
ControlFreak: Signature Chaining to Counter Control Flow Attacks

Sergei Arnautov and Christof Fetzer
Technische Universität Dresden

Dresden, Germany
Email: {firstname.lastname}@tu-dresden.de

Abstract—Many modern embedded systems use networks to
communicate. This increases the attack surface: the adversary
does not need to have physical access to the system and
can launch remote attacks. By exploiting software bugs, the
attacker might be able to change the behavior of a program.
Security violations in safety-critical systems are particularly
dangerous since they might lead to catastrophic results. Hence,
safety-critical software requires additional protection.

We present an approach to detect and prevent control flow
attacks. Such attacks maliciously modify program’s control
flow to achieve the desired behavior. We develop ControlFreak,
a hardware watchdog to monitor program execution and to
prevent illegal control flow transitions. The watchdog employs
chained signatures to detect any modification of the instruction
stream and any illegal jump in the program even if signatures
are maliciously modified.

I. INTRODUCTION

Modern embedded systems do not operate in isolation,
but become increasingly connected and use networks to
exchange data, receive software updates, and communicate
with other devices to provide a better user experience. One
example is the automotive domain. Modern cars contain up
to 70 electronic devices (Electronic Control Units, ECU)
communicating over a network in a distributed fashion [12].
While bringing a number of benefits, the network connec-
tivity increases the attack surface raising security require-
ments, since the system becomes exposed to remote attacks.
Malicious input to software received over the network may
affect program behavior and disrupt correct functioning of
the system.

Increasing software complexity is another threat to se-
curity. The software stack of embedded systems grows as
they perform a richer set of tasks. The estimated size of the
binary code running in luxury cars already reached 100 MB
[15]; it is predicted that software components in future cars
will contain 100 million lines of code [5]. Such complexity
leads to an increased number of bugs that can be exploited
by attackers in order to change the behavior of programs.

In safety-critical systems, security violations might affect
safety and lead to heavy consequences, putting human lives
in danger and causing substantial financial losses. Even
though safety-critical code is subject to a strict certification

This is a pre-print version. The definitive version is available at
https://doi.org/10.1109/SRDS.2015.35

process and is usually developed according to domain-
specific standards to minimize the number of bugs, it is
still difficult to prove that the implementation is bug-free
[23]. Checkoway et al. [7] demonstrated multiple remote
attacks on a real-world car using bugs in its firmware. The
authors exploited vulnerabilities to inject malicious code
and gained full access to all car systems, including the
ones that control the brakes and the engine. Furthermore,
even bug-free software needs protection given the trend for
mixed-criticality systems. In such systems, safety-critical
components run on the same hardware or are connected
to the same network as non-critical components in order
to meet non-functional requirements, such as cost, space or
weight. Hence, ensuring that only safety-critical parts are
protected does not suffice, since non-critical software may
affect safety by interfering with critical code [22].

In this work, we focus on a ubiquitous attack vector:
attacks that exploit bugs in software aiming to hijack the
control and execute malicious code. Many solutions were
proposed in the past to mitigate such intrusions. Some of
them (e.g., stack canaries, non-executable stack, address
space layout randomization) became widely adopted on
personal computers and are integrated in hardware, oper-
ating systems or compilers. However, their acceptance in
embedded systems is going at a slower pace [7].

For a control flow attack to succeed, the attacker needs
to diverge the original control flow of the program. Both
software [1], [9], [11] and hardware [2], [17] mechanisms
were investigated to detect unexpected transitions during
execution. Software implemented approaches are themselves
potential targets of attacks, while tampering with hardware
is considerably more challenging. Additionally, hardware
implemented mechanisms have the advantage of achieving
better performance compared to pure software methods. In
fact, guidelines for automotive ECUs development prescribe
the use of hardware modules to monitor the execution of
safety-critical code [10]. In this paper, we present ControlF-
reak, a hardware watchdog that monitors program execution
and detects any deviation from the predefined control flow
graph (CFG). The watchdog uses signatures to detect (1) any
change in executed instructions and (2) any jump outside the
control flow graph. Our signature calculation scheme allows
to check that each basic block is executed correctly, i.e., no
instruction was modified, and to ensure that for each basic

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ZENODO

https://core.ac.uk/display/144768253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

block only successors that are allowed by the CFG of the
program are executed.

We implemented a prototype of the watchdog and eval-
uated it using simulation. Our experiments show that the
performance overhead varies from negligible to moderate
(12% on average) for different scenarios.

The contributions of the paper are:
• We present an approach to detect control flow transi-

tions outside of the control flow graph using a hardware
watchdog.

• We describe a novel signature calculation scheme that
uses signature chaining; it allows to check the integrity
of instructions comprising a basic block as well as the
signatures of allowed successors.

• We present the analysis of the security guarantees
provided by our approach.

• We describe the implementation of the watchdog using
a simulator and present evaluation.

