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Abstract—Positioning is a key aspect for many applications in
wireless sensor networks. In order to design practical positioning
algorithms, it is crucial to employ efficient algorithms that
maximize the battery lifetime while achieving a high degree
of accuracy. The number of participating anchor nodes and
their transmit power have an important impact on the energy
consumption of positoning a node. This paper proposes a game
theoretical algorithm to optimize resource usage in obtaining

location information in a wireless sensor network. The proposed
method provides positioning and tracking of nodes using RSS
measurements. We use the Geometric Dilution of Precision as an
optimization metric for our algorithm, with the aim of minimizing
the number and power of anchor nodes that collaborate in
positioning, thus saving energy. The algorithm is shown to
be a potential game, therefore convergence is guaranteed. A
distributed, low complexity solution for the implementation is
presented. The game is applied to WSN and results show the
trade-off between power saving and positioning error.

Index Terms—Wireless sensor networks, distributed algo-
rithms, game theory, potential games, positioning, resource plan-
ning.

I. INTRODUCTION

W IRELESS Sensor Networks (WSN) consist of au-

tonomous low-complexity sensor nodes to collect, an-

alyze and transmit data [1]. The main requirement of such

systems is the reduction of the power consumption due to

the limited battery lifetime. Therefore, it is important to

employ energy-efficient algorithms and save resources. At the

same time, accuracy is important for positioning applications.

However, energy efficiency and accuracy are related issues and

strategies for saving energy could lead to reduce accuracy in

positioning.

The legacy system for positioning devices is the Global

Navigation Satellite System (GNSS). However, on the one

hand, for indoor environments the satellite signal has poor

coverage and GNSS is unsuitable for indoor location estima-

tion. On the other hand, the GNSS module is known to be
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comunicacions de Catalunya (CTTC), Parc Mediterrani de la Tecnologia,
Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona (Spain). e-mail:
{ana.moragrega,pau.closas}@cttc.cat

Christian Ibars is with the Intel Corporation, 2200 Mission College Blvd,
Santa Clara, CA, (USA). e-mail: christian.ibars.casas@intel.com. At the time
this work was performed, he was with the Centre Tecnològic de Telecomu-
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power hungry, which prevents its usage in low-complexity,

energy-efficient WSN devices. Therefore, positioning methods

based on cooperation among sensors are used in those cases

where GNSS is not suitable [2]. With cooperative methods, the

known position of some nodes (referred to as anchor nodes) is

used to estimate the position of the unknown nodes (referred

to as target nodes).

The focus of this work is on RSS-based positioning sys-

tems. This approach uses the Received Signal Strength (RSS)

measurements from the anchor nodes to the target nodes to

determine the location of the device. The advantage of the RSS

approach with respect to other techniques is that it requires

no additional hardware. The main disadvantage is that it is

affected by multipath fading and other propagation effects.

Typically, the RSS measurements are modeled with the log-

normal path loss model [3], [4]. In [5], it is showed that the

Cramér-Rao Lower Bound (CRLB) for distance estimation

with RSS measurements is proportional to real distance and

also depends on the channel parameters.

In this paper, we consider a deployed, IEEE 802.15.4

compliant, WSN that consists of anchor and target nodes. The

positioning of the target nodes is performed with the RSS mea-

surements from anchor nodes. Within this context, we address

the problem of distributed optimization of energy consumption

while maintaining a certain quality of the positioning measure

at the target nodes. We cast the problem in the form of a

potential game.

1) Related work: Energy expenditure in WSNs can be

classified under data transmission/reception, data processing,

and data acquisition or sensing. Data acquisition and transmis-

sion/reception consume significantly more energy than data

processing as it is shown in [6].

In order to conserve power and energy there are different

methods in WSN [7]. In the literature, the problem of energy

efficiency while maintaining a given accuracy for positioning

of WSN has been addressed. Several works treated data acqui-

sition conservation methods to achieve energy saving by min-

imizing the energy expenditure in data transmission/reception

rates and sensing by adapting a sampling problem. Node

selection strategies also save energy because they avoid the use

of a large number of cooperative anchor nodes and hence, they

reduce the packet exchange saving energy. Some approaches

use CRLB to select nodes or select the anchor nodes based on

a distance metric [8]. The main disadvantage of distance based

criterion is that geometry of the selected cooperating nodes is

not contemplated. For positioning with trilateration method, as

deeply studied in GNSS positioning, the geometry of the satel-
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lites affects the final position estimation of the receiver [9].

Geometric Dilution of Precision (GDOP) metric is a measure

of the goodness of a certain geometry for positioning purposes.

In WSN positioning with trilateration, GDOP based strategies

were also used for node selection. A trivial selection method

is an exhaustive search that evaluates the GDOP for all the

possible active sets given a set of possible sensors. However,

since the number of combinations grows exponentially with

the number of anchor nodes, the algorithm is only viable if

the set of sensors is small. Otherwise, suboptimal approaches

have been presented in [10].

Node selection strategies have also been dealt with coopera-

tive games that require agreements between devices. The idea

of forming the best group of anchor nodes for positioning was

addressed in [11]. The work presents a distributed, cooperative,

game-theoretic scheme for energy-efficient data acquisition

in bearings-only localization. Another example is [12], that

presents a RSS-based localization and tracking scheme using

cooperative game-theoretic tools in which the best anchor

coalition is kept while the other coalitions are allowed to enter

low power mode. However, cooperative games for coalition

selection need information exchange between anchor nodes

until they reach an agreement that might lead to a high

communication cost.

2) Why potential games? In non-cooperative game theory,

devices have potentially conflicting interests and they try to

maximize their payoff. Non-cooperative game theory has been

applied to the allocation of resources such as power. In dis-

tributed power control, non-cooperative games have been used

for avoiding collisions and energy saving. In [13] a unified

framework based on potential games is proposed to deal with

power control problems for avoiding interferences. In general,

from a physical layer perspective, in power control problems

the quality of service (QoS) requirements are formulated

as constraints on the signal-to-interference-and-noise ratio of

each user. In this work, we propose a distributed power con-

trol and distributed data transmission/reception conservation

method with node selection, with the goal of saving energy in

WSN with RSS-based positioning capabilities. The proposed

algorithm minimizes the transmit power of anchor nodes as

well as performs the selection of a set of anchor nodes for

positioning of the target node, while using a positioning error

metric based on the GDOP as QoS to maintain an adjustable

level of accuracy.

