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ABSTRACT 

The aim of this paper is to investigate  class of continuity named ω β continuity. Some characterizations and 

preservation theorems are investigated.    Relationship between lindelof space and  is studied. 

Furthermore some basic properties of  are investigated. 
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INTRODUCTION 
In both pure and applied domains, General topology has great significance.it plays a very significant role in data 

mining [15].If one has to produce knowledge from data in any real life field.Information systems can prove very 

useful. As a matter of fact, topological structure on the collection of data are quite suitable. The influence of general 

topological spaces can be observed in computer science.Apart from that we see its use in computational topology for 

geometric and molecular design[13]. 

Many Mathematicians have researched and studied continuity on topological spaces,as significant and fundamental 

subject in the study of topology. Mathematicians have introduced various forms of continuity. These continuities 

involve different kinds of generalized sets such as  

b-open and many more. 

 

Hdeib [6] explored the concept of ω-closed sets in 1982 and ω-continuous functions in 1989.later on H Aljarrah and 

M Noorani[2] investigated   open sets. T.Noiri, A.  Al-Omari  and  

M.S.M. Noorani[16] introduced   

The purpose of the paper is to investigate class of  using  –open sets. 

 

Throughout the present paper, a space means topological space on which there are no separation axioms assumed. 

Exceptions are explicitly stated. Let  be a subset of a space . The closure of  and interior of in 

are denoted by  and , respectively. 

         Definition1.1 A subset  of a space  is said to be 

(1)  [3],  

(2)  open [1] if   

(3) open [6]. set if for every  there exists an open set  containing   such that  is countable. 

(4) open [2] set if for every  there exists an open set  containing   such that  is countable.  
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 We use ),  to denote the family of all 

subsets of  

Definition 1.2  is called  if for every  and 

each open set V in  containing there exists an  

 

Definition1.3  open  set if for every  there exists an open set  containing   such that 

 

is countable. 

Lemma   1.4 Let  be a topological space: 

i. The  arbitrary union  

ii. The intersection of an  set and open set is  

Theorem  1.5  Let ( , ) be a subspace of   is  

 if and only if . 

Theorem  1.6  Let  be a subset of a topological space . Then  if and only if 

 for every  set  containing  

Theorem 1.7 [5]  if  is an open continuous function, then 

 

 

CONTINUOUS FUNCTIONS 

Definition 2.1  is called  at a point  if for every 

open set V   containing  there exists an  set containing  such that   If  is 

 at each point of  then  is said to be  . 

Definition 2.2 Let  be any space, a set  is said to be  of a point  if 

and only if there exists a   set containing  such that  

Definition 2.3.. The following are equivalent for a function f  , where  and  are topological 

space: 

i. The function  is  

ii. For each open set V     

iii. For each , the inverse of  every  neighborhood of  is an  of  

iv. For each  and each neighborhood V of  , there is an    

U of  such that   

v. For each closed set  is  

vi. For each subset  

vii. For each subset  

Proof. i  Let V be open in Y and there exists an 

 set  in  containing  such that (  Then  and hence 
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  . By Lemma 1.4(i),   Which implies that is 

. 

ii  For , let V be the neighborhood of  where  is open in Y. By 

(ii),  Then by Definition2,2, 

 of  

.  For and be a neighborhood of Then U= (  is an  neighborhood of  

and  

. For any Since  is closed, th  is neighborhood of 

, hence there is a    of   such that   there exists an 

 set  in  containing  and   take 

( . By Lemma 1.4 (i), the set (  which 

implies  is  

.  Let , Since cl is a closed set in  by (vi) ,  set 

containing  , then  (  

. Let  By (vi), ( (  

. We Suppose that  is not . So there exist  and with 

 such that for all  sets with   and  (U)  i.e.  

 (U) Therefore,  by Theorem 1.6,  and so by (vii), 

thus a 

contradiction. Therefore,  is  continuous. 

Definition2. 4.  For any subset A of a topological space  the frontier of A, denoted by   , is 

defined as  

Theorem2.5. Let  be a function.  

Then  (  denotes 

the set of points at which  is  continuous. 

Proof. Let . Then for every  set U containing  there exists open sets V in 

 containing such    for every  set  

containing x  . Therefore,     Then   

 Hence, 

, }.  Conversely, let  

 Then for each open set  in  containing   is  

containing  thus for every   containing  and hence  

 So   

 

Corollary 2.6  A  function  :  is if and only if  (int (G)) 

int (  for any subset G  
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Proof.  Let G  Y . Since  is ,   . As  

  so  int  . 

Now . if  and V  with  Then  and so   There 

exists  U   such that  U   Hence  (U)  V  and hence the result . 

Further if  is a countable set then every function f :  is . The following 

diagram follows immediately from the definitions in which none of the implications is reversible. 

