CORE

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES \& RESEARCH TECHNOLOGY ON $\omega^{\prime} \beta$ Sets and $-\omega^{\prime} \beta$ CONTINUOUS FUNCTIONS

Anita Arora, Dr.Satish Kumar
Department of Mathematics Maharishi Markandeshwar University Mullana

DOI:

ABSTRACT

The aim of this paper is to investigate class of continuity named $\omega^{\prime} \beta$ continuity. Some characterizations and preservation theorems are investigated. Relationship between lindelof space and $\omega^{\prime} \beta$ continuity is studied. Furthermore some basic properties of $\omega^{\prime} \beta$ - open and closed sets are investigated.

KEYWORDS: $\omega^{\prime} \beta-$ open, $\omega^{\prime} \beta$ irresolute, β-Lindelof.

INTRODUCTION

In both pure and applied domains, General topology has great significance.it plays a very significant role in data mining [15].If one has to produce knowledge from data in any real life field.Information systems can prove very useful. As a matter of fact, topological structure on the collection of data are quite suitable. The influence of general topological spaces can be observed in computer science. Apart from that we see its use in computational topology for geometric and molecular design[13].
Many Mathematicians have researched and studied continuity on topological spaces,as significant and fundamental subject in the study of topology. Mathematicians have introduced various forms of continuity. These continuities involve different kinds of generalized sets such as
b-open[3], β - open[1], ω-open[6], ω^{t}-open[4] sets and many more.

Hdeib [6] explored the concept of ω-closed sets in 1982 and ω-continuous functions in 1989.later on H Aljarrah and M Noorani[2] investigated $\omega \beta$ - continuous functions using $\omega \beta$ - open sets. T.Noiri, A. Al-Omari and M.S.M. Noorani[16] introduced $\omega \mathrm{b}$ - open sets.

The purpose of the paper is to investigate class of $\omega^{\prime} \beta$ - continuous functions using $\omega^{\prime} \beta$-open sets.

Throughout the present paper, a space means topological space on which there are no separation axioms assumed. Exceptions are explicitly stated. Let A be a subset of a space (X, τ). The closure of A and interior of A in (X, τ) are denoted by $\operatorname{Int}(A)$ and $\operatorname{cl}(A)$, respectively.
Definition1.1 A subset A of a space (X, τ) is said to be
(1) b-open [3], $A \subset \operatorname{Int}(c l(A)) \cup c l(\operatorname{Int}(A))$
(2) $\beta-$ open [1] if, $A \subset \operatorname{cl}(\operatorname{lnt}(c l(A))$.
(3) ω - open [6]. set if for every $x \in A$ there exists an - open set U containing x such that $U-A$ is countable.
(4) $\omega \beta-$ open [2] set if for every $x \in A$ there exists an $\beta-$ open set U containing x such that $U-A$ is countable.

We use $\omega \beta O(X, \tau)($ resp., $\beta O(X, \tau), \omega O(X, \tau), b O(X, \tau))$ to denote the family of all $\omega \beta$-open, (resp. β-open, ω-open, $b-$ open) subsets of (X, τ).
Definition 1.2 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called ω-continuous [7] if for every $x \in X$ and each open set V in (Y, σ), containing $f(x)$ there exists an $\omega O(X, \tau)$ set U containing x such that $f(U) \subset V$.
Definition1.3 $\omega^{\prime} \beta$ - open set if for every $x \in A$ there exists an β - open set U containing x such that $U-\operatorname{cl}(A)$
is countable.
Lemma 1.4 Let (X, τ) be a topological space:
i. The arbitrary union of $\omega^{\prime} \beta O(X, \tau)$ sets is $\omega^{\prime} \beta O(X, \tau)$.
ii. The intersection of an $\omega^{\prime} \beta O(X, \tau)$ set and open set is $\omega^{\prime} \beta O(X, \tau)$.

Theorem 1.5 Let $\left(Y, \tau_{Y}\right)$ be a subspace of (X, τ). which is $\beta O(X, \tau)$. Let $A \subset Y$, then
$A \in \omega^{\prime} \beta O(X, \tau)$ if and only if $A \in \omega^{\prime} \beta O\left(Y, \tau_{Y}\right)$.
Theorem 1.6 Let A be a subset of a topological space (X, τ). Then $x \in \omega^{\prime} \beta c l(A)$ if and only if $A \cap U \neq \emptyset$. for every $\omega^{\prime} \beta O(X, \tau)$ set U containing x.
Theorem 1.7 [5] if $f:(X, \tau) \rightarrow(Y, \sigma)$ is an open continuous function, then $f^{-1}(c l(B))=c l\left(f^{-1}(B)\right)$ for every subset B of Y.

$\omega^{\prime} \boldsymbol{\beta}$-CONTINUOUS FUNCTIONS

Definition 2.1 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called $\omega^{\prime} \beta$ - continuous at a point $x \in X$, if for every open set $\mathrm{V} \in \sigma$ containing $f(x)$ there exists an $U \in \omega^{\prime} \beta O(X, \tau)$ set containing x such that $f(U) \subset V$. If f is $\omega^{\prime} \beta$ - continuous at each point of X then f is said to be $\omega^{\prime} \beta$ - continuous on X.
Definition 2.2 Let (X, τ) be any space, a set $A \subset X$ is said to be $\omega^{\prime} \beta$ - neighbourhood of a point $x \in X$ if and only if there exists a $U \in \omega^{\prime} \beta O(X, \tau)$ set containing x such that $U \subset A$.
Definition 2.3.. The following are equivalent for a function $\mathrm{f}:(X, \tau) \rightarrow(Y, \sigma)$, where X and Y are topological space:
i. The function f is $\omega^{\prime} \beta$ - continuous.
ii. For each open set $\mathrm{V} \subset Y, f^{-1}(V) \in \omega^{\prime} \beta O(X, \tau)$.
iii. For each $x \in X$, the inverse of every neighborhood of $f(x)$ is an $\omega^{\prime} \beta$ - neighbourhood of x.
iv. For each $x \in X$ and each neighborhood V of $f(x)$, there is an $\omega^{\prime} \beta$ - neighbourhood U of x such that $f(U) \subset V$.
v. For each closed set B of $Y, f^{-1}(B)$ is $\omega^{\prime} \beta-$ closed in X.
vi. For each subset A of $X, f\left(\omega^{\prime} \beta c l(A)\right) \subset c l(f(A))$.
vii. For each subset B of $Y, \omega^{\prime} \beta c l\left(f^{-1}(B)\right) \subset\left(f^{-1}(c l(B))\right)$.