Since we are dealing with a decentralized system, non-

cooperative game theory provides appropriate models to study

such scenarios [14]. In the considered problem the advantage

of non-cooperative games, in front of cooperative approaches,

is that nodes do not have to reach an agreement and hence

the effects derived from cooperation such as communications

costs are not present. The problem of power control can be

addressed in a distributed fashion with potential games. There-

fore, an optimal solution can be reached when the players

play an iterated algorithm in a distributed way. The algorithm

avoids the exhaustive search that evaluates the GDOP for

all the possible active sets of anchor nodes that leads to a

combinatorial problem.

Distributed power control for positioning has also been stud-

ied in combination with time-of-arrival (TOA)-based ranging.

In [15], a network with TOA-based positioning capabilities is

considered, which allows to pose the power control problem as

a supermodular game. In contrast to TOA-based ranging, the

case of RSS-based ranging has the particularity that increasing

the power level does not impact on obtaining better range

estimates. The effect of the received power level is that above

a certain threshold (where anchor and target are in range)

ranging is feasible and below it is not. This prevents the use of

the supermodular game developed in [15] as the assumptions

made there do not hold anymore. In [16], the performance

of a potential game for RSS-based ranging was presented

in a static scenario. In the present work, these results are

extended and completed in a dynamic scenario on a distributed

fashion, including an Extended Kalman filter for tracking the

moving node. Moreover, the computational complexity of the

algorithm is analyzed and more results and simulations are

presented. Our results are summarized as follows.

3) Main results:

• Formulation of the distributed power control problem as

a potential game. In this work, we use as QoS metric

the GDOP which assesses the goodness of a network

geometry for positioning purposes [9]. We address the

problem of assigning a minimum transmission power to

each anchor node and minimize the number of anchor

nodes that assists in the ranging process, while maintain-

ing a certain quality in the positioning solution of the

target nodes. This problem is formulated as a potential

game that reaches an equilibrium. The case of multiple

target nodes is addressed.

• Distributed error metrics based on GDOP are presented

to avoid costly information exchanges between nodes.

Moreover, a solution to implement the game is presented

and analyzed in terms of its computational complexity.

• Results show that the algorithm reaches equilibrium, thus

saving energy in a setup where anchor nodes help in

positioning target nodes with RSS measurements. The

equilibrium reached with the distributed algorithm based

on the potential game is compared to a centrally global

solution with exhaustive search.

The reminder of the paper is organized as follows. In

Section II, the system model, log-normal ranging model for

RSS measurements, both static and dynamic scenarios, and

the GDOP metric are presented. In Section III, we explain

our potential game for energy saving RSS-based positioning.

In Section IV, distributed error metrics to calculate the GDOP

are detailed. In Section V a possible solution to implement

the game is explained and analyzed. In Section VI, simulation

and numerical results are presented to illustrate the behavior

of the proposed algorithm. Section VII concludes the work

with final remarks.

II. PROBLEM FORMULATION AND SYSTEM MODEL

The problem under study involves the energy-efficient po-

sitioning of nodes in a WSN that is applied to two setups.

First setup, namely static scenario, is composed of static target

nodes while in the second setup, namely dynamic scenario, the

target nodes are moving in the area.
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A. Scenario Definition

The static and dynamic scenarios are respectively composed

of a set of M nodes, that aim at estimating their position; and a

set of N anchor nodes with known locations, emitting ranging

signals to allow positioning of the former nodes.

For the mobile scenario, we define the two-dimensional

coordinates of the nodes at time t as

x(j)(t) = [x(j)(t), y(j)(t)]> j = 1, . . . ,M (1)

x(i)
a = [x

(i)
a , y

(i)
a ]> i = 1, . . . , N . (2)

For the static scenario, these definitions hold with x(j) ,

x(j)(t). The geometrical distance between the j-th node and

the i-th anchor is defined as

ρj,i =‖ x
(j)(t)− x(i)

a ‖ , (3)

with ‖ · ‖ being the Euclidean norm on R
2 and where we

omitted the time-dependence of ρj,i for the dynamic scenario.

We define the set of anchor nodes that provide coverage to

the j-th node as Nj , and its dimension as |Nj |. Moreover, we

define the set of target nodes whose messages are received at

the i-th anchor node as Ti, with dimension being |Ti|. These

sets might be time varying for the dynamic setup.

B. Ranging Model

We further assume that the physical layer of the nodes

is capable of estimating the RSS of an incoming signal. In

particular, the IEEE 802.15.4 physical layer has this capability.

The target node uses the RSS value to estimate ρj,i. The

RSS-based ranging measures are commonly modeled using the

log-normal path loss model [3], defined as

Lj,i = Lo − 10p log10

(

ρj,i
ρo

)

, (4)

where ρo is a reference distance, Lo is the attenuation at such

reference distance in dB, ρj,i is as in (3), Lj,i the path loss

for the distance ρj,i in dB, and p the path loss exponent (typ.

3 in our scenarios). Notice that Lj,i = PTx,i − PRx,j , where

PTx,i and PRx,j are the transmitted and received powers in

dBm for the pair {j, i}, respectively. The channel has a random

contribution, modeled in dB by υj,i ∼ N (0, σ2
j,i). Then

PRx,j = PTx,i − Lo + 10p log10

(

ρj,i
ρo

)

+ υj,i , (5)

where σj,i is due to the fading effects in static and dynamic

environments (node movement or environment changes, e.g.

people movement). It is known that multipath fading can be

addressed by switching the communication carrier frequency.

Channel hopping was studied for WSN and it is applied in

the IEEE 802.15.4e standard. The averaging of the RSS values

reduces its standard deviation when samples are collected over

different frequency channels in a short time period, rather than

on a single channel but over a longer time interval [17].

Rearranging terms in (5) we obtain a distance estimate

ρ̂j,i = ρo · 10
Lo−Lj,i+υj,i

10·p , (6)

and using (4)

ρ̂j,i = ρj,i · 10
υj,i
10·p . (7)

It becomes clear that it depends on a log-normal random

variable ω as ρ̂j,i = ρj,i · ω. Recall that the logarithm of a

log-normal random variable is normally distributed. If ω ∼
Log − N (µω , σ

2
ω) is distributed log-normally, then ln(ω) ∼

N (µξ, σ
2
ξ ) is a normal random variable ξ. Therefore,

ξ = lnω ∼ N

(

0,

(

ln 10 · σj,i

10 · p

)2
)

, (8)

where µξ = 0 and σξ =
ln 10·σj,i

10p . The variance of the log-

normal random variable ω is σ2
ω = (eσ

2
ξ −1)e2µξ+σ2

ξ = (eσ
2
ξ−

1)eσ
2
ξ . Therefore, the variance of the distance estimation ρ̂j,i

may be

σ2
ρ̂j,i

= ρ2j,i · (e
σ2
ξ − 1)eσ

2
ξ . (9)

From the previous equation, it can be noticed that the variance

of the distance estimation ρ̂j,i between target j and anchor

node i is proportional to the distance between both nodes.