II. BACKGROUND AND RELATED WORK

A. Control flow

Control flow defines the order in which instructions of
the program are executed. In the following we assume a
generic instruction set architecture (ISA) that can be mapped
to almost any modern architecture. We differentiate between
the following types of instructions:
Non control flow instructions (ik) Such instructions (e.g.,

addition, subtraction, etc.) do not cause jumps in control
flow.

Control flow instructions: Such instructions may diverge
the program from executing a sequential instruction:
• Direct jump and indirect jump instructions (jump

and jumpx). These instructions change control flow
unconditionally. The target of a direct jump is en-
coded in the instruction word, while indirect jump
uses an address stored in a register.

• Branch instruction (branch). A branch instruction
has exactly two successors. By asserting the branch
condition one of two successors is chosen at run-
time.

• Direct call and indirect call instructions (call and
callx). A call instruction transfers control to a be-
ginning of a subroutine. The target of a direct call
is encoded in the instruction word. An indirect call
uses an address from a register as the target address.

• Return instruction (return). Return instruction trans-
fers control to the next instruction after the corre-
sponding call using previously saved return address
from the stack or a register.

A program’s control flow graph (CFG) reflects all transi-
tions that are allowed in the program. It is usually based on
a notion of a basic block (BB) – a sequence of non-control
flow instructions terminated by a control flow instruction.

B. Control flow attacks

Control flow attacks change predefined control flow of
an application to achieve the attacker’s goal. One prominent
example of such an attack is a stack smashing attack: the
attacker overflows a buffer on the stack with malicious code
and overwrites the return address with an address pointing
to the injected code. This attack can be prevented by making
the stack non-executable, preventing the attacker to execute
her code located on the stack.

Non-executable stack can be circumvented by a more
sophisticated attack known as return-to-libc or its gener-
alization return-oriented programming (ROP) [20]. These
attacks do not require injection of new code and use se-
quences of instructions already present in the program or
in shared libraries. The attacker overwrites several stack
frames redirecting control flow to a sequence of gadgets
- multiple instructions typically terminated with a return.
Each gadget performs a certain operation, and by chaining
multiple operations together the attacker is able to achieve
the desired result. Initially discovered for x86, ROP has been
extended to various architectures, including ARM [4] and
SPARC [18].

Stack canaries [8] can be used to protect return ad-
dresses from being undetectably overwritten by placing
special canary values before the address that the attacker
needs to correctly guess. However, a return address can
be overwritten using other vectors of attacks, e.g., format
string vulnerabilities. Address space layout randomization is
an approach widely adopted in desktop systems. It changes
location of the stack, the heap, and shared libraries in order
to prevent the attacker from using code sequences at known
locations in memory. This approach is less effective on 32-
bit architectures [21], thus its applicability in embedded
systems is limited.

Even if the attacker is not able to modify return addresses,
there exist other possibilities to redirect control flow to a
desired location. For example, a buffer overflow can be
used to overwrite the target address of a function pointer.
Moreover, a modification of ROP [6] exists that does not
require execution of return instructions. Bounds checking
can be used to protect against buffer overflows, however
such approaches (e.g., [3]) usually pose significant perfor-
mance overhead, since each access requires performing an
additional check to detect boundary violation.

The disadvantage of the previously described approaches
is that they target only specific vulnerabilities. Control-flow
integrity [1] is a more general pure software method that uses
binary rewriting to prevent jumps outside of the predefined
control flow graph. A label is assigned for each target of
an indirect jump or call and special instructions are inserted
before each jump to check that a valid successor is targeted
at run-time. The approach is based on the assumption that the
code segment cannot be modified at run-time, and memory

2

that belongs to the data segment cannot be executed as code.
We do not pose such restrictions on the attacker in our work.

Another direction of the related work are hardware mon-
itors. They typically rely on a hardware extension that
uses precalculated information about the program and check
that the run-time execution follows the predefined behavior.
Hardware monitors were first introduced in the domain of
fault tolerance [16], [19]. The fault model used by these
approaches assumes single-event upsets and is not suitable
to prevent attacks.

Mao et al. [17] investigate various information patterns
that can be derived from the program to describe its be-
havior: control flow information (i.e., addresses of basic
blocks), opcodes of instructions, load/store patterns, hashes
over each instruction and its address. This information is
securely loaded to a hardware monitor at run-time. The
monitor is connected to the CPU and receives information
about program execution and checks if the execution follows
the predefined pattern.

The monitor by Arora et al. [2] controls the program
execution on three levels. On the highest level the monitor
checks that each function call is the part of the function
call graph. Within a function the sequencing of basic blocks
is checked using information about their addresses stored
in a table. Additionally, for each basic block hash values
of instructions are calculated to check their integrity. The
approach uses hardware tables to store the derived data,
which complicates software updates. Also, the data is ad-
dress specific, meaning that the program cannot be relocated.

The shortcoming of the described monitors is that they
require expensive on-chip area to store reference information
used at run-time. With software sizes growing quickly, the
provided area might be not sufficient to hold all required
data. By reducing the amount of stored data the capabilities
of the monitor to detect errors drop significantly In our work
the reference data is stored in RAM, hence the program size
is limited only by the amount of available memory, which is
typically much larger and cheaper than the on-chip storage.

