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Abstract

Despite the mysterious nature of dark matter and dark energy, the Lambda–Cold Dark Matter

(ΛCDM) model provides a reasonably accurate description of the evolution of the cosmos

and the distribution of galaxies. Today, we are set to tackle more specific and quantitative

questions about the galaxy formation physics, the nature of dark matter, and the connection

between the dark and the visible components. The answers to these questions are however

elusive, because dark matter is not directly observable, and various unknowns lie between

what we can observe and what we can calculate. Hence, mathematical models that bridge

the observable and the calculable are essential for the study of modern cosmology.

The aim of my thesis work is to improve existing models and also to construct new

models for various aspects of the dark matter distribution, as dark matter structures the

cosmic web and forms the nests of visible galaxies. Utilizing a series of cosmological dark

matter simulations which span a wide dynamical range and a statistical sample of zoom-in

simulations which focus on individual dark matter halos, we develop models for the spatial

and velocity distribution of dark matter particles, the abundance of dark substructures, and

the empirical connection between dark matter and galaxies.

As more precise observational results become available, more accurate models are then

required to test the consistency between these results and the ΛCDM predictions. For all

the models we investigate, we find that the formation history of dark matter halos always

plays a crucial role. Neglecting the halo formation history would result in systematic biases

when we interpret various observational results, including dark matter direct detection

experiments, the detection of dark substructures with strong-lensed systems, the large-scale
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spatial clustering of galaxies, and the abundance of dwarf galaxies. Rectifying this, our work

will enable us to fully utilize the complementary power of diverse observational datasets to

test the ΛCDM model and to seek new physics.
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Chapter 1

Introduction

1.1 Lambda–Cold Dark Matter Cosmology

It was only a hundred years ago when we realized the universe is much larger than the

Milky Way, our home galaxy. Yet over the last few decades, rapid progress in both

astronomical observations and theoretical development has established a general picture

of how the cosmos form and evolve. This general picture, also known as the “standard

model of cosmology”, is the Lambda–Cold Dark Matter (ΛCDM) model. The ΛCDM

model specifies that the universe consists of three components: (1) the ordinary matter

(or “baryons” as how cosmologists call it1), which is everything in the standard model

of particle physics, (2) dark matter, which has mass but very little interaction (other than

gravity), if any, with ordinary matter, and (3) dark energy, which accelerates the expansion

of the universe.

The ΛCDM model is still only a model because we do not have direct evidence of its

validity, nor do we understand the fundamental nature of dark matter and dark energy for

now. Nevertheless, with this model, we can successful explain the evolution of the universe,

the seen Large-Scale Structures (LSS) of galaxies, and also the measured Cosmological

1More precisely, neutrinos are not considered as “baryons” in cosmologists’ language.

1
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{Standard Model

of Cosmology
Dark Matter

Dark Energy

Standard Model of particle physics

(also known as "baryons")

Figure 1.1: Three main components in the total mass-energy budget of the universe:

ordinary matter (“baryons1”), dark matter, and dark energy.

Microwave Background (CMB). If we assume the ΛCDM model is correct, these obser-

vations in return constrain how much each component constitute of the total mass-energy

budget of the universe. From the latest results of a series observations, including the Planck

CMB observations, we can derive that there are ∼ 69.1% of dark energy, ∼ 26.0% of dark

energy, and only ∼ 4.9% of ordinary matter (Planck Collaboration et al., 2015). Figure 1.1

illustrates this distribution.

The aforementioned indirect evidences have made the ΛCDM model widely accepted,

and advanced the field of cosmology into the era of precision cosmology. Today, plenty

of challenges still lie in modern cosmology, including: to find direct evidence of dark

matter and dark energy, to understand the nature of dark matter and dark energy, to probe

discrepancies between observation and ΛCDM prediction that may indicate new physics,

and to learn the complex physical processes involved in galaxy formation. To tackle these

challenges, not only do we need further astronomical observations, but also require new

advances in the department of theories and simulations.
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1.2 Modeling Dark Matter

This dissertation, as its title suggests, focuses on the study of dark matter. Dark matter was

proposed in 1930s to explain the mismatch between the estimated total mass and the light of

galaxy clusters. Modern observations suggest that dark matter constitutes∼ 84% of the total

mass (i.e., not including dark energy) in the universe, dominating the distribution of matter.

However, dark matter does not interact with ordinary matter (or only extremely weekly)

in anyway way other than its gravitational influence. Dark matter leaves gravitational

footprints on the ordinary matter, such as galaxy rotation curves, the gravitational lensing

effect, and the spatial distribution of galaxies.