Therefore, larger distances cause higher error in distance

estimation.

C. Positioning Equations

In the static scenario, a target node could estimate its

position with linear Least Squares (LS) estimator [18]. Con-

sidering the above setup, a mobile target node could estimate

its position with an Extended Kalman Filter (EKF). Follow-

ing [19], we assume that the position x(j)(t) and velocity

v(j)(t) = [v
(j)
x (t), v

(j)
y (t)]> evolve in time as

sj(t) = A sj(t− 1) +G wj(t) , (10)

where wj ∼ N (0, σ2
w · I), ∆ is the time interval between

samples,

sj(t) =











x(j)(t)

y(j)(t)

v
(j)
x (t)

v
(j)
y (t)











, A =









1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1









, (11)

G =









∆2/2 0
0 ∆2/2
∆ 0
0 ∆









. (12)

The covariance matrix of the driving and observation noise

is given by

Qj = σ2
w ·GG> . (13)

We consider the measurements are the received powers

PRx,j at the j-th node from the set of anchor nodes within

range, Nj . The measurements are related to the unknown

parameters sj(t) according to (5), where

ρj,i =

√

(x(j)(t)− x
(i)
a )2 + (y(j)(t)− y

(i)
a )2 . (14)

Then the observation equation is

yj(t) = h(sj(t)) + νj(t) , (15)
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with

h(sj(t)) =











PTx,1 − Lo + 10p log10

(

ρj,1

ρo

)

...

PTx,|Nj | − Lo + 10p log10

(

ρj,|Nj |

ρo

)











(16)

and

νj(t) =
(

υj,1, . . . , υj,|Nj|

)>
, (17)

with covariance matrix given by

Cj(t) = diag
(

σ2
j,1, . . . , σ

2
j,|Nj |

)

. (18)

Since the measurement function is nonlinear in the signal

parameters, to estimate the state vector with the EKF we apply

a linearization. The Jacobian is given by

Hj(t) =









H
(1,1)
j (t) H

(1,2)
j (t) 0 0

...
...

...
...

H
(|Nj |,1)
j (t) H

(|Nj |,2)
j (t) 0 0









∣

∣

∣

∣

∣

∣

∣

∣

s=ŝ(t|t−1)

,

(19)

where

H
(i,1)
j (t) =

10p (x(j)(t)− x
(i)
a )

ln 10 · ρ2j,i

H
(i,2)
j (t) =

10p (y(j)(t)− y
(i)
a )

ln 10 · ρ2j,i
.

In summary, with the above definitions, the EKF equations

[20] for our problem are given by

ŝj(t|t− 1) = Aŝj(t− 1|t− 1) (20)

Mj(t|t− 1) = AMj(t− 1|t− 1)A> +Qj (21)

Kj(t) = Mj(t− 1|t− 1)Hj(t)
>(C

+ Hj(t)Mj(t|t− 1)Hj(t)
>)−1 (22)

ŝj(t|t) = ŝj(t|t− 1) +Kj(t)(yj(t)

− h(ŝ(t|t− 1))) (23)

Mj(t|t) = (I−Kj(t)Hj(t))Mj(t|t− 1) , (24)

where yj(t) are the measurements of the received power. For

the j-th node, Kj(t) is the so-called Kalman gain, Mj(t|t−1)
is the covariance of the predicted state, and Mj(t|t) is the

covariance of the estimated state.

D. Geometric Dilution of Precision

In this section we present the GDOP metric, which we use

as the error metric in our game. The origin of the GDOP

measure comes from the trilateration procedure, from which a

receiver computes its position based on range measurements

to a set of transmitters. Trilateration involves solving a geo-

metrical problem, whose solution is given by the intersection

of spheres centered at the transmitters and radii equal to the

measured ranges. TOA ranging error can be modeled with a

Gaussian random variable, although this might not hold in non-

line-of-sight conditions in which case TOA measurements are

typically biased. With this assumption, the problem is nonlin-

ear and typically solved by a LS algorithm after linearization.

Transmitter

Transmitter Uncertainty area

(a)

Transmitter

Transmitter

Uncertainty area

(b)

Fig. 1. Conceptual representation of good and bad two-dimensional
geometries, 1(a) and 1(b) respectively. Two transmitters are located in a plane,
the resulting hyperbolic positioning solution of a range-based receiver has an
uncertainty area that depends on the relative location of transmitters.

Such linearization is the Jacobian of the distance function that

relates changes in the position domain to changes in range

values, resulting in the so-called visibility matrix. The GDOP

is constructed from the covariance of the inverse visibility

matrix, and thus it relates the covariance of range-errors to

that of position solution (in fact, it is highly related to the

CRLB on the variance of a position estimator). Larger values

of GDOP imply worse positioning accuracy than a geometry

that provides a low GDOP.

A conceptual representation of the concept behind GDOP

is depicted in Figure 1, where two transmitters are used to

solve for a two-dimensional position in the plane using range

measurements. In the presence of noisy ranges the uncertainty

is visualized as the two concentrical circles, with the true range

lying in between. The intersection of the two circles, in the

noisy case, provides an area in which the receiver is estimated

to be. Comparing Figures 1(a) and 1(b) it becomes evident that

the geometrical situation of the transmitters affects the size of

this area, which is indeed quantified by the GDOP. Thus the

GDOP can be thought of as a value that measures the effect

of network geometry on the position solution. Larger GDOP

values imply worse positioning solutions, and vice versa.

However, there are differences between the Gaussian error

model for TOA and the log-normal model for RSS techniques.

In [21], the CRLB of variance of the position estimation has

been studied for both models. The main difference between

TOA and RSS models is that in the case of RSS techniques, the

CRLB scales with the size of the system even if geometry is

kept the same. In [18], the GDOP expression has been derived

from the received power estimation (5) for the RSS log-normal

model as

GDOPj =
ln(10)

10

√

√

√

√

√

∑|Nj |
i=1 ρ−2

j,i
∑|Nj |−1

i=1

∑|Nj |
k=i+1

sin2 φik

ρ2
j,i

ρ2
j,k

(25)

where φik is the angle between the two vectors from target

node j to the ith and kth anchor nodes. From (25) we can

observe that the GDOP depends not only on the angular

distribution of reference nodes (geometry), but also on the
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distances of the target node to the reference nodes.