Proof. (i \rightarrow ii) Let V be open in Y and $x \in f^{-1}(V)$ then $f(x) \in V$, so by(i), there exists an $\omega^{\prime} \beta O(X, \tau)$ set U_{x} in X containing x such that $f\left(U_{x}\right) \subset V$. Then $x \in U_{x} \subset f^{-1}(V)$ and hence

ISSN: 2277-9655
(I2OR), Publication Impact Factor: 3.785
$f^{-1}(V)=\mathrm{U}_{x \in f^{-1}(v)} U_{x}$. By Lemma 1.4(i), $f^{-1}(V) \in \omega^{\prime} \beta O(X, \tau)$, Which implies that f is $\omega^{\prime} \beta-$ continuous.
(ii \rightarrow iii) For $x \in X$, let V be the neighborhood of $f(x)$, then $f(x) \in W \subset V$, where W is open in Y. By (ii), $\quad f^{-1}(W) \in \omega^{\prime} \beta O(X, \tau)$, and $x \in f^{-1}(W) \subset f^{-1}(V)$. Then by Definition2,2, $f^{-1}(V)$ is $\omega^{\prime} \beta-$ neighbourhood of x.
(iii \rightarrow iv). For $x \in X$ and V be a neighborhood of $f(x)$. Then $U=f^{-1}(V)$ is an $\omega^{\prime} \beta-$ neighborhood of x and $f(U)=f\left(f^{-1}(V)\right) \subset V$.
(iv $\rightarrow v$). For any $x \in X-f^{-1}(B), f(x) \in Y-B$. Since B is closed, th $Y-B$ is neighborhood of $f(x)$, hence there is a $\omega^{\prime} \beta$ - neighbourhood U of x such that $f(U) \subset Y-B$, there exists an $\omega^{\prime} \beta O(X, \tau) \quad$ set $\quad U_{x} \quad$ in $\quad X \quad$ containing $\quad x \quad$ and $\quad U_{x} \quad \subset U \subset X-f^{-1}(B)$, take $\left(X-\mathrm{f}^{-1}(\mathrm{~B})\right)=\underset{\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{Y}-\mathrm{B})}{\mathrm{U}} \mathrm{U}_{\mathrm{M}}$. By Lemma 1.4 (i), the set $\left(X-f^{-1}(B)\right) \in \omega^{\prime} \beta O(X, \tau)$, which implies $f^{-1}(B)$ is $\omega^{\prime} \beta C(X, \tau)$.
$(\mathbf{v} \rightarrow \boldsymbol{v i})$. Let $A \subset X$, Since $\operatorname{cl}(f(A))$ is a closed set in Y by (vi), $\left.f^{-1} c l(f A)\right)$) is an $\omega^{\prime} \beta C(X, \tau)$ set containing A, then $f\left(\omega^{\prime} \beta c l(A)\right) \subset c l(f(A))$.
$(\mathrm{vi} \rightarrow v i \bar{i})$. Let $B \subset Y$. By (vi), $f\left(\omega^{\prime} \beta c l\left(f^{-1}(B)\right)\right) \subset c l(B)$, so $\omega \beta c l\left(f^{-1}(B)\right) \subset f^{-1}(c l(B))$.
(vii $\rightarrow \mathbf{i}$). We Suppose that f is not $\omega^{\prime} \beta$-continuous. So there exist $x \in X$ and $V \in \sigma$ with $f(x) \in V$ such that for all $\omega^{\prime} \beta O(X, \tau)$ sets U with $x \in U$ and $f(\mathrm{U}) \nsubseteq(V)$ i.e.
$f(\mathrm{U}) \cap(Y-V) \neq \emptyset$. Therefore, $x \in \omega^{\prime} \beta c l\left(f^{-1}(Y-V)\right)$ by Theorem 1.6, and so by (vii),
$f(x) \in c l(Y-V)$, thus $V \cap(Y-V) \neq \emptyset$, for all open sets V in (Y, σ) containing $f(x)$, a
contradiction. Therefore, f is $\omega^{\prime} \beta-$ continuous.
Definition2. 4. For any subset A of a topological space (X, τ) the frontier of A , denoted by $\omega^{\prime} \beta F_{r}(A)$, is defined as $\omega^{\prime} \beta c l(A) \cap \omega^{\prime} \beta c l(X-A)$.
Theorem2.5. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function.
Then $X-\omega^{\prime} \beta c(f)=\mathrm{U}\left\{\omega^{\prime} \beta F_{r}\left(f^{-1}(V)\right): V \in \sigma_{y} f(x) \in V, x \in X\right\}$ where $\omega^{\prime} \beta c(f)$ denotes the set of points at which f is $\omega^{\prime} \beta-$ continuous.
Proof. Let $x \in X-\omega^{\prime} \beta c(f)$. Then for every $\omega^{\prime} \beta O(X, \tau)$ set U containing x there exists open sets V in (Y, σ) containing $f(x)$ such $f(U) \notin V$, Hence $U \cap\left(X-f^{-1}(V)\right) \neq \phi$ for every $\omega^{\prime} \beta O(X, \tau)$ set U containing x . Therefore, $x \in \omega^{\prime} \beta \operatorname{cl}\left(X-f^{-1}(V)\right)$ by Theorem 1.6. Then $x \in f^{-1}(V) \cap$ $\omega^{\prime} \beta c l\left(X-f^{-1}(V)\right) \subset \omega^{\prime} \beta F_{r}\left(f^{-1}(V)\right)$. Hence,
$X-\omega^{\prime} \beta c(f) \subset \cup\left\{\omega^{\prime} \beta F_{r}\left(f^{-1}(V)\right), V \in \sigma_{s} f(x) \in V, x \in X\right\}$. Conversely, let x $\notin X-\omega^{\prime} \beta c(f)$. Then for each open set V in (Y, σ) containing $f(x),\left(f^{-1}(V)\right.$ is $\omega^{\prime} \beta O(X, \tau)$ containing x, thus for every $V \in \sigma$ containing $f(x), x \in \omega^{\prime} \beta \operatorname{Int}\left(f^{-1}(V)\right)$ and hence x $\notin \omega^{\prime} \beta F_{r}\left(f^{-1}(V)\right)$. So $\cup\left\{\omega^{\prime} \beta F_{r}\left(f^{-1}(V)\right): V \in \sigma_{3} f(x) \in V, x \in X\right\} \subset X-\omega^{\prime} \beta c(f)$.