We now know that dark matter is the building block of the universe. Dark matter forms

the cosmic web, and all visible galaxies are formed within the deep gravitational potential

of clumps of dark matter, also known as dark matter halos. For a typical galaxy such as the

Milky Way galaxy, the halo it resides in is about ten times more massive in mass, with the

galaxy sitting at the very center of the halo.

Hence, the distribution of dark matter and the evolution of dark matter halos are both

crucial components in our understanding of the nature of dark matter and the physics of

galaxy formation. However, due to the obscure nature of dark matter, the distribution of

dark matter is not directly observable. As a result, studies of dark matter usually rely heavily

on numerical simulations, in which we can create a model universe and observe how dark

matter distributes itself within this model universe.

The machinery of our universe has an incredibly large dynamical range, down to sub-

atomic scales and up to super-galactic scales. It is, evidently, impossible to simulate a fake

universe with all these scales properly implemented. A common practice is to conduct

the so-called “dark matter-only” simulations. It should be clarified that, although this kind

of simulation is named “dark matter-only”, they do include both dark energy (so that the

universe expands acceleratingly) and ordinary matter, but assume that the ordinary matter

behaves like dark matter does gravitationally. Since dark matter does not interact with
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ordinary matter nor itself except via gravity, this kind of simulation is more computation-

ally affordable. Also, because dark matter dominates the mass of the universe, the matter

distribution in dark matter-only simulations still resembles the real matter distribution very

closely, at least on super-galactic scales.

Despite the predictive power of these numerical simulations, in practice, simulations

alone are far from enough for the study of dark matter. For reasons I will elaborate below,

mathematical models that empirically describe the distribution or the behavior of dark matter

are also essential ingredients. In this dissertation, I construct several empirical models that

describe various aspects of the dark matter distribution and of the connection between dark

matter and visible galaxies. These models are based on numerical simulations, and have

wide-ranging applications, as I will demonstrate in each chapter of this dissertation.

1.3 Why do we need empirical models?

For now, I shall first explain why empirical models are necessary despite the fact that we can

already access a good number of dark matter simulations. The reasons can be summarized

as follows:

1. Facilitating applications. Dark matter simulations provide “mock” universes where

we can directly sample the phase-space distribution of dark matter and dark matter

halos. However, for most applications, it is more convenient, usually for implemen-

tational purposes, to work with a functional form of the desired distribution. The

functional form should capture the essential features of the distribution, and in most

cases, also smooth out the noise.

For example, experiments that search for the rare event of collisions between dark

matter particles and nuclei require the knowledge of the local velocity distribution

of dark matter. Since this velocity distribution is not directly observable in the

real universe, one has to assume a specific distribution for these experiments, and
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preferably a parametrized functional form as this distribution would enter the post-

analysis, and it would be easier to work with a parametrized function.

2. Exploring universality and physical origins. In dark matter simulations, we have

observed various universalities and self-similarities — the spatial distribution of

dark matter, the velocity distribution of dark matter, and the subhalo abundance

function, to name a few. These universalities are often manifested in the mathematical

models, and they also provide new insight for the physical origin of the distribution

in consideration.

Furthermore, the parameters of an empirical model can hint at what the controlling

physical quantities are, and facilitate the construction of a first-principle model or

the identification of the dominant physical processes. Parametrized models help us

understand the physics that hides in the plain simulations.

3. Extrapolating beyond the capacity of simulations. Even for the state-of-the-art cos-

mological dark matter-only simulations, the tracer particles that discretize the density

fields of dark matter have a mass of the order of 107 M⊙, which is at least 1060 times

more massive than a typical hypothetical dark matter particle (lighter then 1 TeV/c2).

Hence, these simulations are far from resolving all the small-scale structures.

For the purpose of studying the large-scale structures, the resolution of these sim-

ulations are often sufficient. Yet from time to time we need to utilize the current

simulations in a regime that is not fully resolved due to computational limitation.

In this case, it is more reliable and robust to extrapolate the distribution based on a

physically motivated model, rather than to use the distribution measured directly from

simulations, because the latter, by definition, suffers from the resolution limitation.

In this way, empirical models help extending the capacity of existing simulations.

4. Estimating systematic uncertainties. Many sources contribute to the systematic un-

certainties when we use simulated universes to approximate the real universe. For

example, the cosmology used in the simulation can differ from the actual cosmology.
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For a fixed cosmology, a single simulation is only one realization of a universe, and

hence what we measure in any simulation would resemble the real universe only

in a statistical sense even if the cosmology is exactly correct. Also, because dark

matter halos are not direct observable, in the real universe we can only infer the halo

properties from other observables, and hence it is also important to understand the

possible systematic errors in the inference.