Notice that anchor nodes in (25) are those of the set Nj .

Nj depends on the number of anchor nodes whose beacons

are received with enough power by node j. Therefore, it

depends on the transmit powers of the anchor nodes. For a

given receiver sensitivity s and distance-dependent path loss

function fL(d), an anchor node with transmit power pa at

distance da from node j belongs to set Nj if pa > s/fL(da).
Therefore, given the dependence of GDOPj on Nj , we may

in turn express the GDOP as a function of the power vector

of the anchor nodes p explicitly as GDOP , GDOP(p).
Due to the dependence of Nj on p, we can observe that any

error metric based on the covariance of the estimator for RSS

model will be a non convex function on p. In particular, the

GDOP(p) shows discontinuities because of the inclusion or

exclusion of a node in Nj . Moreover, let us define the mean

GDOP over the entire network as

GDOP(p) =
1

M

M
∑

j=1

GDOPj(p) , (26)

where, rearranging terms in (25) for convenience, we obtain

GDOPj =
ln(10)

10

√

√

√

√

√

√

∑|Nj |
i=1

∏|Nj |
k=1
k 6=i

ρ2k

∑|Nj |−1
i=1

∑|Nj |
k=i+1(

∏|Nj |
l=1
l 6=i,k

ρ2l ) sin
2 φik

.

(27)

III. GAME THEORETICAL POWER ALLOCATION FOR

POSITIONING WITH WIRELESS SENSORS

Game Theory is a collection of models and analytic tools

used to study interactive decision processes [14], [22]. We

limit our discussion to non-cooperative models that address the

interaction among individual decision makers. Such models

are called games and the decision makers are referred to

as players which are assumed to be rational in this work.

A strategic non-cooperative game Γ(Ω,A, u) has three main

components: i) Ω is the set of N players; ii) A is the set

of pure strategies and a = [a1, . . . , aN ]> ∈ A ⊆ R
N the

chosen strategies, where ai ∈ Ai represents the strategy of

the i-th player over the set of its possible strategies Ai. Thus,

A = ×N
i=1Ai and a−i ∈ A−i = ×N

j 6=iAj represents the

strategies of all players but the i-th; iii) ui : A 7→ R is

the utility function of the i-th player. The utility function (or

payoff) quantifies the preferences of each player to a given

strategy, provided the knowledge of other’s strategies. Then,

u , {ui}i∈Ω is the set of all N utility functions.

Then, a non-cooperative game is a procedure where players

choose the strategy that maximizes their utility function. The

Nash equilibrium (NE) is a stable solution of the game in

which no player may improve its utility function by unilater-

ally deviating from it.

Definition 1 (Nash Equilibrium). A strategy profile a∗ is

a Nash equilibrium if, ∀i ∈ Ω and ∀ai ∈ A, ui(a
∗) ≥

ui(ai, a
∗
−i) .

In general, games may have a large number of NE or may

not have any. Thus, it is of interest to design the utility function

in a way such that the game has at least one equilibrium

point. It is proved in [23] that under certain conditions of

the utility function, the existence and uniqueness of a NE

is ensured. However, the utility function may be designed

according to a criteria which could eventually yield to non-

convex functions. In those cases, there is another way for

deriving sufficient conditions for existence and uniqueness of

the NE in a game based on the so-called potential games [24].

In this type of games the incentive of all players to change their

strategy can be expressed by a global utility function (called

potential function) V (a). We use the name exact potential

game (EPG) when the game admits an exact potential function,

i.e., a player-independent real valued function that measures

the marginal payoff when any player deviates unilaterally.

Definition 2 (EPG). A strategic game Γ(Ω,A, u) is an exact

potential game if there exist an exact potential function V :
A → R s.t. ∀i ∈ Ω, ∀a−i ∈ A−i and ∀ai, bi ∈ Ai such that

V (ai, a−i)− V (bi, a−i) = ui(ai, a−i)− ui(bi, a−i) . (28)

An important result due to [24] is that the optima of the

potential function of an EPG correspond to the Nash equilibria

of the game.

A. Game Theoretical Algorithm

In our problem, players are the anchor nodes and the game is

that of finding a NE such that each anchor node is transmitting

at a minimal power while maintaining a certain positioning

quality for the M target nodes. As a metric to assess such

quality we use the GDOP. With this setup, Ω is the set of

anchor nodes in the network. The set of strategies that the i-th
reference node can choose are the set of its possible discrete

power levels Pi. We define p = [p1, . . . , pN ]> ∈ P = ×N
i=1Pi

as the vector containing the strategies of each node. We also

assume that, at the beginning of the game, anchor nodes

transmit with their maximum power level in order to gather

information and allow initial positioning of nodes.

We adopt a dynamic game with iterative best response

algorithm to achieve a NE of the game defined by Γ(Ω,P , u).
Anchor nodes decide iteratively its power transmission by

maximizing its utility function,

p̂i = arg max
pi∈Pi

{ui(pi, p̂−i)} . (29)

After each iteration, the selected power level may modify

the geometry of the network, thus impacting on the maximiza-

tion of other players’ utility. The design of a utility function

and the existence of a potential function is crucial for the task

of identifying NE in the game. In our algorithm the goal is to

attain a desired positioning quality for the M target nodes, as

well as reducing the total power of the N anchor nodes. As

presented in Section II-D, the GDOP provides an appealing

metric to assess such quality. Therefore, the algorithm accepts

a strategy if condition GDOP(p) ≤ γ is fulfilled, with γ being

a design parameter. Recall that the initial topology is such that

all nodes transmit at maximum power. Following the result in

[25], the utility function stated in Proposition 1 is considered.
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Proposition 1. The game Γ(Ω, P, u) where the individual

utilities are given by

ui(pi,p−i) =

{

pinit − pi if GDOP(pi,p−i) ≤ γ
−pi otherwise

(30)

is an EPG and the exact potential function is

V (p) =







pinit −
∑

i∈Ω

pi if GDOP(pi,p−i) ≤ γ

−
∑

i∈Ω

pi otherwise,
(31)

where pinit = pmax is the maximum power of the sensor node.

