM predictions can be

made.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13274
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Results

Full models

Distributions. Based on its long-term average distribu-

tion C. finmarchicus was found to be the most wide-

spread of the four focal species, mainly occurring north

of 40°N and most frequently in the Labrador Sea, with

probabilities of presence of up to 100%. C. helgolandicus

was estimated to occur mainly in the eastern North

Atlantic, in particular in the Celtic Sea, but also in the

subtropical central North Atlantic. C. tripos was esti-

mated to mainly grow in the western and northeastern

North Atlantic, mostly close to the coast and seasonally

restricted. Presence predictions for C. wailesii were

found in parts of the presence areas of the former spe-

cies, but this diatom was estimated to only occur dur-

ing short time spans and not every year: few areas were

found where the probability of presence of C. wailesii

exceeded 5%. Mapped distribution estimates based on

spatial interpolations and random forest predictions

are shown in Fig. S3.

Model performance. We evaluated the skill of SDMs

trained on the full time period with four model perfor-

mance metrics (phase 1a). The model performance met-

rics suggested similar performance rankings of the

models (Fig. 1). Random forest models typically

performed best, followed by GAMs and MaxEnt. We

also found clear differences in skill depending on the

tested species: the metrics mostly identified highest

skill for models of C. finmarchicus and C. helgolandicus,

followed by C. tripos, while the models of C. wailesii

achieved lowest performance.

However, model skill considerably varied according

to the metric. The probability of correctly predicting

presence (PPV) ranged from 15% for MaxEnt models of

C. wailesii to 77% for random forest models of C. fin-

marchicus (Fig. 1c). These numbers were inversely

related to the probability of correctly predicting

absence (NPV) (Fig. 1d). Moreover, the two overall per-

formance metrics AUC and TSS fundamentally dis-

agreed about the skill of fits for C. wailesii: models for

this diatom achieved highest AUC scores on average

(mean AUC C. wailesii = mean AUC C. helgolandi-

cus = 0.86), while TSS scores were by far the lowest

(Fig. 1a, b). Overall, the results show that purpose and

design of model performance metrics can strongly

influence our perception of SDM skill.

Temporal extrapolation

Absolute SDM skill. No sustained loss in overall model

performance (TSS) and in the precision of the presence

predictions (PPV) was found for most focal species

when predictions were made to increasingly distant

Table 2 Overview over the analyses performed in this study. Items listed in square brackets are included in the supplementary

material

Phase Main focus

Training time

span(s) Considered species

SDM

technique(s)

Validation

metric(s)

Temporal

projections

1a Overall model

performance

1958–2012 Calanus finmarchicus

Calanus helgolandicus

Ceratium tripos

Coscinodiscus wailesii

MaxEnt

GAM

Random forest

TSS

AUC

PPV

NPV

Interpolations only

1b Absolute SDM skill

under temporal

extrapolation

Six decadal subsets* Calanus finmarchicus

Calanus helgolandicus

Ceratium tripos

Coscinodiscus wailesii

MaxEnt

Random forest

[GAM]

TSS

prevalence

error

[PPV]

Interpolations and

extrapolations

1c SDM skill under temporal

extrapolation relative

to ‘no change’

Six decadal subsets* Calanus finmarchicus

Calanus helgolandicus

Ceratium tripos

Random forest DTSS† Interpolations and

extrapolations

1d Spatial distribution of

predictive performance

Six decadal subsets* Calanus finmarchicus

[other focal species]

Random forest Pixel-wise

TSS

Extrapolations only

2 Generalization and

comparison of plankton

groups

1958–2012 and Six

decadal subsets*

10 copepods

5 diatoms

5 dinoflagellates

Maxent

GAM

Random forest

TSS

PPV

prevalence

error

DTSS†

Interpolations and

extrapolations

*Subsets are 1958–1964, 1965–1974, 1975–1984, 1985–1994, 1995–2004, 2005–2012.