Parametrized empirical models help estimating these systematics uncertainties. By

evaluating the parameters, we can calculate the scatter due to random realization and

also examine if there is any factor which correlates with the scatter and may result in

a bias. In other words, the models help constructing the statistical priors according

to the ΛCDM description.

5. Connecting direct observables and the mock universes. Despite the success of the

ΛCDM model, a dark matter-only simulation still does not fully represent the universe

we observe. Since the ordinary matter in a dark matter-only simulation is assumed

to have only gravitational interaction, the ordinary matter does not form stars nor

galaxies. In order to map these observables to the predictions from dark matter-only

simulations, we need a prescription of how the observables, such as galaxies, trace

the dark matter distribution.

One way to obtain this prescription is to conduct hydrodynamical simulations. Hy-

drodynamical simulations include baryonic physics to a certain extend, so they require

much higher resolution and are more computational expensive than their dark matter-

only counterpart. With the limited computation resources, hydrodynamical simula-

tions usually fall short of the simulated volume, which is critical for understand the

sample variance. Also, hydrodynamical simulations do not have infinite resolution,

even state-of-the-art hydrodynamical simulations still cannot resolve individual stars.

As a result, subgrid physical models are still needed in hydrodynamical simulations

to prescribe the unresolved processes.

A very different approach to bridge the observables and the predictions from dark
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matter-only simulations is to directly model the galaxy–halo connection. This ap-

proach links the observed galaxy distribution and the simulated distribution of dark

matter halos on a statistical basis. This kind of empirical models is particular useful

to constrain the statistical relationship between galaxies and dark matter halos. By

revealing the relationship, we can learn about the galaxy formation physics.

The above reasons should have made a strong case for why empirical models are

necessary for the study of dark matter, galaxy formation, and cosmology. We should,

however, carefully distinguish between a empirical model, a physical law, and a fitting

function, despite their blurred boundaries. Empirical models can by no means replace a

detailed, first-principle physical model, nor to be taken as the underlying physical laws

or principles. A physical law usually represents some fundamental understandings of a

collection of physical problems, while an empirical model provides strategies to tackle

specific problems. From a different aspect, empirical models can also be seen as the

macroscopic effective theory for the problems at hand. Furthermore, an empirical model is

more than a fitting function because empirical models need to capture the essential trends

and correlations so that they provide insight into the physical problems in consideration.

For example, a spline fit is apparently a fitting function, but an empirical model should have

the correct asymptotic behaviors as we would expected from the physics.

1.4 The cases

In this dissertation, I will discuss three particular aspects of dark matter distribution and

its connection to galaxies: (1) the local velocity distribution, (2) the abundance of dark

substructures, and (3) the flexibility in the galaxy–halo connection. Here I briefly explain

our motivations, goals, and main findings of these studies.

1. Local velocity distribution. Direct detection experiments search for signals of the

weak interaction between dark matter particles and nuclei, and the event rate of this

rare collision depends on the local velocity distribution of dark matter. Since there



CHAPTER 1. INTRODUCTION 8

is no independent observation which can reveal the velocity distribution, it becomes

one of the assumptions when we interpret the results. Conventionally, it is assumed to

follow the Maxwell–Boltzmann distribution, although numerical simulations suggest

otherwise. To understand how much the assumed velocity distribution impacts the

interpretation, I developed an empirical model for the velocity distribution which

encompasses the predictions from N-body and hydrodynamical simulations. With

this model and the simulations, I further constructed priors on the model parameters,

and then quantified the systematic uncertainties in direct detection experiments due

to the lack of knowledge about the distribution.

2. Dark substructures. One of the unique predictions of ΛCDM is the existence of

abundant dark matter subhalos. While subhalos are not directly observable, they

can produce detectable perturbations in radio or optical strong-lensed systems, and

some of the dark subhalos could host ultra-faint dwarf galaxies. These observables

can constrain the properties of the halo in consideration, and even test the validity of

ΛCDM model, when the subhalo abundance is properly modeled. Traditionally the

abundance of subhalos is modeled to be a Poisson random variable which depends

on only the host halo mass. However, studies have shown that halo formation time

would impact subhalo abundance. In light of this, I developed a model which predicts

the subhalo abundance based on the mass and concentration of the host halo, and

demonstrated that the Poisson scatter results from small-scale perturbation when the

large-scale properties, particularly halo mass and concentration, are fixed. This model

not only extend the utility of current simulations beyond their resolution limits, but

also provides a more accurate description of subhalo abundance.