Corollary 2.6 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega^{\prime} \beta$-continuous if and only if f^{-1} (int (G)) $\subset \omega^{\prime} \beta \operatorname{int}\left(f^{-1}(G)\right)$, for any subset G of Y.

Proof. Let $G \subset \mathrm{Y}$. Since f is $\omega^{\prime} \beta$-continuous, $f^{-1}(\operatorname{int}(G)) \in \omega^{\prime} \beta O(X, \tau)$. As $f^{-1}(\operatorname{int}(G)) \subset$ $f^{-1}(G)$, so $f^{-1}(\operatorname{int}(G)) \subset \omega^{\prime} \beta \operatorname{int}\left(f^{-1}(G)\right)$.
Now. if $x \in X$ and $V \in \sigma$ with $f(x) \in V$. Then $x \in f^{-1}(V)$ and so $x \in \omega^{\prime} \beta \operatorname{Int}\left(f^{-1}(V)\right)$. There exists $U \in \omega^{\prime} \beta O(X, \tau)$ such that $x \in U \subset f^{-1}(V)$. Hence $f(x) \in f(U) \subset V$ and hence the result .
Further if X is a countable set then every function $\mathrm{f}:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega^{\prime} \beta$-continuous. The following diagram follows immediately from the definitions in which none of the implications is reversible.

Example 2. 7 Let $X=\{1,2,3\}$ with the topology $\tau=\{\mathrm{X}, \phi,\{1\},\{2\},\{1,2\}\}$ and $Y=\{\mathrm{a}, \mathrm{b}\}$ with the topology $\sigma=\{\phi, Y,\{a\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by
$f(x)= \begin{cases}b & x=\{1,2\} \\ a & x=3\end{cases}$
Then f is not β - continuous, but it can be easily seen that f is $\omega^{\prime} \beta$ - continuous.
Example 2.8 Let $X=R$ with the topology $\tau=\tau_{u}$ and $Y=\{a, b\}$ with the topology
$\sigma=\{\phi, Y,\{a\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by
$\mathrm{f}(x)= \begin{cases}a & x \in[0,1) \cap \mathbb{R}-\mathbb{Q} \\ b & x \in[0,1) \cap \mathbb{Q}\end{cases}$
Then f is $\omega^{\prime} \beta$-continuous, but it is not $\omega^{\prime} b$ - continuous.
Proposition2.9. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an $\omega^{\prime} \beta$-continuous function X , then the restriction $\left.f\right|_{A}:\left(A, \tau_{A}\right) \rightarrow(Y, \sigma)$ is $\omega^{\prime} \beta$-continuous provided A is an open set in X .
Proof. Since f is an $\omega^{\prime} \beta$-continuousfunction, for any open set $\mathrm{V} \in \sigma, f^{-1}(V) \in \omega^{\prime} \beta O(X, \tau)$. Hence by Lemma $1.4(\mathrm{ii}), f^{-1}(V) \cap A \in \omega^{\prime} \beta O(X, \tau)$ since A is an open set. Therefore, by Theorem 1.5, $\left(\left.f\right|_{A}\right)^{-1}(V)=f^{-1}(V) \cap A \in \omega^{\prime} \beta O\left(A, \tau_{A}\right)$ sets, which implies that $\left.f\right|_{A}$ is $\omega^{\prime} \beta$-continuous function.
Example 2.10 Let $\mathrm{X}=\mathrm{R}$ with the topology $\tau=\tau_{u}$ and $\mathrm{Y}=\{0,1\}$ with the topology $\sigma=\{\phi, Y,\{1\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by
$f(x)= \begin{cases}1 & x=\sqrt{2} \\ 0 & x \in \mathbb{Q}\end{cases}$
It can be easily seen that f is $\omega^{\prime} \beta$ - continuous. We take $\mathrm{A}=\mathbb{R}-\mathbb{Q}$. Then $\mathrm{A} \in \omega^{\prime} O(X, \tau)$ and $\left.f\right|_{A}$ is not $\omega \beta$ - continuous since $\left.\left.f\right|_{A}\right)^{-1}(\mathrm{Y})=\{\sqrt{2}\} \notin \omega^{\prime} \beta O\left(A, \tau_{A}\right)$.
Definition 2.11 A cover $U=\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of subset of X is called a $\beta O(X, \tau)$ cover if U_{α} is $\beta O(X, \tau)$ for each $\alpha \in \Delta$.

Proposition 2.12 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be any function and $\mathrm{A}=\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be a cover of X by $\beta O(X, \tau)$. If the restriction, $\left.f\right|_{A_{\alpha}}:\left(A_{\alpha}, \tau_{A_{\alpha}}\right) \rightarrow(Y, \sigma)$ of f is $\omega^{\prime} \beta$-continuous for each $\alpha \in \Delta$, then f is $\omega^{\prime} \beta$ - continuous.
Proof. Let $V \in Y$ Since $\left.f\right|_{A_{\alpha}}$ is $\omega^{\prime} \beta$-continuous, then for each $\alpha \in \Delta$, we have $\left(\left.f\right|_{A}\right)^{-1}(V)=f^{-1}(V) \cap A_{\alpha} \in \omega^{\prime} \beta O\left(A_{\alpha}, \tau_{A_{\alpha}}\right)$. So by Theorem 1.5, $f^{-1}(V) \cap A_{\alpha}$ $\in \omega^{\prime} \beta O(X, \tau)$ for each $\alpha \in \Delta$. Take $f^{-1}(V)=\underset{\alpha \in \Delta}{U} \quad f^{-1}(V) \cap A_{\alpha}$. By Lemma 1.4 (i) $f^{-1}(V)$ $\in \omega^{\prime} \beta O(X, \tau)$.
Corollary 2.13 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be any function and $\mathrm{U}=\left\{A_{\alpha}: \alpha \in \Delta\right\}$ a open cover of X. If the restriction, $\left.f\right|_{A_{\alpha}}:\left(A_{\alpha}, \tau_{A_{\alpha}}\right) \rightarrow(Y, \sigma) \quad$ is $\quad \omega^{\prime} \beta$-continuous \quad for \quad each $\quad \alpha \in \Delta$, then f is $\omega^{\prime} \beta$ - continuous.
Remark:2.14 The composition g o $f:(X, \tau) \rightarrow(Z, \rho)$ of a continuous function $f:(X, \tau) \rightarrow(Y, \sigma)$ and an $\omega^{\prime} \beta$ - continuous function $\mathrm{g}: \rightarrow(Y, \sigma) \rightarrow\left(Z_{,} \rho\right)$ is not necessarily $\omega^{\prime} \beta$ - continuous function as the following example shows. Thus, the composition of $\omega^{\prime} \beta$-continuous functions need not be $\omega^{\prime} \beta$-continuous.
Example 2.15. Let $X=\mathbb{R}$ with the topology $\tau=\{R, \phi, R-Q\},, \quad Y=\{1,2\}$ with the topology $\sigma=\{\phi, Y,\{1\}\}$ and $Z=\{a, b\}$ with the topology $\rho=\{\phi, Z,\{a\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by
$f(x)= \begin{cases}1 & x \in \mathbb{R}-\mathbb{Q} \\ 2 & x \in \mathbb{Q}\end{cases}$
and $\mathrm{g}:(X, \sigma) \rightarrow(Y, \rho)$ be the function defined by