III. SIGNATURE CHAINING

A. Attacker model and overview

The goal of the attacker is to modify program behavior
by executing a sequence of instructions not defined by the
program. We assume a powerful remote adversary who is
able to exploit bugs in the application, take over the control
flow and execute arbitrary code. Hence, memory contents are
not trusted as they can be overwritten by the attacker. We
need to check that (1) any instruction executed by the CPU
is not modified and (2) any jump is performed according
to the predefined control flow graph. Even though some
embedded systems use read-only memory to store code,
there exist several vectors of attacks that justify the adoption
of such model. For example, return-oriented programming
attacks can be launched, or malicious code can be loaded

i1 i2
branch

BS2 BS3

Basic Block 1

i1 .. in
jump
BS4

Basic Block 2 Basic Block 3
i1 .. in

branch
BS5 BS6

Figure 1: Example of a control flow graph. Gray boxes
depict signatures for corresponding successors.

to a writable memory followed by redirection of control to
that location.

To prevent such attacks, we leverage a hardware watch-
dog, ControlFreak. For each basic block in a program, we
statically calculate a signature, which reflects the instruc-
tions of the block and information about valid successors.
At run-time the signatures are loaded to memory. The watch-
dog monitors program execution and recalculates signatures
based on the actual executed instructions. In the end of each
basic block the watchdog compares the precalculated value
(read from memory) against the dynamically calculated one.
If unexpected instructions were executed, the two values
will differ. We assume that ControlFreak is trusted, and
the attacker can affect its operation only by modifying the
inputs, i.e., instructions or signatures in memory.

In this work we focus only on the detection of attacks,
thus different strategies to recover once an attack is detected
are out of scope. In our implementation, the CPU is reset
as soon as an attack is detected.

To simplify the description, we first introduce the signa-
ture calculation procedure for direct control flow transitions
and describe program monitoring at run-time. After that we
present the techniques for indirect control flow.

B. Static signature calculation

Fig. 1 shows an example of a partial control flow graph.
BB1 consists of two non-control flow instructions followed
by a branch instruction. Two basic blocks are valid succes-
sors: BB2 and BB3. A signature for BB1 is calculated in
the following way:

BS 1 := f(i1, i2, branch,BS 2,BS 3)

where BSn is block signature, and f is the function used
for signature calculation. We will discuss the requirements
for the function in Section IV. As the input to the function
we use binary representation of instructions comprising the
basic block. Additionally, signatures of valid successors are
appended. We call this process signature chaining.

The intuition behind signature chaining is the following.
The program execution starts from a first basic block, for

3

which the signature is securely transferred to the watchdog
and its integrity is checked (see Section IV). Since each
signature also contains signatures of successors, once the
watchdog performs the check and confirms that the run-
time calculated signature is correct, we can conclude that
signatures of successors are also correct (i.e., they were not
modified in memory). This means that only the basic blocks
that correspond to these signatures may be executed next.
If another basic block is executed, the signatures will not
match and ControlFreak will signal an error. In this way,
successors for any basic block in the program are restricted.

i1 .. in
branch

BS2 BS3

Basic Block 1

i1 .. in
jump
BS1

Basic Block 2 Basic Block 3

Figure 2: Loops in the control flow graph result in mutual
dependencies between signatures: BS 1 and BS 2 contain
signatures of each other.

Loops in the control flow graph (Fig. 2) result in a circular
dependency between the first and the last block of the loop:

BS 1 := f(i1, ..., in, branch,BS2, BS3)
BS 2 := f(i1, ..., in, jump,BS1)

To break the dependency we assign a random value
BS rand for one of the blocks (BB2 in our example). This
allows us to calculate the signature for BB1 by using
BS rand instead of BS 2:

BS 1 := f(i1, ..., in, branch,BS rand,BS 3)

Since BS 2 is not equal to the randomly chosen value
BS rand, we introduce another factor, a correction value,
into BS 2, such that BS 2, updated with this value, results
in BS rand:

f(BS 2, Correction) := BS rand.

Note that to calculate the correction value we require
the function f to have an inverse. A practical example of
calculating a correction value is presented in Section V-C.

C. Signature table

Calculated signatures and information about successors
are organized in a signature table. Each row in the table
corresponds to a basic block in the control flow graph.
Depending on the type of the control flow instruction that
terminates the block, different number of successors may be
provided. If the basic block has a correction value, it is also

CPU

Watchdog

Instruction

pipeline

Instructions

Signatures

1st successor:

2nd successor:

Correction:

Expected:

i1 i2 br

BS2

BS3

BS1

2

3

Figure 3: State of the watchdog.

reflected in the table. Each successor is represented with a
pair of values: the signature of the block and its row id.