3. Galaxy–Halo Connection. The “abundance matching” technique connects dark mat-

ter halos with galaxies on the assumption that the luminosity of galaxy varies with a

halo property, such as mass, approximately monotonically. With this simple assump-

tion, we can populate galaxies on a large dark matter-only simulations to generate a

comparable volume of mock observation with limited computational resource, which
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is critical for utilizing the data from large-area surveys such as the Sloan Digital Sky

Survey. I am conducting a series of studies on the flexibility of abundance matching,

investigating how the choice of the halo property used in abundance matching affects

the galaxy clustering and other observables. For example, we found that the concen-

tration dependence in abundance matching can be parameterized and constrained by

the two-point correlation functions of luminosity-selected samples. This result can

further be used to constrain the physics in semi-analytical models and hydrodynamical

simulations.

The dissertation is arranged as follows: In Chapter 2 I describe the simulations used in

this dissertation. In Chapter 3 I review the notion of dark matter halos and the universal

density profile of halos and its connection to halo formation histories, as this topic is

essential ingredient in the following chapters. In Chapters 4, 5, and 6, I present the main

results of, respectively, the local velocity distribution, the abundance of dark substructures,

and the flexibility in the galaxy–halo connection, as described above. A brief summary and

future outlook are presented in Chapter 7.



Chapter 2

Dark Matter Simulations

This chapter describes the simulations used in this dissertation. Many of these simula-

tions are carried out by my collaborators and colleagues, including Matthew Becker (for

the “Chinchilla” Simulations), Anatoly Klypin and the MultiDark/Bolshoi Project1 (for

the “MultiDark/Bolshoi” Simulations), Hao-Yi Wu and Oliver Hahn (for the “Rhapsody”

Simulation), and Samuel Skillman, Mike Warren, and Matt Turk (for the “Dark Sky” Sim-

ulations). I also thank Peter Behroozi for providing the halo catalogs and merger trees for

the “MultiDark/Bolshoi” Simulations, and thank Marc Williamson for helping conducting

the new series of zoom-in simulations of Milky Way-mass halo. Relevant references will

be given in the main text.

Abstract Dark matter simulations provide robust and scalable predictions of the matter

distribution under the ΛCDM paradigm, upon which modern galaxy formation theory is

built. In order to span a wide dynamical range and to collect a statistical sample of dark

matter halos of different characteristics, we use several series of cosmological and zoom-in

simulations, for the development of analytical models that describe the features of these

simulations. In addition, we study the resolution requirements for modeling the two-point

correlation functions, which is essential for extracting information about dark matter and

1https://www.cosmosim.org/cms/simulations/multidark-project/

10

https://www.cosmosim.org/cms/simulations/multidark-project/


CHAPTER 2. DARK MATTER SIMULATIONS 11

Series/box name h ΩM ns σ8 Code

Chinchilla 0.7 0.286 0.96 0.82 L-Gadget2

Bolshoi 0.7 0.27 0.95 0.82 Art

BolshoiP 0.678 0.295 0.968 0.823 Art

MDPL2 0.678 0.307 0.96 0.823 L-Gadget2

Dark Sky 0.688 0.295 0.968 0.834 2Hot

Table 2.1: List of the cosmologies and codes of cosmological simulations

dark energy from large-scale surveys.

2.1 Cosmological Simulations

Dark matter-only simulations discretize the underlying dark matter density field with tracer

particles, and use a gravity solver to solve the motions of these tracer particles. The initial

condition of these tracer particles are given by the linear perturbation theory, with a specific

cosmology. A cosmological dark matter-only simulations commonly has a cubical volume

with a periodic boundary condition (and hence commonly referred to a box). The mass

resolution of a cosmological simulation is defined as the mass of each tracer particle, which

is given by ρM L3/N , where ρM is the total matter density of the Universe, L is the side

length of the cubical volume, and N is the total number of particles.

With modern implementations of the gravity solver, the computational cost of a dark

matter-only simulation is approximately proportional to N log N . Hence, given limited

computational resources, it is always a trade-off between a higher mass resolution and a

larger volume. The higher the resolution, the more details about individual dark matter halos

one could learn. The larger the volume, the more precise statistics of dark matter halos one

could derive. In practice, one usually need to utilize several cosmological boxes to span

a wide dynamical range. In my dissertation I used three different series of cosmological

simulations. They have different cosmology parameters and also use different N-body

solvers, as listed in Table 2.1.

All the simulations in the “Chinchilla” series (M. R. Becker, in preparation), as listed
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Box name Side length Particle Particle mass

[ Mpc h−1] number [ M⊙h−1]

c125-2048 125 20483 1.80 × 107

c125-1024 125 10243 1.44 × 108

c250-2048 250 20483 1.44 × 108

c250-1024 250 10243 1.15 × 109

c250-768 250 7683 2.74 × 109

c250-512 250 5123 9.24 × 109

c400-2048 400 20483 5.91 × 108

c400-1024 400 10243 4.73 × 109

c400-768 400 7683 1.12 × 1010

Table 2.2: List of the “Chinchilla” boxes

Box name Side length Particle Particle mass

[ Mpc h−1] number [ M⊙h−1]

Bolshoi 250 20483 1.35 × 108

BolshoiP 250 20483 1.49 × 108

MDPL2 1000 38403 1.51 × 109

Table 2.3: List of the “MultiDark/Bolshoi” simulations

in Table 2.2 all have the same cosmology but different resolutions and box sizes. They are

also all run with the L-Gadget2 code, a variant of Gadget2 (Springel, 2005). The multiple

resolutions and box sizes enable a study of resolution requirement.