$$
\mathrm{g}(x)= \begin{cases}a & x=2 \\ b & x=1\end{cases}
$$

Then f is continuous (hence $\omega^{\prime} \beta$-continuous) and g is $\omega^{\prime} \beta$-continuous. However g o f is not $\omega^{\prime} \beta-$ continuous, because $(\mathrm{g} \circ f)^{-1}\left(\{\mathrm{a}\}=\mathbb{Q} \notin \omega^{\prime} \beta \mathrm{O}(X, \tau)\right.$.
Proposition 2.16. The composition g o $f:(X, \tau) \rightarrow) \rightarrow\left(Z_{,} \rho\right)$ is $\omega^{\prime} \beta$-continuous.
If $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega^{\prime} \beta$ - continuous and $\mathrm{g}: \rightarrow(Y, \sigma) \rightarrow(Z, \rho)$ is continuous.
Proof. Let $x \in X$ and $V \in \rho$ with ($\mathrm{g} \circ f)(x) \in V$, since g is continuous, there exists open sets $W \in \sigma$ with $f(x) \in W$ and $\mathrm{g}(W) \subset V$. Morever f is $\omega^{\prime} \beta$-continuous, there exists open $U \in$ $\omega^{\prime} \beta O(X, \tau)$ say containing x such that $f(U) \subset W$. Now $(\mathrm{gof})(U) \subset \mathrm{g}(W) \subset V$.hence the result.
We note that this result fails if g is assumed to be only ω-continuous or β - continuous as it is shown in the next example.
Example2.17. Consider $X=\mathbb{R}$ with the topology $\tau=\{R, \phi, R-Q\},, Y=\{a, b, c\}$ with the topology σ
$=\{\phi, Y,\{a\},\{b\},\{a, b\}\}$ and $Z=\{1,2,3,4\}$ with the topology $\rho=\{\phi, Z,\{1\},\{1,2\},\{1,2,3\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function define by
$f(x)= \begin{cases}a & x \in \mathbb{R}-\mathbb{Q} \\ b & x \in \mathbb{Q}\end{cases}$
http: // www.ijestr.com
and $\mathrm{g}:(Y, \sigma) \rightarrow(Z, \rho)$ be the function define by
$\mathrm{g}(x)= \begin{cases}1 & x=a \\ 3 & x=b \\ 2 & x=c\end{cases}$
Then f is $\omega^{\prime} \beta$-continuous, g is $\omega^{\prime} \beta$ - continuous and β - continuous functions but g o f is not $\omega^{\prime} \beta$-continuous since $(\mathrm{g} \circ f)^{-1}\left(\{3\}=\mathbb{Q} \notin \omega^{\prime} \beta 0(X, \tau)\right.$.
Corollary 2.18 Iff: $(X, \tau) \rightarrow \quad \prod_{\alpha \in \Delta} X_{\alpha} \quad$ is an $\omega^{\prime} \beta$-continuous function from a space
(X, τ) into $\quad a \quad$ product space $\prod_{\alpha \in \Delta} X_{\alpha} \quad$ then $P_{\alpha \alpha} \circ f$ is $\omega^{\prime} \beta$-continuous for each $\alpha \in \Delta$, where $P_{\alpha \alpha}$ is the projection function from the product space $\prod_{\alpha \in \Delta} X_{\alpha}$ onto the space X_{α} for each $\alpha \in \Delta$.
Theorem 2.19. Let X and Y be a topological spaces, let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function and g : $(X, \tau) \rightarrow(X \times Y, \tau \times \sigma)$ be the graph function of f given by $\mathrm{g}(x)=(x, f(x))$ for every point $x \in X$. Then g is $\omega^{\prime} \beta-$ continuous if is $\omega^{\prime} \beta$ - continuous.