An example of a signature table is presented in Table I.
In this table BB1 has two successors, BB2 and BB3, which
have signatures BB2 and BB3 respectively. BB2 has only
one successor that has the signature BB4, and BB3 also
has two successors - BB5 and BB6. The table is loaded to
memory at run-time along with the program binary and is
used by the watchdog to obtain pre-calculated values.

Table I: Signature table example.

Row First successor Second successor Correction
1 BS2 2 BS3 3 —
2 BS4 4 — — —
3 BS5 5 BS6 6 —

D. Checking at run-time

Fig. 3 shows the state of the watchdog in the end of BB1

from our example in Fig. 1. The state consists of an expected
register, an instruction buffer, and the signature table row for
the current block (i.e., signatures of successors, their row ids
and a correction value if required).

The watchdog monitors the instruction stream, executed
by the CPU. It accumulates instructions in the buffer until
a control flow instruction is detected. Then it fetches the
signatures of successors of the current basic block, recalcu-
lates the signature and compares the resulting value against
the pre-calculated one, stored in the expected register. If the
values do not match, an error is signalled and the execution
is stopped. If the two values match, the watchdog chooses
one of the signatures of successors as the next expected value
depending on the path taken by the program.

E. Indirect control flow

Several types of control flow instructions do not have
successors directly specified in the instruction word. We
treat such instructions differently, since indirect control flow
instructions might have a large number of successors, and
we adapt the calculation procedure for such instructions.

1) Indirect jumps and calls: Indirect instructions can have
more than two possible successors since the target of a
jump or a call is stored in a register. We assume that all

4

i1 .. in
jumpx

2

Basic Block 1

Basic Block 3 Basic Block ...

3 ... k

Basic Block 2 Basic Block k

Figure 4: Indirect jump example. BB1 can have a large
number of possible targets.

possible targets of such instructions are known. The concrete
technique to extract the targets is discussed in Section V.

An example of a basic block (BB1) containing an indirect
jump is presented in Fig. 4. The straightforward way to
calculate the signature for BB1 is to follow the scheme
presented in Section III-B, including all signatures of all
possible successors in the signature of such block:

BS1 := f(i1, ..., in, jumpx,BS2, BS3, ..., BSk)

Alternatively, only the signature of the actual target of the
jump chosen at run-time can be used to reduce the number of
signatures read from memory, and the number of operations
to calculate the signature for BB1. However, using just the
target signature will result in a different run-time signature
for BB1 depending on the chosen target. Therefore, we
use the same approach introduced for loops: We choose a
random value for BB1 (BS 1rand), and for each allowed
successor t we calculate a correction value Corrt:

BS1rand := f(i1, ..., in, jumpx,BSt, Corrt)

Signatures of all successors of such jumps and the corre-
sponding correction values are stored in the signature table
(see Section V for details). At run-time, the watchdog needs
to fetch only the signature and the correction value for the
selected target to calculate the signature for BB1.

Indirect calls are treated in a similar fashion. The only
difference is that the signature for the basic block after return
is additionally checked.

2) Function calls and returns: Whenever a function is
called, it must return to the instruction following the corre-
sponding call. These locations (and the corresponding basic
blocks) differ depending on the call site. An example of a
function call is presented in Fig. 5. Function A (consisting
of one basic block BBA for simplicity) is called from two
places: from BB1 and BB2.

We use the following approach to check that the return
address was not modified and the function returns to the
correct location. For each basic block that contains a call
instruction (BB1 and BB2 in our example), a basic block
starting with the next instruction after the call is considered
to be a successor (BB3 and BB4 respectively); signatures of
basic blocks with return instructions (BBA) do not contain

BS3

Function A

BSA

Basic Block 1
i1 .. in

BSA BS4

Basic Block 2

i1 .. in
return

Basic Block 3 Basic Block 4

i1 .. in
call A call A

Figure 5: Function call example. Depending on the call site
either BB3 or BB4 will be executed after returning from A.

any signatures of successors. Hence, we calculate signatures
for BB1 and BBA as follows:

BS1 := f(i1, ..., in, call, BSA, BS3)
BSA := f(i1, ..., in, ret)

At run-time, once BB1 passes the check, BB3 is stored
inside the watchdog on a designated stack. When a return
instruction is executed, the signature from the top of the
stack is popped and used as the expected value. Using the
signature stack allows us to restrict the set of basic blocks
following a return instruction to a single block, and not to
any possible target as in the case of indirect jumps and calls.

IV. SECURITY ANALYSIS

In this section we analyse the assumptions of our approach
and discuss why ControlFreak can detect any control flow
based attack.

A. Assumptions

Our attacker model assumes that the adversary is able
to modify both the code and the contents of the signature
table (Fig. 6). To be able to detect attacks, we rely on
the two following assumptions which restrict the attacker’s
capabilities.

i2i1 in

Second succFirst succ

Expected

Trusted Potentially
modified Attack surface

Watchdog
Memory

Program code

Signatures

Correction

Figure 6: Attack surface. Instructions and signatures stored
in memory are potentially modified and are not trusted.

Assumption 1: The result of applying a signature function
f to two different inputs is different.