 

                               continuous                  continuous            continuous 

                                                                                                                             

                         continuous               continuous           continuous   

 

Example 2. 7 Let  {1, 2, 3 } with the topology   { X,  and Y  = {a, b} with the 

topology  be the function defined by  

 
Then  

Example 2.8  Let with the topology  

 be the function defined by  

 
Then  

Proposition2.9.  If  is an  function X, then the restriction 

is   provided A is an open set in X. 

Proof. Since is an , for any open set V    ,   . 

Hence by Lemma 1 ),   since A is an open set. Therefore, by Theorem 1.5, 

    sets, which implies that  is  

function.  

Example 2.10  Let  X = R with the topology  and Y= {0,1} with the topology                         

 be the function defined by                     

 

 It can be easily seen that  is . We take A = . Then A and is 

not  since  (Y) = { }   

Definition 2.11   A cover  U= { α ∆} of subset of X is called a  if  is  for 

each α ∆. 
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Proposition 2.12   Let  be any function and A ={ α ∆} be a  cover of  

X .  If the restriction,  for each 

α ∆, then  is . 

Proof. Let V   Since  then for each α ∆, we have    

 So by Theorem 1.5,  

 for each Take . By Lemma 1.4 (i)  

 

Corollary 2.13 Let  be any function and U={ α ∆} a open cover of  If  the 

restriction,  is  for each  then  is 

. 

Remark:2.14 The composition g  of a continuous function  and 

an  function g :  is not necessarily  function as 

the following example shows. Thus, the composition of  functions need not be 

 

Example 2.15. Let    with the topology    with the topology 

 and Z   with the topology  Let  be the 

function defined by  

 
and  g  :    be the function defined by 

g  

Then  is continuous ( hence g is  However g is not 

 because (g  ({a} =  

Proposition 2.16.  The composition g  

   If  f :   is and g :  is continuous. 

 Proof. Let    and V  with ( g o f ) ( since g is continuous, there exists open sets  

W   with W and g (W) Morever  is , there exists open U    

say containing  such that  W. Now ( g o f ) ( U )  g (W) hence the result. 

We note that  this result fails if g is assumed to be only   or  as it is shown 

in the next example. 

Example2.17. Consider with the topology   with the topology 

 

 

Let  f :   be the function define by  
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and g :  be the function define by  

 
Then  functions but g  o  f  is 

not . 

Corollary 2.18 If f :   is  an   

into a product space then for each 

 is the projection function from the product space onto the space  for 

each  

Theorem  2.19.  Let  X and Y be a topological spaces, let  be a function and g : 

 be the graph function of  f  given by g   for every point 

Then g is   if is  

 

Proof. Suppose that g is  Now   where   Y  then  is 

 by Corollary 2.18. Conversely, assume that  is . Let  and W  

be any open set in X  containing g  Then there exist open sets U such that g 

 Since , there exists   containing 

 
Therefore we have g   Thus g is  

Definition 2.20. [14] A function  is called pre-semi-preopen if the image of each semi-

preopen set in X is a semi-preopen set in Y. 

Theorem 2.21. If g o   is   and  is pre-semi-

preopen surjection, then g:    is  

Proof.  we first prove that if  is an pre-semi-preopen function and   then 

f(U)  So let U  then for all  there exists  sets in   

containing  and  where C is a countable set. Thus  

is a countable set. This implies   Now, Let  and let V 

 with g Choose   such that   Since g o f is  there exists 

 with  and g ( But  is pre-semi-preopen function therefore, by 

assumption,  with   So we get the result. 

Corollary 2.22. Let  : (  (  be a function for each   . If the product function   = 

  is ,  then  is 

. 
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 Proof.  We first  prove that any projection function is pre-semi-preopen function .        Let     hence 

by using the assumption that  is open and continuous surjective, f  cl 

(int (cl ( f ( U )))). Thus f ( U )  Now For each let  :   and 

 :  be the projections, then we have  o f =  for each    Now 

 and  is continuous,  

and hence  is  function. Since  is pre-semi-preopen function it follows from 

Theorem 2.21, that  is . 

Theorem 2.23.   For any space X, the following properties are equivalent :  

i. X  is   Lindelőf. 

ii. Every  cover of X has a countable subcover. 

Proposition  2.24. If  be an   surjective function.                     And X 

is  Lindelőf , then Y is Lindelőf. 

Proof. Let { }  be an open cover of Y. Then } is  cover of X, 

as . Since X is  Lindelőf, by Theorem 2.23, X has a countable subcover,  say 

, . . . , ,  . . .  , Thus  

is a subcover of { }  of Y. It follows that Y is Lindelőf.  

Corollary2.2 5. Let   be a  ( or  ) surjective 

function. And X  is   Lindelőf, then Y is Lindelőf. 

 

IRRESOLUTE FUNCTIONS 

Definition 3.1 A function  is called Irresolute if the inverse image of each 

 set is an set.  

 Remark:   We observe that every  Irresolute function  is  but the converse is not true, 

which is shown by the following example. 

Example 3.2. Let  X  with the topologies   with the topology 

 . Let  be the function defined by  

 
Then  but not Irresolute since . 