†DTSS represents differences in TSS between SDM predictions and ‘no change’ forecasts as inferred by paired t-tests.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13274
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times (phase 1b) (Figs 2a–c, S4). However, in some

cases the curves showed distinct slopes; GAM predic-

tions for C. finmarchicus, for instance, continuously

increased in TSS the further into the future a projection

was made (Fig. S4). The slopes of PPV scores were even

steeper; predictions for C. finmarchicus tended to be

more precise when they were made further into the

past while the opposite was the case for C. helgolandicus

(Fig. S4).

For Coscinodiscus wailesii, on the other hand, a rapid

decrease in PPV and TSS consistently occurred for all

SDMs when predictions were made into the past or the

future, and the metrics approached 0 (no skill) for tem-

poral distances of 20–30 years. Based on our set of

observational data, the SDMs employed here were not

able to make useful distribution predictions of C. waile-

sii, even though traditional performance metrics (AUC)

suggested that this was a good model.

Errors in prevalence tended to increase for predic-

tions into more distant times (Fig. 2d–f). Models

increasingly overestimated the prevalence of C. fin-

marchicus when projected into the future while the

prevalence was more and more underestimated for pre-

dictions further into the past. The prevalence of C. hel-

golandicus, on the other hand, tended to be

overestimated for predictions into the past but underes-

timated for future predictions. For C. tripos temporal

trends were also apparent, but the magnitude was

lower and the direction was not consistent among

SDMs.

SDM skill relative to ‘no change’. Predictions of the dif-

ferent SDMs showed variable skill relative to the per-

formance of ‘no change’ forecasts (phase 1c). For

C. finmarchicus, C. helgolandicus, and C. tripos MaxEnt

predictions performed significantly worse than ‘no

change’ forecasts for most extrapolation distances.

GAM predictions did not perform significantly better

than ‘no change’ forecasts for any time-lag tested. Only

random forest predictions achieved higher skill for

Fig. 1 Means (bars) and 95% confidence intervals (error bars) of model performance measures for all combinations of focal species and

SDMs (phase 1a). Models are based on the entire dataset from 1958 to 2012 (1978–2012 for Coscinodiscus wailesii). Depicted measures are

AUC (a), TSS (b), PPV (c), and NPV (d). Colors represent Calanus finmarchicus (black), Calanus helgolandicus (red), Ceratium tripos (blue),

and Coscinodiscus wailesii (green).The different metrics are evaluated for MaxEnt (filled bars), GAMs (dashed bars), and random forest

models (white bars).

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13274
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temporal differences up to 30 years, in particular for

C. finmarchicus. Detailed results of the comparisons are

shown in Fig. S5.

Spatial distribution of predictive performance

Model performance showed substantial spatial variation

for the focal species (phase 1d). The model predictions

for C. finmarchicus (Fig. 3a) showed the highest TSS in

the northern-central North Atlantic, while in the south-

ern-central North Atlantic and in the North Sea the mod-

els had no skill in differentiating between presences and

absences. Strong spatial variation was also seen for

model predictions for C. helgolandicus, and C. tripos

(Fig. S6). For C. wailesii only 90 cells located either in the

southern North Sea or close to the New England coast

could be evaluated (Fig. S6): spatial analysis confirmed

that models for this species have little skill.

Local performance tended to be best in pixels where

the species occurred in moderate frequencies. Pixels

with poor local TSS predominantly occurred in areas

where the species were expected to occur with a proba-

bility of <20% (see superimposed black lines in Figs 3a

and S6). In the case of C. finmarchicus maximum TSS

was found in pixels with moderate observed preva-

lence while TSS was poor in pixels where C. finmarchi-

cus was either present or absent most of the time

(Fig. 3b).

Generalization and comparison of plankton groups

True skill statistic and positive predictive value values

of random forest models were on average relatively low

and varied between plankton groups when considering

the full timespan and all the 20 species (phase 2). Pres-

ences were predicted most precisely for copepods (aver-

age PPV = 0.50) and were significantly better (P ≤ 0.05,

Tukey HSD test) than for diatoms (PPV = 0.29)

(Fig. 4a). The PPV for dinoflagellates (PPV = 0.48) was

between the scores of the other two groups and not sig-

nificantly different from any of them. For TSS we found

two distinct groupings: Copepods and dinoflagellates

both had significantly higher TSS scores than diatoms

according to a Tukey HSD test, while no difference was

found between their TSS scores (Fig. 4a).