The “MultiDark/Bolshoi” series has several boxes with different cosmology parameters,

resolutions, box sizes, and codes (Klypin et al., 2011, 2014). In this dissertation, we use

three boxes from this series: Bolshoi, BolshoiP, and MDPL2, as listed in Table 2.1 and

Table 2.3. Bolshoi and BolshoiP were run with the ART N-body code (Klypin et al.,

2011), and MDPL2 was run with L-Gadget2.

The “Dark Sky” Simulations were introduced in Skillman et al. (2014). This suite is run

with the 2HOT code (Warren, 2013). The simulations used in this work, DarkSky-250,

DarkSky-400, and DarkSky-Gpc, are companion simulations of the original 8 Gpc h−1

box. They all have the same cosmology, but different sizes and particle masses, as listed in

Table 2.4. In order to build the merger trees for the DarkSky-Gpc box, we down-sampled
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Box name Side length Particle Particle mass

[ Mpc h−1] number [ M⊙h−1]

DarkSky-250 250 25603 7.63 × 107

DarkSky-400 400 40963 7.63 × 107

DarkSky-Gpc 1000 32253 † 1.53 × 108

Table 2.4: List of the “Dark Sky” Simulations. (†The original DarkSky-Gpc box has

102043 particles.)

the box by 1/32. The original DarkSky-Gpc box has 102043 particles.

Figure 2.1 shows the mass resolutions and volumes of the aforementioned simulations

and also other start-of-the-art large-scale simulations. From the figure, we can see clearly

that the simulations lie on a diagonal band, which represents the trade-off between high

resolution (toward upper left) and larger volumes (toward lower right). The black diagonal

line represents simulations that have a trillion particles, which is approximately the current

limit for a single cosmological box due to limited computing power.

2.2 Zoom-in Simulations

The finite computation resource limits the resolution or the volume of a cosmological

simulation, as we discussed above. However, both high resolution and a large volume are

desired features. The higher the resolution, the more details about individual halos one

could learn. The larger the volume, the more statistics of halos one could have. Many

studies do require both high resolution and large statistics, so that one can not only the see

detailed distribution of dark matter but also estimate the halo-to-halo scatter or the sample

variance. For these studies, the zoomed-in simulations are especially useful.

A zoom-in simulation focuses the computational power on a small region of a full

cosmological box, by using tracer particles of different masses. To achieve this, we first run

a low-resolution cosmological simulation, and identify the regions of interest, commonly

the regions occupied by specific dark matter halos. We then find the Lagrangian volume

in the initial condition which corresponds to the region we want to zoom in on. Then we
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Figure 2.1: The mass resolutions and box sizes of various simulations. The black diagonal

line represents simulations that have a trillion particles.
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Simulation h ΩM ns σ8 L [Mpc/h] Nbase
part Neff

part Nhalos

Rhapsody 0.7 0.25 1.0 0.8 1000 11203 81923 96

MW Zoom-in 0.7 0.286 0.96 0.82 125 10243 81923 46

Table 2.5: List of the cosmology parameters, box sizes, and resolutions for the zoom-in

simulations.

regenerate the initial condition with the publicly available Music code2. Music would

preserve the large-scale fluctuation in the original cosmological simulation (commonly

refereed to as “parent box” or “base box”), and put down the initial condition as layers of

different resolutions, with the highest in the Lagrangian volume we identified, and gradually

decreasing outwards (Hahn & Abel, 2011). Once the initial condition is correctly generated,

we can use the conventional gravity solvers to conduct the simulations.

In this dissertation I use two suites of zoom-in simulations, as listed in Table 2.5.

The Rhapsody suite consists of 96 zoom-in simulations on cluster-size halos of a mass

∼ 1014.8 M⊙h−1, with the mass of the highest-resolution particles being 1.3 × 108 M⊙h−1

(for more details, see Wu et al., 2013b,a). The halos in the Rhapsody suite are selected

from the base box, Carmen simulation, from the LasDamas suite3.