Proof. Suppose that g is $\omega^{\prime} \beta$ - continuous. Now $f=P_{Y}$ og where $P_{Y}: X \times \mathrm{Y} \rightarrow Y_{\text {, }}$ then f is $\omega^{\prime} \beta$ - continuous by Corollary 2.18. Conversely, assume that f is $\omega^{\prime} \beta$ - continuous. Let $x \in X$ and W be any open set in $X \times Y$ containing $g(x)$. Then there exist open sets $U \subset X$ and $V \subset Y$ such that g $(x) \in U \times V \subset W$. Since f is $\omega^{\prime} \beta$ - continuous, there exists $U_{1} \in \omega^{\prime} \beta O(X, \tau)$ containing xand $f\left(U_{1}\right) \subset V$. Take $H=U \cap U_{1}$. Then $H \in$ $\omega^{\prime} \beta O(X, \tau)$ bylemma1.4 (ii), such thatx $\in \operatorname{Hand} f(H) \subset V$
Therefore we have $\mathrm{g}(H) \subset U \times V \subset W$. Thus g is $\omega^{\prime} \beta$-continuous.
Definition 2.20. [14] A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called pre-semi-preopen if the image of each semipreopen set in X is a semi-preopen set in Y .
Theorem 2.21. If g o $f:(X, \tau) \rightarrow(Z, \rho)$ is $\omega \beta$ - continuous and $f:(X, \tau) \rightarrow(Y, \sigma)$ is pre-semipreopen surjection, then $\mathrm{g}: \rightarrow(Y, \sigma) \rightarrow(Z, \rho)$ is $\omega \beta$ - continuous.
Proof. we first prove that if $f:(X, \tau) \rightarrow(Y, \sigma)$ is an pre-semi-preopen function and $U \in \omega^{\prime} \beta O(X, \tau)$, then $\mathrm{f}(\mathrm{U}) \in \omega^{\prime} \beta O(Y, \sigma)$. So let $\mathrm{U} \in \omega^{\prime} \beta O(X, \tau)$ then for all $x \in U$ there exists $\beta O(X, \tau)$ sets U_{1} in (X, τ) containing x and $U_{1}-c l(U) \subset C$ where C is a countable set. Thus $f\left(U_{1}\right)-c l(f(U))$ $\subset f(C)$ where $f(C)$ is a countable set. This implies $f(U) \in \omega^{\prime} \beta O(Y, \sigma)$. Now, Let $y \in Y$ and let V $\in \rho$ with $\mathrm{g}(y) \in V$. Choose $x \in X$ such that $f(x)=y$. Since g o f is $\omega \beta$ - continuous there exists $U \in \omega \beta O(X, \tau)$ with $x \in U$ and $\mathrm{g}(f(U)) \subset V$. But f is pre-semi-preopen function therefore, by assumption, $f(U) \in \omega \beta O(Y, \sigma)$ with $f(x) \in f(U)$. So we get the result.
Corollary 2.22. Let $f_{\alpha}:\left(X_{\alpha}, \tau_{\alpha}\right) \rightarrow\left(Y_{\alpha}, \tau_{\alpha}\right)$ be a function for each $\alpha \in \Delta$. If the product function $f=$ $\prod_{\alpha \in \Delta} f_{\alpha \in \Delta} \rightarrow X_{\alpha} \rightarrow \prod_{\alpha \in \Delta} Y_{\alpha}$ is $\omega^{\prime} \beta$ - continuous, then f_{α} is $\omega^{\prime} \beta-$ continuous.

Proof. We first prove that any projection function is pre-semi-preopen function. Let $U \in \beta O(X, \tau)$ hence $f(U)) \subset f(c l(\operatorname{int}(c l(U))))$, by using the assumption that f is open and continuous surjective, $f(U) \subset c l$ (int $\left(c l(f(U))\right.$). Thus $f(U) \in \beta O(Y, \sigma)$. Now For each $\beta \in \Delta$, let $P_{\beta}: \quad \Pi X_{\alpha} \rightarrow X_{\beta}$ and $\alpha \in \Delta$
$q_{\beta}: \prod_{\alpha \in \Delta} Y_{\alpha} \rightarrow Y_{\beta}$ be the projections, then we have q_{β} of $f=f_{\beta}$ o p_{β} for each $\beta \in \Delta$. Now f is $\omega^{\prime} \beta$ - continuous and q_{β} is continuous, q_{β} of is $\omega \beta$ - continuous by Proposition 2.16 and hence $f_{\beta} \circ P_{\beta}$ is $\omega \beta$ - continuous function. Since P_{β} is pre-semi-preopen function it follows from Theorem 2.21, that f_{β} is $\omega \beta$ - continuous function.
Theorem 2.23. For any space X, the following properties are equivalent :
i. X is β - Lindelöf.
ii. Every $\omega^{\prime} \beta O(X, \tau)$ cover of X has a countable subcover.

Proposition 2.24. If $f:(X, \tau) \rightarrow(Y, \sigma)$ be an $\omega^{\prime} \beta$ - continuous surjective function. And X is β - Lindelöf, then Y is Lindelöf.
Proof. Let $\left\{\mathrm{V}_{\alpha}: \alpha \in \Delta\right\}$ be an open cover of Y . Then $\left\{f^{-1}\left(\mathrm{~V}_{\alpha}\right): \alpha \in \Delta\right\}$ is $\omega^{\prime} \beta O(X, \tau)$ cover of X , as f is $\omega^{\prime} \beta$ - continuous. Since X is β - Lindelöf, by Theorem 2.23, X has a countable subcover, say $f^{-1}\left(\mathrm{~V}_{\alpha_{1}}\right), f^{-1}\left(\mathrm{~V}_{\alpha_{2}}\right), \ldots, f^{-1}\left(\mathrm{~V}_{\alpha_{n}}\right), \ldots, \operatorname{Thus} \mathrm{V}_{\alpha_{1}}, \mathrm{~V}_{\alpha_{2}}, \ldots, \mathrm{~V}_{\alpha_{n}}, \ldots$, is a subcover of $\left\{\mathrm{V}_{\alpha}: \alpha \in \Delta\right\}$ of Y . It follows that Y is Lindelőf.
Corollary2.2 5. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a β-continuous (or ω^{\prime}-continuous) surjective function. And X is $\beta-$ Lindelöf, then Y is Lindelöf.

$\omega^{\prime} \boldsymbol{\beta}$-IRRESOLUTE FUNCTIONS

Definition 3.1 A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called $\omega^{\prime} \beta$-Irresolute if the inverse image of each $\omega^{\prime} \beta \sigma(\mathrm{Y}, \sigma)$ set is an $\omega^{\prime} \beta \sigma(\mathrm{X}, \tau)$ set.
Remark: We observe that every $\omega^{\prime} \beta$-Irresolute function is $\omega^{\prime} \beta$ - continuous but the converse is not true, which is shown by the following example.
Example 3.2. Let $\mathrm{X}=\mathbb{R}$ with the topologies $\tau=\{R, \phi, R-Q$,$\} , and Y=\{1,2\}$ with the topology
$\sigma=\{\phi, Y,\{2\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by
$f(x)= \begin{cases}1 & \mathbb{R}-\mathbb{Q} \\ 2 & x \in \mathbb{Q}\end{cases}$
Then f is $\omega^{\prime} \beta$ - continuous but not $\omega^{\prime} \beta$-Irresolute since $f^{-1}(\{1\})=\mathbb{Q} \notin \omega^{\prime} \beta O(X, \tau)$.
Theorem 3.3 The following conditions are equivalent for a function $f:(X, \tau) \rightarrow(Y, \sigma)$.
i. The function f is $\omega^{\prime} \beta-$ Irresolute.
ii. For each $x \in X$ and $V \in \omega^{\prime} \beta O(Y, \sigma)$ containing $f(x)$, there exists $U \in \omega^{\prime} \beta \sigma(X, \tau)$ containing x such that $f(U)) \subset V$.
iii. For each $x \in X$, the inverse of every $\omega^{\prime} \beta$-neighbourhoodof $f(x)$ is $\omega^{\prime} \beta$ - neighbourhood of x.