We did not find a significant drop in TSS for increas-

ing temporal differences between model training and

model validation when averaged over all species, yet

the absolute prevalence error was continuously increas-

ing (Fig. 4b, c). For all SDM types TSS curves were flat

but the level for the presence-only model (MaxEnt) was

clearly below the levels for the presence/absence mod-

els. The absolute prevalence error, however, continu-

ously increased with increasing time-lags in both

directions of time. At absolute time lags of 50 years, the

prevalence of species was over- or underestimated on

average by about 50%, independent of SDM type.

Fig. 2 Model performance metrics as a function of temporal difference (years) between training period and testing period for Calanus

finmarchicus (black), Calanus helgolandicus (red), Ceratium tripos (blue), and Coscinodiscus wailesii (green). TSS is shown in the top row;

prevalence error is shown in the bottom row. Columns represent the SDMs MaxEnt, and random forest, as well as ‘no change’ forecasts

based on spatial interpolations. Solid lines depict the mean values of groups of predictions with equal temporal difference; dashed lines

indicate means � standard deviations. Prevalence error for C. wailesii is much larger than the scale and has been excluded for simplic-

ity. Positive time differences correspond to future predictions.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13274

PREDICTIVE SKILL OF SDMS FOR PLANKTON 7



Species distribution model predictions significantly

better than ‘no change’ forecasts were only found regu-

larly for copepods with presence/absence models

(Fig. 4d). For all plankton groups, MaxEnt models

mostly performed worse than ‘no change’ forecasts.

Random forest models for dinoflagellates produced pre-

dictions with TSS scores roughly equivalent to ‘no

change’ forecasts. Otherwise, presence/absence SDM

predictions (GAM and random forest) tended to be infe-

rior to ‘no change’ forecasts for the two phytoplankton

groups. Only in the case of copepods were presence/

absence SDM predictions mostly significantly better

than ‘no change’ forecasts for time lags of up to 30 years,

particularly in the case of random forest models.

Fig. 3 Spatial patterns of TSS for random forest model predictions for Calanus finmarchicus (a). The isocline of 20% probability of pres-

ence is superimposed (black line). Only 1°91° cells with at least five match-ups between model predictions and both presence and

absence observations are shown. The box plots in panel (b) illustrate the relationship between pixel-wise TSS and observed prevalence.

Thick lines on box plots illustrate median, boxes represent the inter quartile ranges and whiskers encompass the 95% confidence inter-

vals. A TSS of zero corresponds to a random ‘coin-toss’.

Fig. 4 Generalization of the analyses to a broader set of 20 species. In panel (a) TSS and PPV are shown for models trained on the full

dataset for copepods (red), diatoms (green) and dinoflagellates (blue). Bars depict mean values; error bars illustrate standard devia-

tions. Panels (b) and (c) show TSS and absolute prevalence error, respectively, grouped by SDM types and as a function of time lag

between model training and validation. MaxEnt models are shown in cyan, GAMs in purple and random forest models in orange; solid

lines depict means across all species, dashed lines show means � standard deviations. Panel (d) shows comparisons of TSS between

SDM predictions and ‘no change’ forecasts (inverse squared distance interpolation) for different temporal extrapolation distances (abso-

lute time difference) for copepods (top), diatoms (middle), and dinoflagellates (bottom). Barplots depict fractions of species for which

SDM predictions perform significantly better (green), equivalently (gray), or significantly worse (red) than no change predictions based

on paired t-tests.

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13274
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Discussion

Our analyses show that SDM predictions can provide

valuable insight into how climate change will affect

copepod biogeography, given that sound data and rele-

vant environmental predictors are used. However, for

the phytoplankton species as well as for the presence-

only models tested here, this was not the case – predic-

tions typically performed either as good as or worse

than ‘no change’ forecasts (Fig. 4d). Furthermore, we

identified a growing prevalence error for predictions

with more temporal distance in time from their training

dataset, suggesting that there is more to plankton

prevalence than what these SDMs consider. Prevalence

errors of climate-change projections may even exceed

the percentages found here, given the growing nature

of the error and the longer temporal horizon of such

studies (often until 2100). Finally, we found strong vari-

ations of model skill in space: model performance was

poor in areas where the species were less common,

including the edges of the distribution ranges. This

may have important implications on the accuracy of

range shift estimates, which are a commonly reported

outcome of SDM predictions in the literature (e.g.,

Weinmann et al., 2013), as well as when predictions are

intended to be used for ecosystem management pur-

poses, with a local domain of interest.