Proof: We prove it by applying the concept of EPG in

Definition 1. Consider pi, p
′
i ∈ Pi | pi < p′i, therefore

∆ui = ui(pi,p−i)− ui(p
′
i,p−i) = p′i − pi (32)

regardless GDOP(pi,p−i) ≤ γ or GDOP(pi,p−i) > γ.

Similarly, the potential variational may be

∆V = V (pi,p−i)− V (p′i,p−i) (33)

= −



pi +
∑

j∈Ω;j 6=i

pj



+



p′i +
∑

j∈Ω;j 6=i

pj





= p′i − pi .

Thus, ∆ui ≡ ∆V therefore V is an exact potential function

and the game Γ(Ω,P , u) is an EPG.

The designed game falls into the category of EPG games,

and thus finding the NE point of (30) is equivalent to maxi-

mizing the potential function in (31). We note that GDOP is

not a convex function on p. Therefore, we cannot claim that

V (p) has a single optimum, and thus the game might have

several NE that satisfy GDOP(p) ≤ γ. However, simulations

of Section VI-A reveal that the distributed algorithm obtains

results which are comparable to a global approach.

IV. DISTRIBUTED ERROR METRIC

The game presented above has several challenges when

it comes to implementation. A major concern relates to the

amount of information exchange required in the networks,

as anchor nodes require knowledge of global information of

target nodes’ in order to calculate GDOP(p). Our goal here is

to minimize the information exchange requirements in order

to preserve the benefits from power savings, due to reduced

transmission power at the reference nodes. To that aim we

propose to use other metrics, instead of GDOP(p), that only

require transmission of information from in-range target nodes

to anchors at each game iteration. This information includes

the target’s own position estimate and the set Nj .

We propose to modify the discontinuity condition in (30)-

(31) so as to use only local GDOP estimates. Two alternatives

are presented. Similarly to the game using global information,

we consider that at the beginning of both games players trans-

mit with maximum power in order to allow initial positioning

of target nodes and information gathering. The algorithms

proceed in an iterative best response fashion until convergence.
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Fig. 2. RMSE in (35) for a number of target node densities δ (node/m2)
and 100 Monte Carlo trials.

A. Local GDOP Average

In this case a local estimate of the average GDOP is

considered, defined as GDOPTi
(p) in (34) for the i-th anchor

node. Recall that Ti is the set of target nodes from which the i-
th anchor nodes receives status information, as they are within

its range. Then, each anchor can compute

GDOPTi
(p) =

1

|Ti|

∑

j∈Ti

GDOPj(p) . (34)

The resulting utility function for the i-th player is then

modified to take values as pmax−pi if GDOPTi
(pi,p−i) ≤ γ.

With this setup, it is possible that the overall GDOP value

exceeds the threshold eventually, since the average used by

each player is local. In other words, a certain strategy might

lead to GDOPTi
(p) ≤ γ but GDOPTi′

(p) > γ, forcing the

i′-th node to increase its power in next game iteration.

Notice that this distributed solution approximates the previ-

ous game when transmission powers of target nodes are such

that one can consider GDOP ' GDOPTi
, ∀i. For the static

scenario, Figure 2 shows the Root Mean Square Error (RMSE)

between GDOP and GDOPTi
, defined as

ξ(GDOP) =

√

√

√

√

1

N

N
∑

i=1

|GDOP−GDOPTi
|2 , (35)

versus the ratio range of target nodes over the maximum

distance in the network (thus being independent of a particular

node’s power levels). The approximation is valid for increasing

target node’s power and density.

B. Worst Case GDOP

We propose here an alternative design where worst-case is

addressed. In this configuration, the condition to maximize

ui(pi,p−i) is to ensure that all target nodes have the specified

GDOP. That is, the condition for the i-th player can be

formulated as

GDOPj(p) ≤ γ, ∀j ∈ Ti , (36)

and the utility in (30) should be modified accordingly. It can

be easily seen that a game implementing such utility yields to
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a steady state solution. Recall that game starts with all players

transmitting with maximum power. Notice that a player has

no incentives to decrease its power if it causes at least one

target node increase its GDOP. Same applies to the rest of

players when iterating, and thus a stable solution is eventually

achieved when no player can modify further its strategy.

Although the achieved solution is not optimal (from an

energy-efficient point of view), it provides a strategy set which

ensures the specified target GDOP. This might be useful in

applications where this is the most restrictive issue, rather than

proper power control.

V. DISTRIBUTED IMPLEMENTATION AND COMPUTATIONAL

RESOURCES

A. Potential Game with Positioning Algorithm

In this section, we present implementation challenges of the

proposed game theoretical algorithm. We discuss a possible

solution, which minimizes the information exchange between

target and anchor nodes, as well as the number of operations.

For each game, anchors play Nit rounds of best response

iterations. Once all anchors have played the first round, they

play again another round and successively. At each iteration,

the corresponding anchor node has to compute GDOP val-

ues, which depend on the estimated positions of the target

nodes within range. Such position estimate is performed at

target nodes using the set of RSS values. On one hand,

the information exchange required between target and anchor

nodes is presented in Figure 3 for the dynamic scenario. The

algorithm starts when one or more target nodes broadcast

a ranging request (
−−→
RRq). Then, |Nj | iterations of the game

are performed. At each iteration, a ranging reply
←−−
RRi and a

confirmation frame
−→
CFi are interchanged between a target and

the corresponding anchor nodes from i = 1 to i = |Nj |.
Following iterations of the game can be performed until n =
Nit|Nj | iteration, in which the game reaches NE. Therefore,

we consider that the number of best response iterations is

Nit and the total number of algorithm iterations is Nit|Nj |.
The iterations of the best response algorithm are executed by

anchor nodes iteratively. Once a game is finished, the target

moves and after a while another game can start. Note that

the right arrow (→) over the frame name indicates a frame

transmission from target to anchor i and the left arrow (←)

a frame transmission from anchor i to target. On the other

hand, algorithm 1 shows the detailed pseudo-code description

of the proposed algorithm for the dynamic scenario. It shows

the operations performed by target and anchor nodes in each

iteration of the game. Once the algorithm starts when one or

more target nodes broadcast a ranging request (
−−→
RRq), then the

prediction phase of the EKF is performed in the target node.

Therefore the prediction for the position of the target node is

known. Based on this prediction, the game runs and the GDOP

can be calculated. In each iteration of the game, the following

information exchange is required between the corresponding

anchor node and target node:

•
←−−
RRi: the ranging reply with the chosen transmit power pi
is transmitted from anchor to target node, then the target

Fig. 3. Time diagram of the algorithm.

nodes estimates the distance with RSS-based technique

and an averaging can be done with previous RSS.