 

Theorem 3.3  The  following conditions are equivalent  for a function   . 

i.  The function  is Irresolute. 

ii. For each  X and V  containing , there exists U  containing x 

such that  

iii. For each X, the inverse of every  is 

of x . 
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( )For each  X and , there exists U of 

x such that  

Proof. i  Suppose that  X and V  containing , since  Irresolute 

then  containing x. It follows that  

ii  Suppose that   of , by Definition 2.2 there exists   

 such that   there exists   containing  such that . 

  ( . Hence, (  is  of . 

iii   If   is   of , (  is   of  

.and  

iv    For each  containing  . Take  A = ( , if  

Then   Since  so V is a   of  . So  A = (  is 

  of x. From which It follows that  there exists such that   

Thus,  by Lemma 1.4(i)   A  =   is  

Set. Hence,  is Irresolute. 

Theorem 3.4.  The following conditions are equivalent for a function  :  

i.  is Irresolute 

ii. For each  subset F of  Y,  (F is . 

iii. For each subset  A  of  X, . 

iv. For each subset B  of  Y, .  

 

Proof. i  If F    subset of Y. Then  which implies that 

(F   . 

ii  Let  A be a subset of X. since  A , we have  A . Now 

    set containing A by (ii),  then , It 

follows that 

   . 

iii Let B         hence  

 
iv  Suppose  Irresolute .  So there exist   with 

such that  for all U    with  U and   i.e   

Therefore .   So by  Theorem 1.6,  Thus for all 

(    containing  we have  , a contradiction.  Therefore,  is 

Irresolute.   

Theorem 3.5.  Let  be a function. Then  is Irresolute if and only if 

   (  
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Proof.  First suppose  is Irresolute . Let B   Y.  Since  is Irresolute, we have 

is  set. As      

   

Conversely, Let   with . Then  and so by assumption 

 There exists an   sets such that   

Hence   and hence the result. 

Proposition 3.7 g o  is continuous,  if  is rresolute and g :   

 is continuous. 

Proof. Let  and let  be any open set in  containing  g  Since g is continuous, there 

exists an  set W containing  such that g   V . Put g  Hence g 

o  is continuous. 

Corollary 3.8. If   is irresolute and g  :   is continuous,  

then g o  is continuous. 

Recall that a function   is said to be irresolute [4] if the inverse image of each 

 set is an   

Proposition3.9.  Let    be an open continuous function and every  is closed in 

the space  then  is  

Proof. Let ,  

  by Theorem 1.7,  hence  is 

 by Theorem 3.4 

Definition:  A space X is  as if for each two distinct point   

there exists   such that  and  

Theorem 3.10  If is an injective function and the space Y is 

 then X is  

Proof. Let  and  be two distinct points of X. Since  is injective and Y is  so,there exist  

 such that   (  and ∩  Now , 

 and ( ∩  , ∩  Since is  then 

 is  Hence  is  

Definition 3.11  A space X  is said to be  sets A 

and B such that A ∪ B = X. 

Proposition 3.12  If  is an  surjective function and X is 

, then Y is  

Proof.   Assume that Y is not  Then there exist disjoint  sets A  and B such that 

A ∪ B = Y .  Since  is   surjective,  and  are nonempty  sets. 

Further  ∪   It follows that   is not  which is a contradiction. 

Hence  is  
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Definition 4.1   A function  is called  if the image 

of each open (resp. closed) set in  is an   (resp.  . 

Remark:  We observe  that every open (closed) function is  (resp. function, but 

the converse is not true, which is shown by the following example. 

Example 4.2. Let X = {a,b} with the topology = { with the topology 

{  Let  be the function define by 

 Then  is  and  but it is neither open nor 

closed function. 

Proposition 4.3  A function  is  if and only if for each   and each open 

set U  containing  , there exists W   set containing  such that W ⊂ . 

Theorem 4.4  Let  be a function from space  into a space  Then  is 

 if and only if  for each set A subset of  

Proof. Let    function and A any subset of X. Then  

⊂   therefore  ⊂     Conversely, suppose  

that    Then    Thus we obtain that 

 

Proposition 4.5  Let  be a containing surjection function and let 

g :  (Z,  be such that  g o   :   (Z,  is   function,  then g  is 

 

 Proof. Let  and let V  with  g   V. Choose  X  such that   Since     g o  is 

 function, then g = g o  (Z, .  It follows that g is   

         The following examples show that the  function is independent with 

 

Example  4.6  Let    with the topologies   and let  Y = {2, 3 } with  the topology  

 Let  be the function defined by  

 
Then   is not  but it can easily seen that   is  

Example 4.7 Let  X = {1, 2} with the topology    and  let     with the topologies 

  Let  be the function defined by  

 
Then  is not  but it can be easily seen that   is  and 

 funciton. 

Example  4.8 Consider the function  in the Example 8 which is  , but  not   . 
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