ISSN: 2277-9655
(I2OR), Publication Impact Factor: 3.785
(iv)For each $x \in X$ and $\omega^{\prime} \beta$ - neighbourhood V of $f(x)$, there exists $\omega^{\prime} \beta$ - neighbourhood U of x such that $f(U)) \subset V$.
Proof. (i \rightarrow ii) Suppose that $x \in X$ and $V \in \omega^{\prime} \beta O(Y, \sigma)$ containing $f(x)$, since f is $\omega^{\prime} \beta$-Irresolute then $f^{-1}(V) \in \omega^{\prime} \beta O(X, \tau)$ containing x. It follows that $f\left(f^{-1}(V)\right) \subset V$.
(ii \rightarrow iii) Suppose that $x \in U$ and Vis $\omega^{\prime} \beta$ - neighbourhood of $f(x)$, by Definition 2.2 there exists V_{1} $\in \omega \beta O(Y, \sigma)$ such that $f(x) \in V_{1} \subset V_{\text {, }}$ there exists $U \in \omega^{\prime} \beta O(X, \tau)$ containing x such that $f(U) \subset V_{1}$. so, $x \in U \subset f^{-1}\left(V_{1}\right) \subset f^{-1}(V)$. Hence, $f^{-1}(V)$ is $\omega \beta$ - neighbourhood of x.
(iii \rightarrow iv) If V is $\omega^{\prime} \beta$ - neighbourhood of $f(x), f^{-1}(V)$ is $\omega^{\prime} \beta$ - neighbourhood of x by (iii) .and $f\left(f^{-1}(V)\right) \subset V$.
(iv \rightarrow i) For each $x \in X$, let $V \in \omega^{\prime} \beta O(Y, \sigma)$ containing $f(x)$. Take $A=f^{-1}(V)$, if $x \in A$. Then $f(x) \in V$. Since $V \in \omega^{\prime} \beta O(Y, \sigma)$ so V is a $\omega^{\prime} \beta$ - neighbourhood of $f(x)$. So $\mathrm{A}=f^{-1}(V)$ is $\omega^{\prime} \beta$-neighbourhood of x . From which It follows that there exists $\mathrm{A}_{\mathrm{x}} \in \omega \beta O(X, \tau)$ such that $x \in \mathrm{~A}_{\mathrm{x}} \subset A$. Thus, by Lemma 1.4(i) $\mathrm{A}=\underset{x \in A}{\mathrm{U}} A_{x}$ is $\omega^{\prime} \beta O(X, \tau)$
Set. Hence, f is $\omega^{\prime} \beta$-Irresolute.
Theorem 3.4. The following conditions are equivalent for a function : $(X, \tau) \rightarrow(Y, \sigma)$:
i. f is $\omega^{\prime} \beta$-Irresolute
ii. For each $\omega^{\prime} \beta C(Y, \sigma)$ subset F of $Y, f^{-1}(\mathrm{~F})$ is $\omega^{\prime} \beta C(X, \tau)$.
iii. For each subset A of $X, f\left(\omega^{\prime} \beta c l(A)\right) \subset \omega^{\prime} \beta c l(f(A))$.
iv. For each subset B of $Y, \omega^{\prime} \beta c l\left(f^{-1}(B)\right) . \subset f^{-1}\left(\omega^{\prime} \beta c l(B)\right)$

Proof. (i \rightarrow ii) If $F \in \omega^{\prime} \beta C(Y, \sigma)$ subset of Y . Then $X-f^{-1}(F) \in \omega^{\prime} \beta O(X, \tau)$, which implies that $f^{-1}(\mathrm{~F}) \in \omega^{\prime} \beta C(X, \tau)$.
(ii \rightarrow iii) Let A be a subset of X. since $A \subset f^{-1} f(A)$), we have $A \subset f^{-1}\left(\omega^{\prime} \beta c l(f(A))\right.$). Now $f^{-1}\left(\omega^{\prime} \beta c l(f(A))\right) \in \omega^{\prime} \beta C(X, \tau)$ set containing A by (ii), then $\omega^{\prime} \beta c l(A) \subset f^{-1}\left(\omega^{\prime} \beta c l(f(A))\right)$, It follows that
$f\left(\omega^{\prime} \beta c l(f(A)) \subset \omega^{\prime} \beta c l(f(A))\right.$.
(iii \rightarrow iv) Let $\mathrm{B} \subset \mathrm{Y}$, by (iii) $f\left(\omega \beta c l\left(f^{-1}(B)\right)\right) \subset \omega \beta c l\left(f\left(f^{-1}(B)\right)\right) \subset \omega \beta c l(B)$, hence $\omega \beta c l\left(f^{-1}(B)\right) \subset f^{-1}(\omega \beta c l(B))$.
(iv $\rightarrow \mathbf{i}$) Suppose f is not $\omega^{\prime} \beta$-Irresolute. So there exist $x \in X$ and $V \in \omega \beta O(Y, \sigma)$ with $f(x) \in V$ such that for all $U \in \omega \beta O(X, \tau)$ with $x \in U$ and $f(U) \nsubseteq(V)$ i.e $f(U) \cap(Y-V) \neq \phi$. Therefore . $x \in f^{-1}(\omega \beta c l(Y-V))$. So by Theorem 1.6, $f(x) \in \omega \beta c l(Y-V)$. Thus for all $V \in \omega^{\prime} \beta O(Y, \sigma)$ containing $f(x)$, we have $V \cap(Y-V) \neq \phi$, a contradiction. Therefore, f is $\omega^{\prime} \beta$-Irresolute.
Theorem 3.5. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then f is $\omega \beta$-Irresolute if and only if $f^{-1}\left(\omega^{\prime} \beta \operatorname{lnt}(B)\right) \subset \omega^{\prime} \beta \operatorname{lnt}\left(f^{-1}(B)\right.$ for every $B \subset Y$.