•
−→
CFi: the target nodes respond to the anchor node with

the confirmation frame or acknowledgement that contains

needed information for the game (ρ̂j,i, i = 1...|Nj|).

Once the corresponding anchor i receives this
−→
CFi, it

plays choosing a new pi maximizing its utility function

depending on the used GDOP metric. To analyze the

maximization of its utility function, the corresponding

anchor i analyzes the condition GDOP ≤ γ for each

value pi of the set of transmit powers PTx,i with the

following steps: i) Anchor i estimates GDOP metric

for pi. Therefore anchor i analyzes if its contribution to

GDOP estimation is required for pi. Anchor i contributes

when PRx,j(pi, ρ̂j,i) > s, where s is the sensibility and

PRx,j is estimated with (5). ii) For pi, the condition

GDOP ≤ γ is analyzed. iii) Once steps i) and ii) are

performed for the set PTx,i, anchor i chooses the pi. If

the contribution is required, anchor i chooses pi minimum

such that GDOP ≤ γ; but if the contribution is not

required, anchor i turns off thus saving energy.

Once the game is over each target has the information to

execute the update phase of the EKF. Then the target estimates

its position. The algorithm can start again with the prediction

phase and the process runs again. The time interval between

game performances could be controlled by parameters as

battery and error metric of the target node.

For the static scenario, the same information exchange

may apply but only for one game in Figure 3. Moreover, in

Algorithm 1 the positioning procedure may be performed with

linear LS algorithm.

The amount of message exchange
←−−
RRi and

−→
CFi between

anchor and target nodes can be justified as follows.
←−−
RRi is

used to estimate the distance with RSS-based techniques in

the target node. This frame is necessary in any positioning

algorithm.
−→
CFi is required to transmit needed information
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to execute our resource planning game. However,
−→
CFi can

be seen as an acknowledgement (ACK) frame in terms of

communication protocol with a data payload. Note that IEEE

802.15.4 protocol supports accesses to the medium with ACK

mode. Moreover, the |Nj | times that an anchor plays in a game

is justified by the fact that each time a RSS is received and

the node can average |Nj | RSS values. This averaging reduces

the RSS standard deviation (see Section II-B).

Algorithm 1 Potential game for energy efficient positioning

for M = 1 and dynamic setup

1: Target node j computes the predicted position with the

Extended Kalman Filter.

2: Initialization:
−−→
RRq.

3: Set p = Pmax.

4: Game iterations phase: n = 1, i = 1.

5: while n < (Nit|Nj |) do

6:
←−−
RRi is sent from anchor i to target node j:

· It contains: if n = 1, x
(i)
a and initial p.

· Operations of target node: distance estimation ρ̂i.

7:
−→
CFi is sent from target j to anchor node i:
· It contains: ρ̂i, i = 1...|Nj|.
· Operations of anchor node: if i > 1, update pi
| GDOP(pi,p−i) ≤ γ.

8: if i = |Nj | then

9: i = 1
10: else

11: i = i + 1 {Next anchor node}
12: end if

13: n = n+ 1
14: end while

15: End:
←−−−
RStop.

16: Target node j computes the update phase of the EKF:

position x̂.

B. Computational Resources

In this section we analyze the required computational re-

sources of the presented solution. From Algorithm 1, the

computational complexity can be obtained by calculating the

number of basic operations involved. In Table I the number

of operations is summarized for M = 1 target node. The

operations are shown with respect to the number of anchor

nodes |Nj |. Taking into account that the upper bound is

|Nj | ≤ N , then O(|Nj |) ≤ O(N).
From Table I, we calculate the total asymptotical computa-

tional cost for the target node Cj and we obtain

Cj = O((Nit|Nj | − 1)(|Nj |
3 + 8|Nj |

2 + 43|Nj |+ 216))

≤ O(NitN
4). (37)

The cost for the anchor node i, Ci, is

Ci = O

(

(Nit|Nj | − 1)

(

2|Nj |
3 + 3|Nj |

2 − 5|Nj |+ 24

4

))

≤ O

(

NitN
4

2

)

. (38)

Note from (38) that Ctarget scales with |Nj |
4. One of the most

demanding operations is the inverse matrix for K(t), because

the size of the matrix is |Nj |×|Nj |. For the anchor node i, the

most complex operations are part of the GDOP computation

(see (b) operations in Table 1) that scales with |Nj |4.
For the case M > 1 each target node has to execute the

same operations detailed in Table I while the anchor node i
has to calculate the operations of Table I for each target node.
Therefore, the computational complexity also scales with M
and is given by

Ci = O

(

M(Nit|Nj | − 1)

(

2|Nj |
3 + 3|Nj |

2 − 5|Nj |+ 24

4

))

≤ O

(

MNitN
4

2

)

. (39)

The quartic relation of the computational complexity with

the number of anchor nodes might be an issue in large-scale

networks, mostly in sensor networks due to the limited power

processing of the motes. A possible workaround is to limit the

total number of anchor nodes used for positioning.

VI. SIMULATION RESULTS

The proposed algorithm was tested in the static and

dynamic scenarios that were introduced in Section II-A.

Each node had a 2.4GHz IEEE 802.15.4 ready RF

Transceiver based on a CC2420 from Texas Instruments.

The set of transmit powers of the CC2420 is PTx,i =
{1, 0.79, 0.50, 0.31, 0.1, 0.032, 0.0015, 0} mW.

While the static scenario aims to show the convergence to a

NE for one game, the mobile scenario shows the convergence

of several games together with the tracking operation of the

target nodes. In both cases, target nodes estimated its position

with the set of RSS values. In the static scenario, target nodes

estimated its position by a LS algorithm whereas in the mobile

scenario a EKF was used for tracking. Results obtained with

the static scenario were published in [16]. The density of

target nodes is higher for the static scenario than for the

mobile scenario. In both cases, we compare the performance

of the distributed GDOPj(p) and GDOPTi
(p) metrics with

the global metric GDOP(p).

A. Static Scenario

The considered static scenario was composed of M = 20
nodes that aim at locating themselves using RSS signal to

a set of N = 8 anchor nodes (Figure 7). Anchor nodes

were distributed at known positions in a 25× 25 meters area,

whereas the M nodes were placed randomly in the space.

In one game, anchors play Nit rounds (best response

iterations). In each round all anchors play in an ordered

sequential fashion. Thus, once all anchors have played the

first round, they play again another round and successively.