This assumption states that there are no collisions, i.e., it is
not feasible for the attacker to find two different instruction

5

sequences and signatures of successors that have the same
signature.

Assumption 2: The attacker cannot control the output of
the signature function even having the control over the input.

Since the attacker control the memory contents, she could
modify the signature table and provide correct signatures
for injected malicious code. This assumption excludes such
possibility.

Cryptographically secure functions, such as MD5 or SHA,
can be used to maximize the probability that these two
assumptions hold. However, they cannot be easily inversed
due to their nature, thus the program cannot contain loops.
This limitation can be eliminated by using an encryption
algorithm, since it can be easily inversed (decrypted) if the
secret key is known. Without knowing the key, the attacker
is not able to calculate valid signatures. The same holds
for correction values, since it would require decrypting the
randomly chosen value.

Assumption 3: The watchdog contains a key that cannot
be obtained by the attacker.

To perform signature calculation the watchdog needs to
obtain the key used to create signature table. This assump-
tion implies that this key can be securely transferred into
the watchdog. This could be achieved by having a private
key installed inside the CPU, and using the corresponding
public key to encrypt the application key.

Assumption 4: The first signature BS 1 is securely trans-
ferred into the watchdog and its integrity is checked.

We require that the signature of the first basic block in
a program is correct. If the attacker is able to undetectably
modify the first signature, she can start program execution
from any basic block. A message authentication code for
the signature can be calculated and checked by ControlFreak
upon start.

Assumption 5: The attacker needs to execute a control
flow instruction in order to succeed.

Since the watchdog checks only on a basic block bound-
ary, the attacker could inject code that does not contain any
control flow statements and thus the check will be never
performed. This assumption could be relaxed by including
the number of instructions of each basic block into the
signature. The watchdog then will perform the check as soon
as the specified number of instructions is executed regardless
of the type of the last instruction.

B. Discussion

Consider the execution of the first basic block (BB1)
of the program. According to Assumption 4 the signature
for this block is securely stored inside the watchdog and is
guaranteed to be correct.

The minimal possible goal of the attacker is to execute
a single instruction not in the program order. This can be

seen as executing BBx instead of BB1. Both blocks are
comprised of the same instructions except for one (Fig. 7).

i1 i2
branch

BS2 BS3

Basic Block 1

Basic Block 2 Basic Block 3

Basic Block X
ix i2

branch
BS3 BS2 BS3BS3

Figure 7: Attacks are carried out by modifying the instruc-
tion stream.

Once the instructions of BB1 are modified, the attacker
needs to either change the rest of instructions of the basic
block, or signatures of successors such that the new input
will result in the expected signature BS 1. However, accord-
ing to Assumption 2 the attacker cannot provide the input
such that the outcome of the signature function results in the
chosen by the attacker value. Hence, if the first basic block
was modified, it will be detected by ControlFreak.

Since a signature also encompasses the signatures of
successors, a successful check additionally guarantees that
not only instructions of the current block were not modified,
but also that the signatures are correct and belong to valid
successors. This means that the expected value can only be
updated with a valid signature. Hence, for any succeeding
basic block the same arguments can be used to show that any
modification of instructions or signatures is detectable by
the watchdog. Thus, the expected register (Fig. 6) is trusted:
it is always either updated with a correct signature, or the
execution is stopped.

C. Limitations

The focus of this work is on control flow restriction.
An obvious limitation are data flow based attacks. If the
attacker is able to overwrite, for example, a critical variable
that provides her with more privileges without modifying
the control flow, such an attack will not be detected by the
watchdog. Also, ControlFreak can only detect jumps outside
the control flow graph. If the attacker manages to perform
a jump to a valid successor, but not a correct one, such
an attack will stay undetected, since the target is a part of
the CFG. For instance, the attacker could modify a branch
condition and make the program take a different path, or
change the number of loop iterations. To detect such attacks
additional data flow protection is required.

V. IMPLEMENTATION

A. Watchdog architecture

We described the watchdog using SystemC and a cycle-
accurate simulator of a 32-bit RISC CPU. The CPU im-

6

plements an instruction set architecture called Xtensa. Our
implementation closely follows the description provided in
Section III. ControlFreak receives the stream of instructions
from the commit stage of the CPU pipeline and performs
signature calculation. Memory controller component fetches
signatures from memory which are then compared against
dynamically calculated counterparts.

The watchdog processes multiple basic blocks simulta-
neously. Additional metadata is maintained to distinguish
between different blocks, thus basic blocks can be checked
out-of-order, synchronizing with the program only on ex-
ternalization points, i.e., before executing a system call to
prevent possibly malicious state from being outputted.

If an interrupt occurs during the execution, the control is
transferred to one of the interrupt handlers. Such transition
would be considered as an attack by the watchdog due to
unexpected executed instructions. To detect such cases, the
watchdog monitors the PS (processor status) register. This
register contains a flag, which is set when an interrupt is
being handled. Execution of all handlers is checked as well.
Once the CPU starts handling an interrupt, ControlFreak
initiates a new basic block for the handler and fetches the
corresponding signature. When the execution returns to the
application, the watchdog continues with the BB that was
being executed before the interrupt.