We also conducted a new suite of zoom-in simulations that consists of 46 Milky Way-

size halos of a mass ∼ 1011.9 M⊙h−1 (Mao et al., 2015). The mass of the highest-resolution

particles in the zoom-in simulations is 3.0 × 105M⊙h−1. The base box for this new suite is

c125-1024. See Section 5.2 for more details. Figure 2.2 shows a visualization of one of

the halos in this new suite, with the tetrahedral tessellation method (Kaehler et al., 2012).

The full volume spanned by the high-resolution particles are shown in the picture, with the

main Milky Way-size halo sitting at the center (the rounded structure with the bright color).

2https://bitbucket.org/ohahn/music

3http://lss.phy.vanderbilt.edu/lasdamas/

https://bitbucket.org/ohahn/music
http://lss.phy.vanderbilt.edu/lasdamas/
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Figure 2.2: A visualization of one zoom-in simulation of a Milky Way-size halo. The

visualization is done by Ralf Kaehler, with the tetrahedral tessellation method (Kaehler

et al., 2012). The figure shows the full volume spanned by the high-resolution particles,

which is much larger than the halo of interest. The halo appears in this rendering as a

rounded object at the very center of the volume (the bright color).
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2.3 Simulation Post-processing

While the N-body simulations provide the distribution of dark matter and its evolution,

further processes are needed to identify dark matter halos. Dark matter halos are overden-

sities of dark matter. They are identified by finding density peaks in the distribution of dark

matter. The halo finding process is a critical step in the simulation post-processing, because

halos are considered the basic unit in almost all modern research on dark matter, including

this dissertation.

To ensure consistency, in this dissertation, we use Rockstar4 all halo finding proce-

dures. Rockstar is a phase-space halo finder, which better distinguishes halos that are

overlapping in space (Behroozi et al., 2013a). We also always use spherical overdensity to

define the boundary of a dark matter halo. And we use ∆vir as the halo boundary definition

(see Section 3.1 for more details about halo boundary definition). At z = 0, for the cosmol-

ogy we considered in Table 2.1, ∆vir ≈ 100; that is, the averaged density of a halo is 100

times the critical density.

In order to understand how halos evolve with time, we also need to build halo merger

trees. In this dissertation, we use Consistent Trees5 for tree building. For each halo

present at z = 0, Consistent Trees first creates a preliminary merger tree by link halos at

different epochs with the particle information, and then gravitationally evolves the halos to

remove spurious links in the trees (Behroozi et al., 2013b).

Also, I developed a Python module “SimulationAnalysis6” to facilitate the access to

the final products (halo catalogs and merger trees) of Rockstar and Consistent Trees.

The choice of halo finder and tree builder affects all analyses that base on dark matter

halos. Ideally, different halo finders and tree builders should produce consistent results

when they analyze the same set of simulations. Efforts have been made to compare different

halo finders and tree builders (see e.g., Onions et al., 2012; Srisawat et al., 2013; Avila

et al., 2014). While difference still exists between different halo finders and tree builders,

4https://bitbucket.org/gfcstanford/rockstar

5https://bitbucket.org/pbehroozi/consistent-trees

6https://bitbucket.org/yymao/helpers

https://bitbucket.org/gfcstanford/rockstar
https://bitbucket.org/pbehroozi/consistent-trees
https://bitbucket.org/yymao/helpers
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the combined use of Rockstar and Consistent Trees in general produces reliable halo

catalogs and merger trees, and the resulting statistical properties of dark matter halos are

usually consistent with other modern phase-space halo finders.



Chapter 3

The Density Profile of Dark Matter

Halos

Abstract Dark matter halos are overdensities in the distribution of dark matter. They

are the building blocks of the cosmic webs and the nests of galaxies. Dark matter halos

are commonly characterized by their density profiles. In ΛCDM simulations, it has been

found that the density profiles of halos can be described by a universal functional form, the

Navarro–Frenk–White profile, in which case one can use only two parameters, mass and

concentration, to describe a halo. In ΛCDM simulations, it is also known that the mass and

the concentration of halos are correlated, and they are also correlated with halo formation

history. In this chapter, we briefly review this universality of the halo density profile and

models that explain the mass–concentration relation. We then propose a toy model to show

how the mass–concentration relation can emerge from simple assumptions of a relation

between the density profile and halo mass function.

3.1 Introduction: A Universal Density Profile

Dark matter halos are the spherical overdensities in the distribution of dark matter. Halos

are characterized by the density peak (center), and mass (boundary), and the density profile,

19
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which is the density as a function of radius with respect to the halo center. The density

profile of dark matter halos has been studied extensively, and it has been proposed and

shown in simulations that the density profiles of halos are in a universal two-parameter

family, the Navarro–Frenk–White (NFW) profile (Navarro et al., 1996, 1997).