The number of rounds is Nit, therefore each player plays

Nit times or iterations. At each iteration, the corresponding

anchor node has to compute GDOP values, which depend

on the estimated positions of the target nodes within range.

Such position estimate is performed at target nodes using the

set of RSS values. At each iteration, the random error υj,i
is different in each RSS measurement, it affects the distance

estimation ρ̂j,i. Thanks to the game iterations, the RSS values

are averaged Nit times, thus decreasing its error.
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TABLE I
COMPLEXITY OF ALGORITHM 1

Node Computation Operation Size Cost

Target j Prediction phase of EKF: ≤ O(5N + 84)
ŝ(t|t− 1) = Aŝ(t − 1|t− 1) Matrix product 4×|Nj |×1 O(5|Nj |+ 4)
M(t|t− 1) = AM(t − 1|t− 1)A> +Q Matrix products, addition 4×4×4 O(43 + 16)

Target j Update phase of EKF: ≤ O(N3 + 8N2

+38N + 132)
H(t), see (19) Additions, products 26|Nj | O(26|Nj |)
M(t|t) = (I −K(t)H(t))M(t|t − 1) Matrix products

and addition O(16|Nj |+ 43)
K(t) = M(t− 1|t− 1)H(t)> Matrix products, O(|Nj |3 + 8|Nj |2

· (C +H(t)M(t|t − 1)H(t)>)−1 addition and inverse +17|Nj |+ 43)
ŝ(t|t) = ŝ(t|t − 1) Matrix product

+K(t)(x(t) − h(ŝ(t|t − 1))) and additions 4× |Nj |×1 5|Nj |+ 4

Anchor i Compute N
(∗)
Tx

PRx,j : N
(∗)
Tx

(2 Additions, log10, 6 O(6)

PRx,j = PTx,i − Lo + 10p log10

(

ρ̂j,i
ρo

)

2 products, division)

Anchor i Compute GDOP (see 27) Operations: 2·(a, b, c) 1 ≤ O
(

2N3+3N2−5N
4

)

with and without i contribution (a) Product, addition 2(|Nj | − 1)|Nj | O
(

2|Nj |2 − 2|Nj |
)

∑|Nj |
i=1

∏|Nj |

k=1
k 6=i

ρ2
k

; (a) (b) Product, addition, sin
(2|Nj |−3)|Nj |!

(|Nj |−2)!(2!)
O

(

(2|Nj |
3−5|Nj |

2+3|Nj |)

4

)

∑N−1
i=1

∑N
k=i+1(

∏N
l 6=i,k ρ2

j,l
) sin2 φik ; (b) (c) Product, division, root 3 O(3)

Choose minimum PTx,i | GDOP ≤ γ

(*) Number of transmit powers.

0 5 10 15 20 25
0

5

10

15

20

25

x (m)

y
 (

m
)

 

 

Target nodes position

Reference nodes

Estimation of target position

Fig. 4. Simulation scenario consisting of a 25 × 25 meter region where
a set of anchor sensor nodes (big dots) are distributed at known positions,
whereas the target sensor nodes (black crosses) are placed randomly. Position
estimates (grey crosses) are also shown for the last iteration of the game.

We considered Nit = 5 iterations of the game as stopping

rule and the mean GDOP value was γ = 1.3. For RSS based

range model we considered p = 3 and σj,i = 0.1 dB for all

possible {i, j} pairs.

Recall that initially all nodes transmit at their maximum

power. Results of the proposed algorithm were averaged over

100 Monte Carlo independent trials and compared to those

obtained by an algorithm that globally optimizes the set of

power levels p. That is, the solution of the coordination game

that finds the global optima of the potential function V (p).
This solution, implemented by exhaustive search, explores all

combinations of power levels for the N nodes (dim{P}N )

and obtains the set of strategies with lower mean power (p̄min)

over the network, with the condition on the GDOP holding.

In the simulation results, we compared the average results of

our method with the GDOP average of all the target nodes
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Fig. 5. Mean power of anchor nodes versus iterations of the game.

GDOP(p), the distributed game with local GDOP average

GDOPTi
(p) and the distributed game with worst case GDOP,

as well as p̄min.

Figure 5 shows the evolution of the mean power of the

network versus the iterations of the game. We can observe

that this value decreases and tends to p̄min. Of interest is the

comparison of these results with those in Figure 6, where we

can identify that although our algorithm might yield larger

mean power values, we experience a tradeoff in the final

GDOP achieved. Results of the case with local GDOP average

come closer to p̄min than for worst case GDOP. This is because

worst case GDOP assures that each node’s GDOP is below the

threshold.

B. Dynamic Scenario

The considered mobile scenario was composed of M = 2
mobile target nodes that aim at locating themselves using the

RSS from a set of anchor nodes (Figure 7). Anchor nodes
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Fig. 6. GDOP versus iterations of the game.

were distributed at known, regular positions every 15m in a

800× 450m2 area. They were numbered starting at origin in

Figure 7. The M = 2 target nodes were placed in a close

position initially, but their trajectories diverge. Target nodes

were mobile and they sent requests to receive ranging signals

at intervals of ∆ = 0.8s. In each request a game started until

the NE was achieved. In order to show how the algorithm

works, ∆ equals for each node was considered. The playing

anchor nodes computed the GDOP of the target nodes for

the three cases previously presented: GDOP(p), GDOPTi
(p)

and GDOPj(p). Therefore, as a game was executed every

∆ s and the number of games was Ngames = 120, the

simulation duration in time was ∆ ·Ngames = 96 s. Results of

the proposed algorithm were averaged over 200 Monte Carlo

independent trials.

For the simulations, the used values of channel model

parameters are from [17]. These parameters values have

been obtained from an experimental campaign to collect the

RSSI measurements with sensor nodes equipped with CC2420

transceiver. Thus, we consider L0 = −20 dB, ρ0 = 0.1 m, p =
3 and σj,i = 4 dB. The initial conditions of the first target node

were the following: the position was x(1)(0) = y(1)(0) = 401

m and the velocity was v
(1)
x (0) = v

(1)
y (0) = 0 m/s. While for

the second node the position was x(2)(0) = y(2)(0) = 403 m

and the velocity was v
(2)
x (0) = v

(2)
y (0) = 0 m/s. Also, σ2

w = 5
for both target nodes.

