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the source of the energetic electrons lie at or beyond the inner plasma sheet, and that the ac _ _ _ Lo onosphere |- I EEE ... Figure 5: THEMIS-D northern magnetic (TG89)
celeration processes within the auroral acceleration zone don't contribute substantially to their 1.Production rates (q) were calculated form the measured electron density (N) by assuming 10° 10* 10 10° , :
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method to invert the matrix, as described in [3].

Figure 6: Relative change in the average energy flux, Figure 7: Relative kinetic power of electrons in different
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Figure 3: Energy spectra: a) of electrons measured by THEMIS-D in the plasma sheet and b) of precipitated
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Figure 2: Plasma-sheet thinning and expanding before and after the substorm onset.
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