Proof. First suppose f is $\omega^{\prime} \beta$-Irresolute . Let $B \subset \quad Y$. Since f is $\omega^{\prime} \beta$-Irresolute, we have $f^{-1}\left(\omega^{\prime} \beta \operatorname{Int}(B)\right)$ is $\quad \omega^{\prime} \beta O(X, \tau) \quad$ set. As $\quad f^{-1}\left(\omega^{\prime} \beta \operatorname{lnt}(B)\right) \quad \subset \quad f^{-1}\left(\omega^{\prime} \beta \operatorname{lnt}(B)\right)$ $\subset \omega^{\prime} \beta \ln t\left(f^{-1}(B)\right)$.
Conversely, Let $x \in X$ and $V \in \omega^{\prime} \beta O(Y, \sigma)$ with $f(x) \in V$. Then $x \in f^{-1}(V)$ and so by assumption $x \in \omega^{\prime} \beta \operatorname{Int}\left(f^{-1}(V)\right)$. There exists an $U \in \omega^{\prime} \beta O(X, \tau)$ sets such that $x \in U \subset f^{-1}(V)$.
Hence $f(x) \in f(U) \subset V$ and hence the result.
Proposition 3.7 g o f is $\omega^{\prime} \beta$-continuous, if $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega^{\prime} \beta-i_{\text {rresolute }}$ and $\mathrm{g}: \rightarrow(Y, \sigma) \rightarrow$ $\left(Z_{,} \rho\right)$ is $\omega \beta$-continuous.
Proof. Let $x \in X$ and let V be any open set in (Z, ρ) containing $\mathrm{g}(f(x))$. Since g is $\omega \beta$-continuous, there exists an $\omega \beta O(Y, \sigma)$ set W containing $f(x)$ such that $\mathrm{g}(W) \subset V$. Put $\mathrm{g}(f(U)) \subset \mathrm{g}(W) \subset V$. Hence g o f is $\omega^{\prime} \beta$-continuous.
Corollary 3.8. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega^{\prime} \beta$-irresolute and $g:(Y, \sigma) \rightarrow(Z, \rho)$ is $\omega^{\prime} \beta$-continuous, then go f is $\omega^{\prime} \beta$-continuous.
Recall that a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be ω^{\prime}-irresolute [4] if the inverse image of each $\omega^{\prime} O(Y, \sigma)$ set is an $\omega^{\prime} O(X, \tau)$.
Proposition3.9. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an open continuous function and every $\omega^{\prime} O(Y, \sigma)$ is closed in the space (Y, σ) then f is $\omega^{\prime} \beta$-irresolute.
Proof. Let $U \in \omega^{\prime} \beta O(Y, \sigma)$,
$\omega \beta c l\left(f^{-1}(U)\right) \subset c l\left(f^{-1}(U)\right)=\left(f^{-1}(c l(U)) \subset f^{-1}(\omega \beta c l(U))\right.$, by Theorem 1.7, hence f is $\omega^{\prime} \beta$-irresolute, by Theorem 3.4
Definition: A space X is $\omega^{\prime} \beta-T_{2}$ [4] as if for each two distinct point $x, y \in X$,
there exists $U, V \in \omega^{\prime} \beta O(X, \tau)$ such that $x \in U, y \in V$ and $U \cap V=\phi$.
Theorem 3.10 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an $\omega^{\prime} \beta$-irresolute injective function and the space Y is $\omega^{\prime} \beta-T_{2}$, then X is $\omega^{\prime} \beta-T_{2}$.
Proof. Let x_{1} and x_{2} be two distinct points of X . Since f is injective and Y is $\omega^{\prime} \beta-T_{2}$, so,there exist V_{1}, V_{2} $\in \omega^{\prime} \beta O(Y, \sigma)$ such that $f\left(x_{1}\right) \in V_{1}, f\left(x_{2}\right) \in V_{2}$ and $V_{1} \cap V_{2}=\phi$. Now $x_{1} \in f^{-1}\left(V_{1}\right)$, $x_{2} \in f^{-1}\left(V_{2}\right)$ and $f^{-1}\left(V_{1} \cap V_{2}\right)=f^{-1}\left(V_{1}\right), \cap f^{-1}\left(V_{2}\right)=\phi$. Since f is $\omega^{\prime} \beta$-irresolute then $f^{-1}\left(V_{1}\right), f^{-1}\left(V_{2}\right)$ is $\omega^{\prime} \beta O(X, \tau)$. Hence X is $\omega^{\prime} \beta-T_{2}$.
Definition 3.11 A space X is said to be $\omega^{\prime} \beta$ - connected if there exist disjoint $\omega^{\prime} \beta O(X, \tau)$ sets A and B such that $A \cup B=X$.
Proposition 3.12 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an $\omega^{\prime} \beta$-irresolute surjective function and X is $\omega^{\prime} \beta$ - connected, then Y is $\omega^{\prime} \beta$ - connected.
Proof. Assume that Y is not $\omega^{\prime} \beta$-connected. Then there exist disjoint $\omega^{\prime} \beta O(Y, \sigma)$ sets A and B such that $A \cup B=Y$. Since f is $\omega^{\prime} \beta$-irresolute surjective, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty $\omega^{\prime} \beta O(X, \tau)$ sets. Further $f^{-1}(A) \cup f^{-1}(B)=X$. It follows that (X, τ) is not $\omega^{\prime} \beta$ - connected, which is a contradiction. Hence (Y, σ) is $\omega^{\prime} \beta$-connected.