The NFW density profile has been adopted widely to describe the dark matter halos in

both simulations and observations. The NFW profile is characterized by two parameters,

the the scale radius rs and the scale density ρs, in this functional form:

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
. (3.1)

The scale density is by definition the density at the scale radius ρ(rs) = ρs. The logarithmic

slope of density for the NFW profile is

d ln ρ

d ln r
= −1 + 3r/rs

1 + r/rs

. (3.2)

This logarithmic slope goes asymptotically to −3 as r → ∞ and to −1 as r → 0, and it

equals −2 when r = rs.

Other functional forms were also proposed to describe the density profile of dark matter

halos, and they can be categorized into two families: the generalized NFW model (generic

double power law) and the generalized Einasto profile (An & Zhao, 2013).

Note that when comparing the scale radii in different models of the density profile, one

should compare the radii which all correspond to a given logarithmic slope but not the scale

radii in their nature parameterization forms because the latter can be arbitrarily defined.

Hereafter the term “scale radius” and the symbol rs will always refer to the radius where

logarithmic slope equals −2, despite of the specific model of the density profile assumed.

It is physically motivated to choosing the radius where logarithmic slope equals −2 as

the scale radius. N-body simulations generally have shown two phases of the growth of a

halo. The first phase is the gravitational collapse or fast-accretion phase. In this phase the

logarithmic slope is shallower than −2 and the scale radius increases as the halo grows. The
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second phase is slow-accretion phase, in which the scale radius stays at a constant physical

value, and the virial radius increases as the halo grows, building up a steeper logarithmic

slope on the outskirts (Lu et al., 2006).

The concentration parameter c is defined as the ratio of the virial radius to the scale

radius. Because different mass definitions result in different virial radii, a good definition of

concentration parameter should specify the mass definition as well. Given the scale radius

and the virial mass M∆, the relation between the concentration parameter and the mass

definition is independent of the density profile.

c =
R∆

rs

=

1

rs

[
M∆

(4π/3)∆ρcirt

]1/3

, (3.3)

where ∆ is the overdensity of a halo with respect to the critical density for a certain mass

definition (e.g., 200c, 500c, virial).

Since the NFW density profile is a two-parameter model, one can fully determine the

parameters (rs, ρs) by specifying the concentration and mass given one mass definition. rs

can be calculate from (c,M) with Equation 3.3, which is independent of the density profile.

ρs can be calculated from solely c, and for the NFW profile their relation is

(

ρs

ρcirt

) [
ln(1 + c)

c3
− 1

c2(1 + c)

]
=

∆

3
. (3.4)

From Equations 3.3 and 3.4, we can also write down the relation between the virial mass

M∆ and the “scale mass”, which is defined as

Ms ≡
4π

3
ρsr

3
s, (3.5)

M∆ = 3Ms

[
ln(1 + c) − c

(1 + c)

]
. (3.6)

Given a specific density profile ρ(r), we can also fully determine the circular velocity

as a function of radius vcirc(r) =
√

GM (< r)/r . We define vvir to be the circular velocity at
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virial radius. For the NFW profile, we have

vvir ≡ vcirc(rvir) =

[
3GMs

rs

(

ln(1 + c)

c
− 1

1 + c

)]1/2

. (3.7)

We also define rmax to be the radius at which vcirc has a maximum, and then we have

dvcirc(r)

dr

�����r=rmax

= 0⇒ rmax ≃ 2.16258 rs, (3.8)

and

vmax ≡ vcirc(rmax) ≃

√

0.2162166
3GMs

rs

, (3.9)

Hence, we have found another set of parameters (vmax, vvir) that can fully determine the

density profile (see also Klypin et al., 1999a). In particular, from vvir one can infer Mvir,

and from the ratio of vmax and vvir one can infer the concentration parameter:

vmax

vvir

=

0.2162166

(

ln(1 + c)

c
− 1

1 + c

)−1
1/2

. (3.10)

In Chapter 5 and Chapter 6 we will use this set of parametrization (vmax, vvir) extensively.

3.2 The Concentration–Mass Relation and Halo Forma-

tion History

As we already discussed, the NFW profile can be characterized by halo concentration and

mass (c, M). If we now look at the correlation between these two parameters for all the halos

that we identified in a dark matter simulation, we find that halo concentration and mass are

highly correlated: high-mass halos have lower concentrations (Navarro et al., 1997). This

correlation is known as the halo concentration–mass relation.