These novel results deserve attention as they high-

light the importance of a rigorous evaluation of the

accuracy and precision of species distribution forecasts.

In the following, we first discuss the relevance of our

comparative approach, then we describe how the com-

monly used model performance metrics can promote

overestimations of SDM skill and finally, we suggest

three ecological explanations why our plankton distri-

bution predictions did not perform better.

The two main conditions for meaningful compara-

tive model validation have been fulfilled in this study:

there were considerable changes in plankton distribu-

tions and the SDMs were fed with important environ-

mental factors that changed. Comparative validations

of model predictions relative to ‘no change’ predictions

have been used in decadal climate forecasts (e.g., Matei

et al., 2012), but to our knowledge, this is the first time

such an approach has been applied to set the skill of

SDM predictions in context. Employing such a valida-

tion approach is only relevant if substantial distribu-

tional changes occur within study period, which was

evident for the plankton species investigated (Fig. S7

and Poloczanska et al., 2013). When comparing the dis-

tributions from 2005 to 2012 to those from 1958 to 1964

during the month of maximum prevalence,

C. finmarchicus was lost from 21% of the cells where it

was formerly present, and appeared new in 13%. For

C. helgolandicus and C. tripos the corresponding num-

bers were 23% or more. These changes arise from the

combined effects of spatial relocations and possible

shifts in phenology and should ideally be captured by

model predictions.

However, to capture such change, SDMs need rele-

vant environmental information. In our study, three

gridded environmental variables were available with

full temporal resolution for the entire investigated per-

iod, while a few more well-resolved alternatives would

exist for more recent years, such as chlorophyll a con-

centration: other potentially important variables, such

as nutrient fields, do not exist in the temporal and spa-

tial resolutions required to enable their application in

such modeling. Nevertheless, temperature and salinity

are consistently among the most important environ-

mental predictors in plankton SDMs (Helaou€et & Beau-

grand, 2007; Irwin et al., 2012; Chust et al., 2013).

Furthermore, many environmental variables in the

North Atlantic are highly correlated (Helaou€et & Beau-

grand, 2007) and intercorrelated sets of predictor vari-

ables may not greatly improve the performance of

SDMs (Dormann et al., 2012).

Model performance metrics did not always yield sen-

sible conclusions – only by considering multiple met-

rics could a full picture of model skill be developed.

For example, the overall performance metrics TSS and

AUC assigned opposite relative skill to the models for

C. wailesii and, in some cases, TSS and PPV oddly

improved for predictions to increasingly distant times.

These unexpected results arose from a weakness shared

by all commonly used model performance metrics: they

are either affected by the prevalence of a species or by

erroneous prevalence estimates (Fielding & Bell, 1997;

Allouche et al., 2006; Lobo et al., 2008; Mouton et al.,

2010). AUC, for instance, overestimates the skill of rare

species (Lobo et al., 2008), a common problem that also

caused the inconsistent performance of C. wailesii mod-

els. A multimetric approach, with its capacity to unra-

vel the impact of the different factors that affect the

score of a single-value statistic, may more accurately

identify the skill of a prediction and where its weak-

nesses are.

One of the weaknesses revealed by this study was

the precision of presence predictions, which may be

restricted by the characteristics of planktonic organisms

and their marine habitat. When using the full dataset,

the average precision for copepod predictions, the most

suitable group tested, was only as good as coin a toss

(50%) for the best SDM type. As PPV has rarely been

estimated for SDM predictions (Liu et al., 2009), we

unfortunately cannot directly compare these numbers

with those of other taxa. Nevertheless, PPV for

plankton may be particularly limited: plankton, and in

© 2016 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13274
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particular phytoplankton, are short-lived organisms

which undergo distinct phases of boom and bust

(Mackas et al., 2012; Gonz�alez Taboada & Anad�on,

2014), creating local patchiness. Ocean currents and

eddies lead to further local structuring of the pelagic

environment and disperse plankton patches laterally

beyond suitable areas (Barton et al., 2010). The environ-

mental predictors used here are too coarse to resolve

many of these processes, a limitation that may be

relaxed by using environmental predictors measured at

the time of sampling. However, even co-sampled envi-

ronmental information will not capture short-term phe-

nomena like nutrient plumes which affect the

prevalence of plankton with a time lag. Plankton occur-

rences may be constrained by the species’ ecological

niche but they are transitory, moving targets, which

appear to be hard to accurately predict.