B. Control-flow graph extraction

To obtain the control flow graph of a program and produce
a signature table we implemented a signature calculation
tool. As input it uses a disassembly file of the program
binary produced by objdump and does not require the
source code of the application or any modification of the
program binary, hence legacy software can be supported.
The tool parses the file, extracts all instructions, and groups
them into basic blocks. For each basic block successors are
identified. Produced signature table follows the same format
as described in Section III.

The tool is able to resolve targets of indirect jumps,
which are typically used to implement switch statements.
Consider the following example of the instruction sequence
performing an indirect jump:

(1) l32r a8, 6007a7a4
(2) addx4 a8, a14, a8
(3) l32i.n a8, a8, 0
(4) jx a8

Line 1 loads the base address of the jump table into
a8 register. Line 2 adds the offset of the target in the
table (stored in register a14), to the base address and
stores the result in a8. Line 3 loads the calculated address
from memory to a8. Finally, the address is used by jx

http://ip.cadence.com

(indirect jump) instruction on line 4. The loaded base address
points to the read-only section of the binary. The targets
are extracted by sequentially traversing memory starting at
the pointed address. To check that the discovered values
are indeed possible targets of the jump, we use a simple
heuristic: the address has to point to the beginning of an
instruction within the same function. Clearly, this solution
is not perfect. For example, if tables for two indirect jumps
in the same function are stored sequentially in memory
too many possible targets will be identified. To restrict the
target set further, a more sophisticated data flow analysis is
required to identify the possible offset values. The produced
signature table is adapted to allow for more than two targets.
The field used to store the row id of the first successor
contains the number of successors, and for each successor a
row follows that contains the address offset of the target
instruction, the corresponding signature and a correction
value.

Our current implementation does not perform any analysis
of indirect calls, hence we conservatively add all functions
present in the program to the set of possible targets for any
such call. Similar to indirect jumps, for each function we
add an additional row containing its offset and the signature
of the first basic block.

Once all signatures are calculated, the signature table is
inserted into the program binary. We use objcopy to create
an additional section at a predefined address where the
signatures are stored. Besides using the tool, we do not
require any further changes in the existing tool chain to
produce the binary. Nevertheless, signature calculation can
be also done at compile-time, leveraging existing compiler
infrastructures and techniques to obtain more precise CFG.

Upon boot, the CPU is initialized by a simple operating
system - a single-threaded runtime, which includes routines
for initialization, libc and a system call library. OS code
and libraries are statically linked with the program binary (a
common case in embedded systems), and are available for
analysis by the signature calculation tool. They are checked
by ControlFreak at run-time as well.

C. Signature calculation

We use Advanced Encryption Standard (AES) as the sig-
nature calculation function. AES is a symmetric encryption
algorithm that supports multiple key-sizes (128, 256 and 512
bits) and operates on 16 B blocks, which defines the size of a
signature. All instructions comprising a basic block are split
into 16 B chunks and encrypted using cipher-block chaining
(CBC) mode of operation. In this mode, the input to the AES
engine is XORed with the result of the previous encryption
or an initialization vector (IV) for the first operation. We use
the same initialization vector for all basic blocks. Once the

Randomized vectors are necessary for the same message to have different
ciphertexts when encrypted with the same key, which is not a requirement
in our setting.

7

instructions are encrypted, signatures of successors are used
to obtain a complete signature for a basic block. Free bytes
that might appear when instructions do not complete the
buffer are filled with zeroes, and not with a signature of the
first successor. This is due to the performance reasons, since
at run-time it allows performing encryption of instructions
and fetching of signatures from memory in parallel.

Correction values are calculated in the following way.
First, we obtain BBpartial by encrypting the instruction
sequence and the signatures of successors. As an example
we use BB2 from Fig. 2:

BBpartial := AES(AES(i1, ..., in, jump)⊕BS1)

Then, we select a random value BBrand. The correction
value should satisfy the following equation:

BBrand = AES(BSpartial ⊕AES(Corr))

Hence, to calculate Corr we decrypt BBrand, XOR the
result with BBpartial and decrypt the result again.

VI. EVALUATION

A. Performance

1) Methodology: We evaluated ControlFreak using
MiBench [13] - an embedded benchmark suite that simulates
a typical workload in embedded systems. We made no
changes either to the source code, or to the binary, except
for adapting makefiles to use the compiler for the targeted
architecture, and adding signatures using the tool described
in Section V. All programs were compiled with -O3 flag. In
our experiments we used small inputs provided by the suite
due to substantial execution time in the simulator. To demon-
strate the ability to protect more complex software, we
chose sqlite, a widely used database engine, as an additional
benchmark. As the workload, we populate an in-memory
database with multiple rows and perform a select query on
the data. We disabled multi-threading as it is not supported
by the execution environment and our implementation. We
execute each application with and without the watchdog, and
measure the number of consumed cycles. Since all programs
are deterministic, there is no difference in the number of
cycles for the same application between different runs.