$\omega^{\prime} \beta$-Open and $\omega^{\prime} \beta$-Closed Functions

Definition 4.1 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called $\omega^{\prime} \beta$-open (resp. $\omega^{\prime} \beta-$ closed) if the image of each open (resp. closed) set in (X, τ) is an $\omega^{\prime} \beta O(Y, \sigma)$ (resp. $\omega^{\prime} \beta C(Y, \sigma)$).
Remark: We observe that every open (closed) function is $\omega^{\prime} \beta$-open (resp. $\omega^{\prime} \beta$-closed) function, but the converse is not true, which is shown by the following example.
Example 4.2. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ with the topology $\tau=\{\phi, X,\{a\}\}$ and $Y=\{1,2,3\}$ with the topology $\sigma=\{\phi, X,\{1\},\{2\},\{1,2\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function define by $f(x)=3$ for all $x \in X$. Then f is $\omega \beta$-open and $\omega \beta$-closed function, but it is neither open nor closed function.
Proposition 4.3 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega \beta$-open if and only if for each $x \in X$ and each open set $U \in \tau$ containing x, there exists $W \in \omega \beta O(Y, \sigma)$ set containing $f(x)$ such that $W \subset f(U)$.
Theorem 4.4 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function from space (X, τ) into a space (Y, σ). Then f is $\omega^{\prime} \beta-$ closed if and only if $\omega^{\prime} \beta c l(f(A)) \subset f\left(\omega^{\prime} \beta c l(A)\right)$ for each set A subset of (X, τ).
Proof. Let f be $\omega^{\prime} \beta$-closed function and A any subset of X. Then
$f(A) \subset f\left(\omega^{\prime} \beta c l(A)\right) \in \omega^{\prime} \beta C(Y, \sigma)$, therefore $\omega^{\prime} \beta c l(f(A)) \subset f\left(\omega^{\prime} \beta c l(A)\right)$. Conversely, suppose that $B \in \omega^{\prime} \beta C(X, \tau)$. Then $\omega^{\prime} \beta c l(f(B)) \subset f\left(\omega^{\prime} \beta c l(f(B))=f(B)\right.$. Thus we obtain that $\omega^{\prime} \beta c l(f(B))=f(B)$, it follows that f is $\omega^{\prime} \beta$ - closed function.
Proposition 4.5 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a containing surjection function and let
$\mathrm{g}:(Y, \sigma) \rightarrow(Z, \rho)$ be such that g o $f:(X, \tau) \rightarrow(Z, \rho)$ is $\omega^{\prime} \beta$-open function, then g is $\omega^{\prime} \beta-$ open.

Proof. Let $y \in Y$ and let $\mathrm{V} \in \sigma$ with $\mathrm{g}(y) \in \mathrm{V}$. Choose $x \in \mathrm{X}$ such that $f(x)=y$. Since gof is $\omega^{\prime} \beta$-open function, then $\mathrm{g}(V)=\mathrm{gof} f\left(f^{-1}(V)\right) \in \omega^{\prime \prime} \beta O_{(Z, \rho)}$. It follows that g is $\omega^{\prime} \beta$-open.

The following examples show that the $\omega^{\prime} \beta$-open function is independent with $\omega^{\prime} \beta$-irresolute and $\omega^{\prime} \beta$-continuous function.
Example 4.6 Let $X=\mathbb{R}$ with the topologies $\tau=\{R, \phi, R-Q$,$\} , and let \mathrm{Y}=\{2,3\}$ with the topology $\rho=\{\phi, Y,\{3\}\}$. Let $f:(X, \tau) \rightarrow(Y, \rho)$ be the function defined by
$f(x)= \begin{cases}3 & x \in Q \\ 2 & x \in \mathbb{R}-\mathbb{Q}\end{cases}$
Then f is not $\omega^{\prime} \beta$ - continuous, but it can easily seen that $f(x)$ is $\omega^{\prime} \beta$-open function.
Example 4.7 Let $\mathrm{X}=\{1,2\}$ with the topology $\tau=\{\phi, X,\{1\}\}$ and let $Y=\mathbb{R} \quad$ with the topologies $\sigma=\tau_{\text {coc }}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by
$f(x)= \begin{cases}\mathbb{R}-\mathbb{Q} & x=2 \\ \mathbb{Q} & x=1\end{cases}$
Then f is not $\omega \beta$-open, but it can be easily seen that f is $\omega^{\prime} \beta$-continuous and $\omega^{\prime} \beta$-irresolute funciton.
Example 4.8 Consider the function f in the Example 8 which is $\omega^{\prime} \beta$-open, but not $\omega^{\prime} \beta$-irresolute .

REFERENCES

1. Abd El-Monsef M E. El-Deeb SN. and Mahmoud RA., β_{-}-open sets and β_{-}-continuous mappings, Bull. Fac. Sci. Assuit Univ. 1983;12: 77-90.
2. Aljarrah H. and Noorani M., On $\omega \beta$ continuous functions, .European jounal of pure and applied mathematics. 2012;5(2):129-140.
3. Andrijevíc D., On b-open sets., Mat. Vesnik 1996;48:59-64.
4. Anita, Saroa M. S. and Kamboj D K. ,Slightly ω^{\prime} Continuous functions, International Journal of Mathematical Archive .2014;5 (11):73-79.
5. Crossley andHildebrand.Semi-topological properties.Fund.Math.,1972;74(3):233-254.
6. Hdeib H. , ω-closed mappings,Revista Colomb.De Matem.1982;16:65-78 .
7. Hdeib H. , ω-continuous functions,Dirasat 1989; 16:136-142.
8. K Al-Zoubi. Semi ω - containuous functions. Abhath Al-yarmouk, 2003. 12(1): 119-131.
9. K Al-Zoubi and B Al-Nashef. The topology of ω - open subsets. Al-Manarah Journal, 2003;9(2):169-179,
10. Khalimsky ED, Kopperman R, Meyer PR. Computer graphics and connected topologies an finite ordered sets. Topol Appl 1990;36:1-17.
11. Kong TY, Kopperman R, Meyer PR. A topological approach to digital topology. Amer Math Monthly 1991;98:901-17.
12. Kovalesky V, Kopperman R. Some topology-based imaged processing algorithms. Ann NY Acad Sci 1994;728:174-182. 2005.
13. Moore ELF, Peters TJ. Computational topology for geometric design and molecular design. In: Ferguson DR, Peters TJ, editors. Mathematics in industrychallenges and frontiers 2003. SIAM;
14. Navalagi G.semi precontinuous functions and properties of generalized semi preclosed sets in topological spacezs,internat.J.Math.Math.Sci.,2002;29(2):58-98.
15. Pawlak Z. Rough sets: theoretical aspects of reasoning about data. System theory, knowledge engineering and problem solving, 1991; 9. Dordrecht: Kluwer;
16. T Noiri,Al-omari and Noorani M.,On -open sets and b-Lindelof spaces,European journal of pure and applied mathematics,2008;1:3-9.