Modeling abiotic constraints alone may not be suffi-

cient to understand how the prevalence of plankton

changes. An obvious factor that is typically ignored by

SDMs is biotic interactions (Elith & Leathwick, 2009),

including both interspecific [e.g. alterations of food

webs or trophic mismatch (Richardson & Schoeman,

2004; Kirby & Beaugrand, 2009)], and intraspecfic (e.g.

competition and mating) forms. Biotic interactions may

represent the stochastic part of the relationship between

the spatial distribution of copepods and environmental

conditions (Beaugrand et al., 2013): however, they can

also affect the abundance of the species and may thus

be essential to understand how prevalence changes

with time.

Relationships between the occurrence of species

and environment are unique and may even vary for

the same species within a large study area, under-

mining the potential of general SDM formulations

across many species. For example, random forest

models for C. finmarchicus, consistently made poor

predictions for the North Sea, an area where the spe-

cies regularly occurs. The environmental conditions

in the North Sea are strongly affected by climate dri-

ven inflow events (Hjøllo et al., 2009), which may be

dominated by warm waters from the North Atlantic

or by cold waters from the Norwegian Sea. Inflowing

deep water from the Norwegian Sea, an important

overwintering area of C. finmarchicus, directly trans-

ports the spring population of the species into the

North Sea (Heath et al., 1999). The necessary exclu-

sion of such processes from our SDMs therefore

clearly limits their skill in this region, even though

much better skill is seen for the same models and

species in other regions (Fig. 3).

Similarly, the history of C. wailesii poses a challenge

to species distribution modeling. The species is inva-

sive in the eastern North Atlantic and was expanding

its range during the observed period with an initial

phase of rather high abundance that eventually leveled

off at lower numbers (Edwards et al., 2001). Thus, for

this species, a fundamental assumption of species dis-

tribution modeling was violated, i.e., the geographic

distribution of C. wailesii was not in equilibrium with

the environment (Phillips et al., 2006). The broad toler-

ance range of C. wailesii in our key predictors tempera-

ture and salinity (D€urselen & Rick, 1999; Irwin et al.,

2012) further complicates the problem. SDMs for this

cosmopolite may be improved through the inclusion of

observations from its entire native range and more rel-

evant environmental variables, such as river dis-

charges in coastal areas (G�omez & Souissi, 2010;

Jim�enez-Valverde et al., 2011). Yet, it may be doubted

whether future predictions of a useful accuracy will be

possible for this species at all. Powerful SDM algo-

rithms do not guarantee reasonable predictions if a

species’ ecology is not thoroughly incorporated into

them.

In summary, we have shown that the reliability and

robustness of climate change projections of plankton

biogeography based on species distribution modeling is

not assured by powerful models and extensive datasets.

The potential performance of a projection has to be

thoroughly assessed, and critically communicated. Tra-

ditional single-value statistics are barely sufficient sum-

maries of model performance in this context: their

dependence on prevalence makes them unstable and

difficult to compare. By validating with multiple

uncommon approaches, we have shown that the under-

standing of model performance can be significantly

improved. Reporting model performance with multiple

metrics, including rarely used measures of predictive

precision (i.e. PPV and NPV) provides a more exhaus-

tive overall picture of model skill. Examining skill rela-

tive to ‘no change’ forecasts informs about the

usefulness of the predictions, and resolving spatial

aspects of model performance highlights local areas of

poor skill. By incorporating such approaches routinely

into the development and reporting of SDM climate-

change forecasts, a more realistic and badly needed

understanding of the accuracy of the predictions can be

established.
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