We examine three scenarios:
• General-purpose (GP). In this scenario we use the simu-

lation parameters specified in Table II. The AES engine
was modeled after [14]. The values used for the number
of pipeline stages and the encryption latency correspond
to the variant with the lowest area overhead. We use
instruction cache to additionally store signatures.

• Real-time systems (RT). Using cache in real-time em-
bedded systems complicates the analysis of execution
time and hence caches are often not used. To assess

http://www.sqlite.org

0

10

20

30

crc dijkstra rijndael sha sqlite strsearch susan

O
ve

rh
ea

d
(%

)

PerfectCache GeneralPurpose RealTime

Figure 8: Performance overhead of the watchdog.

0

25

50

75

100

crc dijkstra rijndael sha sqlite strsearch susan

P
er

ce
nt

ag
e

Jumps Branches Calls/Returns Non−CFI

Figure 9: Distribution of executed instructions by type.

0

1

2

crc dijkstra rijndael sha sqlite strsearch susanC
ac

he
 m

is
s

ra
te

 (
%

) Native ControlFreak

Figure 10: Cache miss rate.

performance of ControlFreak in such setups, we disable
cache forcing every access to go directly to memory.

• Perfect cache (PC). To investigate how the AES engine
affects performance of the watchdog, we eliminate the
impact of the memory subsystem by performing all
memory accesses within 1 cycle thus simulating ideal
cache behavior.

Table II: Simulation parameters

Parameter Value
CPU pipeline stages 5 stages
CPU clock frequency 200 MHz
Memory access time 20 cycles
Cache access time 1 cycle
Cache hierarchy L1-I and L1-D caches
Cache associativity 8-way set associative
Cache line size 32 B
Cache size 4 KiB
Cache eviction policy LRU
Encryption latency 31 cycles
AES pipeline stages 4 stages
AES key size 128 bit

2) Experimental results: The results are presented in Fig.
8. RT and PC variants pose negligible overhead with one

8

●

●

●

●

23.24 %

18.28 %

13.42 %
11.21 %

10

15

20

25

4 5 6 7
Number of pipeline stages

S
lo

w
do

w
n

(%
)

Figure 11: Effect of the number of pipeline stages in the
encryption engine on performance.

●● ●

●

●

●

+4 %

+33 %

+17 %

+9 %

+7 %

+19 %

12.5

15.0

17.5

1 4 8 16 32
Instruction cache size (KiB)

C
yc

le
s

(M
)

ControlFreak

Native

Figure 12: Performance of strsearch with varying cache
sizes.

exception - dijkstra (23%). Introducing cache changes the
picture: several applications have overhead of 10% or more
(12% on average). To understand the cause, we further
investigate two applications (dijkstra-PC and strsearch-GP)
in more detail, as they they exhibit the highest slowdowns.

Examining execution traces of dijkstra showed a very
high number of branch instructions, often performed one
after another in a sequence. Such control flow intensive
behavior renders the worst-case scenario for our approach,
since a single branch instruction constitutes a basic block
and requires signature calculation, i.e., performing at least
3 encryptions, quickly saturating the AES engine. To verify
our observations, we used execution traces and extracted the
type information for all executed instructions. The results are
summarized in Fig. 9. Approximately 35% of all instructions
in dijkstra are control flow instructions - the highest number
among all programs.

To demonstrate the influence of the AES engine on
performance, we increase the number of pipeline stages
allowing for higher throughput - allowing for more basic
blocks to be checked in parallel. With each additional stage
we also conservatively increase the encryption latency by 5
cycles. Fig. 11 presents the results for dijkstra. Increasing
the number of pipeline stages reduces the overhead from
23% to 11%. Hence, using a better encryption engine can
reduce the overhead for programs with a large amount of
control flow instructions.

In GP scenario, three applications (rijndael, sqlite and
strsearch), besides dijkstra discussed above, pose non-
negligible overhead. Since this is not the case in PC ex-
periments, we demonstrate how the signatures influence the

cache behavior. Fig. 10 shows miss rates of the instruction
cache during GP runs. 4 KiB cache is large enough for
most applications, thus miss rates are low. Rijndael and
sqlite show higher miss rates than other benchmarks when
executed without the watchdog. This is reflected in the
overhead once ControlFreak is enabled, since the number of
misses increases further due to additional conflicts caused by
fetching signatures. In case of strsearch, miss rate increases
significantly when executed with the watchdog compared to
other applications, resulting in a high performance overhead.
Fig. 12 demonstrates the impact of the cache size on
performance of strsearch. The native application observes
an increase in performance with cache sizes up to 4 KiB,
however larger caches do not have further effect on the
execution time. With ControlFreak, performance of the
application also increases, but at a slower pace, resulting
in growing overheads (with sizes up to 4 KiB). Once the
native application reaches its limit and does not perform
better, the overhead quickly decreases. Since we do not
observe a high overhead for strsearch in the PerfectCache
scenario, another way to improve performance (besides
increasing the cache size to accommodate signatures) is by
structuring the signature table in a cache-friendly way. It
can be tailored to the particular cache parameters such that
often used signatures do not conflict with each other and
with instructions, causing an increase in miss rate. We leave
such study as a direction of future work.