Every game was run every ∆ s and the different games were

played by different anchors due to target node movement. In

Figure 8, the mean power of anchor nodes at the NE of the

played games (Ngames = 120) is showed. The power value

is minimized to values close to 0.001mW. Of interest is the

comparison of these results with Figure 9. We can identify that,

for each played game, the proposed algorithm maintains the

global metric GDOP(p) < γ as well as the distributed metric

GDOPj(p) < γ, (γ = 4). The differences with the threshold

are due to the errors in the RSS measurements. For the less

restrictive case GDOPTi
(p) of Figure 9 the values are clearly

different to the other two metrics, when the two trajectories

of the target nodes are close and anchor nodes performs the

GDOP averaging GDOPTi
(p). Figure 10 shows the resulting

RMSE after the power control games were executed, with

consistent results.

As previously commented, in Section IV-A, the RMSE

between GDOPTi
(p) and GDOP(p) depends on target node

density. The approximation GDOPTi
(p) ' GDOP(p) is

valid for increasing density of target nodes (considering max-

imum transmit power for target nodes). In the mobile scenario

there are M = 2 target nodes. Thus, effect due to low density

of target nodes for GDOPTi
(p) can be observed, mostly in

the part of the figures that corresponds to close trajectories

of the target nodes (from 1st to 25th games). As earlier

mentioned, in this part of Figure 9 the estimated GDOP metric

GDOPTi
(p) is less accurate than the other metrics. Also,

target trajectories are close and share anchor nodes, however

the number of target nodes within range τi is different for

each anchor node i. In Figure 11, the percentage of anchor

nodes with τi = 1 is shown (before playing the game). At the

beginning, target nodes share the majority of anchor nodes,

but when target trajectories separate, the number of anchor

nodes that have one target node within range increases. For

example in game 17th, 50% of anchor nodes have τi = 1.

Thus, the playing anchor nodes decide the new transmit power

taking into account the GDOP average of τi, but this average

GDOPTi
(p) can change for each player i as τi is different for

each player. Comparing Figures 9 and 11, we can observe that

the difference between GDOPTi
(p) and γ is low when the

percentage of anchor nodes with τi = 1 is < 15%, meaning

that the local metric approximates properly the global metric.

The difference increases with larger percentages up to approx.

50% (corresponding to the 10th to 20th games). Then, the

difference decreases again for larger percentages since, once

the trajectories of target nodes are distant enough, GDOPj(p)
and GDOPTi

(p) values are similar (Figure 9). This is because

target nodes use different set of anchor nodes and thus the

GDOP averaging GDOPTi
(p) (τi = 1 for all i) is equivalent

to the worst-case GDOP.

In conclusion, distributed GDOPj(p) and GDOPTi
(p)

metrics are valid quantities, taking into account that the density

of target nodes affects its performance. The results show that

for low density of target nodes (M = 2 in this case), the

approximation GDOPTi
(p) ' GDOP(p) depends on τi.

Thus, GDOPj(p) metric is a better option to approximate to

GDOP(p). For M = 20 target nodes (static scenario), the

metric GDOPj(p) is more conservative than GDOPTi
(p)

as it was shown in Section VI-A, being the approximation

GDOPTi
(p) ' GDOP(p) valid for increasing density of

target nodes.

Finally, in Figure 12 the activity of the anchor nodes

depending on the trajectory of the target nodes is showed. The

relation between the ID number of each anchor node and its

position in the scenario can be checked in Figure 7. There are

anchor nodes that contribute to positioning at a certain instant

and when they are no longer necessary, they do not contribute,

thus saving energy. Moreover, the figure shows the set Nj of

anchor nodes that provide ranging signals to target node 1

and target node 2. At the beginning of the trajectories, target

nodes share anchor nodes for positioning, however when their

trajectories separate, different anchor nodes help in positioning

each target node.
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Fig. 7. Scenario consisting of anchor nodes (green points) and M=2 target nodes with different trajectories. The initial position of target 1 is (401, 401) and
for target 2 (403, 403). The anchor nodes are numbered with and ID number starting from the origin. The trajectory of target node 1 is represented with a
solid line (black color for real trajectory and red for estimated one). The trajectory of target node 2 is represented with a dashed line (black: real trajectory;
blue: estimated trajectory).
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Fig. 8. Average power of playing anchors in Nash equilibrium of the games
for metrics GDOP(p), GDOPTi

(p) and GDOPj(p).

VII. CONCLUSIONS

In this paper we presented an algorithm for distributed

power control and node selection, with the goal of saving

energy in WSN with RSS-based positioning capabilities. The

proposed algorithm minimizes the transmit power of anchor

nodes as well as performs the selection of a set of anchor

nodes for positioning target nodes, while using the GDOP

to maintain an adjustable level of positioning accuracy. The

anchor nodes that are not necessary for positioning purposes

are turned to low power mode, saving energy.

We used the framework provided by non-cooperative po-

tential games to design and analyze our algorithm. The game

falls into the category of EPG potential games. The proposed

solution provides a distributed approach to select the power
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Fig. 9. Real GDOP in Nash equilibrium of the games for metrics GDOP(p),
GDOPTi

(p) and GDOPj(p).

levels of anchor nodes such that a predefined positioning

quality is ensured, as quantified by the GDOP metric. Two

distributed metrics have been proposed to estimate the average

GDOP using merely the local information available at each

anchor node. We discussed a possible solution for a fully-

distributed implementation of this game. This solution was an-

alyzed in terms of its asymptotical computational complexity.

Performance was assessed by means of computer simulations

in two scenarios, an static setup and a dynamic one.

For the sake of simplicity in the simulations of the mo-

bile scenario, we have considered that the position of the

target node is fixed during a small time window in which

the iterations of a game are performed. It is a reasonable

approximation since the communications rate is much smaller
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Fig. 11. When the trajectories of the target nodes depart, the percentage of
nodes with τi = 1 increase. Case plotted for metric GDOPTi

(p).
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Fig. 12. Active anchor nodes (ID number) in Nash equilibrium iterations of
the games for GDOPj(p) case (no Monte Carlo trials).

than the velocity of the mobile node. However, in a future

work we will study the convergence of the game taking into

account the change of the position between iterations of the

algorithm. For a given trajectory, this latter approach may

reduce the number of games and hence the amount of required

information exchange.

Finally, results revealed that the distributed algorithm ob-

tains results which are comparable to a global approach, as

well as requiring much less computational resources. The

complexity is on the order of O(nN
p ) and O(np) for the global

and proposed solutions, respectively, with np being the number

of available power levels and N the number of anchor nodes

to adjust.
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