B. Signature table size

Table III: Additional memory required for signatures.

Binary size (KiB) Signatures (KiB) Overhead (%)
crc 333 110 33
dijkstra 459 200 43
rijndael 353 112 31
sha 310 108 34
sqlite 1407 1457 103
strsearch 300 106 35
susan 429 182 42

Another direction of our evaluation concerns the ad-
ditional storage required for signatures. Table III shows
the binary size for each application and the size of the
corresponding signature table. MiBench applications require
36% of additional storage on average. The larger size of the
signature table for sqlite is due to the complexity of the
program: it contains a large number of functions, indirect
jumps and calls, resulting in much higher overhead.

VII. CONCLUSION

Control flow attacks are often used by the adversaries
to obtain the control over the system. We presented a
novel signature calculation scheme that detects such attacks
without limiting the size of the program by allowing to
store signatures in main memory. Code injection attacks are

9

excluded by using an encryption algorithm to calculate sig-
natures, and modification of existing instruction sequences
is not feasible due to signature chaining. We implemented
a prototype of a watchdog that uses signatures to monitor
program execution and to detect violations of control flow.
Experimental results show small performance overhead due
to the use of additional hardware which can be further
reduced by employing a faster encryption engine and better
utilization of caches.

While ControlFreak can effectively detect deviations from
the predefined control flow of an application, another types
of attacks (e.g., data flow attacks) remain feasible and
require orthogonal protection measures.

VIII. ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement 645011 (SERECA) and from the state
of Saxony under grant of ESF 100111037 (SREX).

REFERENCES

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-
flow integrity. In ACM Conference on Computer and Com-
munication Security (CCS), 2005.

[2] D. Arora, S. Ravi, A. Raghunathan, and N. Jha. Secure em-
bedded processing through hardware-assisted run-time mon-
itoring. In Design, Automation and Test in Europe (DATE),
2005.

[3] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory
safety for unsafe languages. In ACM Conference on Program-
ming Language Design and Implementation (PLDI), 2006.

[4] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
good instructions go bad: Generalizing return-oriented pro-
gramming to risc. In ACM Conference on Computer and
Communications Security (CCS), 2008.

[5] R. N. Charette. This car runs on code. IEEE Spectrum, 2009.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented programming
without returns. In ACM Conference on Computer and
Communication Security (CCS), 2010.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner,
and T. Kohno. Comprehensive experimental analyses of au-
tomotive attack surfaces. In USENIX Conference on Security,
2011.

[8] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In USENIX Security Symposium, 1998.

[9] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz,
R. Hund, S. Nürnberger, and A.-R. Sadeghi. Mocfi: A frame-
work to mitigate control-flow attacks on smartphones. In
Network and Distributed System Security Symposium (NDSS),
2012.

[10] EGAS Workgroup. Standardized E-Gas Monitoring Concept
for Gasoline and Diesel Engine Control Units. Version 5.5
edition, July 2013.

[11] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. Xfi: Software guards for system address spaces. In
Symposium on Operating System Design and Implementation
(OSDI), 2006.

[12] S. Furst. Challenges in the design of automotive software.
In Design, Automation Test in Europe Conference Exhibition
(DATE), 2010.

[13] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. Mibench: A free, commercially representative
embedded benchmark suite. In IEEE International Workshop
on Workload Characterization, 2001.

[14] A. Hodjat and I. Verbauwhede. A 21.54 gbits/s fully pipelined
aes processor on fpga. In IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2004.

[15] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,
S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, and S. Savage. Experimental security analysis
of a modern automobile. In IEEE Symposium on Security and
Privacy (SP), 2010.

[16] A. Mahmood and E. McCluskey. Concurrent error detection
using watchdog processors-a survey. IEEE Transactions on
Computers, 1988.

[17] S. Mao and T. Wolf. Hardware support for secure processing
in embedded systems. IEEE Transactions on Computers, June
2010.

[18] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-
oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TIS-
SEC), 2012.

[19] N. Saxena and E. McCluskey. Control-flow checking using
watchdog assists and extended-precision checksums. IEEE
Transactions on Computers, Apr 1990.

[20] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
ACM Conference on Computer and Communications Security
(CCS), 2007.

[21] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space randomiza-
tion. In ACM Conference on Computer and Communications
Security (CCS), 2004.

[22] M. Wolf, A. Weimerskirch, and T. Wollinger. State of the
art: Embedding security in vehicles. EURASIP Journal of
Embedded Systems, 2007.

[23] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald.
Formal methods: Practice and experience. ACM Computing
Surveys, Oct. 2009.

10