Furthermore, at a given halo mass, halo concentration also correlates with halo formation

history (e.g., Wechsler et al., 2002). This correlation suggests some connections between
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the seen concentration–mass relation and halo formation histories. Many efforts have been

made in finding toy models that relate halo formation histories and the concentration–mass

relation. In particular we review the toy models proposed by Navarro et al. (1997, hereafter

NFW97), Bullock et al. (2001, hereafter Bullock01), Wechsler et al. (2002, hereafter

Wechsler02), and Macciò et al. (2008, hereafter Maccio08). The basic underlying ideas of

these models are all the same, which is to define a “collapse epoch”, denoted by ac hereafter,

for each individual halo or for halos of a certain mass. Once the collapse epoch is defined,

the toy models then relate the concentration parameter to the collapse epoch.

These models define the collapse time differently. For a halo with mass M at the

observing time a0, NFW97 assign the collapse time to be the epoch at which half the mass

of the halo was first contained in progenitors more massive than a fixed fraction F1 of the

mass of the halo at the observing epoch a0.

erfc *,
δcirt/ [D(ac) − D(a0)]

√

2
[

σ2(F1M) − σ2(M)
]

+- =
1

2
, (3.11)

where δcirt ≃ 1.686 is the critical overdensity, D(a) is the linear growth rate, and σ(M) is

the squared root of the mass variance (at a = 1) with a top-hat filter of mass M . Note that

Equation 3.11 specifies the same ac for all halos with the same M at epoch a.

Bullock01 revised the NFW97 model by simply assigning the collapse epoch ac to the

the epoch when the typical collapsing mass equals to a fixed fraction F2 of the mass M at

the observing epoch a0, that is,

σ(F2M)D(ac) = δcirt. (3.12)

In this model, halos with the same mass are also assigned the same ac like in the NFW97

model. However, the observing epoch a0 enters this relation only implicitly through the

halo mass M , resulting in different behaviors between the Bullock01 model and the NFW97

model. Maccio08 used the same method as Bullock01.

Wechsler02 assigned the collapse epoch directly from the accretion history of each halo.
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The accretion history is constructed from the Extended Press-Schechter (EPS) formalism,

and then fitted by this function

M (a) = M0 exp

[
−2ac

(

a0

a
− 1

)]
, (3.13)

to obtain ac. This method could assign different ac to halos have the same mass at the

observing epoch.

There are also different methods to relate the concentration parameter to the defined

collapse epoch. NFW simply related the scale density to the matter density of the universe

at the collapse epoch
ρs

ρcirt

=

K1ΩM,0

a3
c

, (3.14)

where K1 is a fixed constant, and for the NFW profile the relation between the concentration

parameter and the scale density is given by Equation 3.4.

On the other hand, Bullock01 and Wechsler02 directly related the concentration param-

eter to the collapse epoch

c = K2
a0

ac

, (3.15)

where K2 is a fixed constant, to relate the concentration parameter to the collapse epoch.

Maccio08 slightly modified this relation by taking into account the mass definition

c = K3

[
∆(ac)ρcirt(ac)

∆(a0)ρcirt(a0)

]1/3

, (3.16)

where K3 is a fixed constant too.

3.3 Our Toy Model

In the previous section we review four different models that explain the concentration–mass

relation by defining a collapse epoch for each halo. Effectively, those models translate

the correlation between halo formation time and mass into the correlation between halo
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concentration and mass, but still leave the correlation between halo formation time and

mass unexplained.

On the other hand, efforts have been made to describe the halo mass function and its

evolution with time. In particular, the framework of the Press–Schechter model and its

variants (e.g., Press & Schechter, 1974; Sheth & Tormen, 1999) provide explicit functional

forms to describe the halo mass function at any given redshift, and the framework naturally

results in a correlation between halo formation time and mass.

Hence, we propose a toy model that uses the halo mass function to predict the corre-

lation between halo formation time and mass, and hence predict the concentration–mass

relation. We will explicitly show how we transform the halo mass function into the joint

probability distribution function (PDF) of concentration and mass at different observing

epochs, P(c,M; a0). In general, these steps can be applied to any halo mass function, either

derived theoretically or calibrated with simulations. For simplicity, we will only use the

Sheth–Tormen halo mass function (Sheth & Tormen, 1999; Sheth et al., 2001) as a working

example.

Our model follows the spirit of the models aforementioned, but has a few distinct

features. First of all, since we need the distribution of concentration parameter for a given

halo mass, we cannot assign a single value of ac for all halos of the same mass. Instead,

we need a method to find the distribution of ac for halos of the same mass. Wechsler02

achieved this by using the EPS formalism to generate merger trees and then fitted the mass

accretion history. In contrast, we simply use the information originally embedded in the

halo mass function without assuming a functional form of the mass accretion history.

The second major difference between our model and previous models is that instead of

relating the accretion epoch with the halo mass, we relate it directly with the halo scale

radius. In other words, we equals the scale radius to the characteristic collapsed radius, or

the filter radius.

We start with the Sheth–Tormen halo mass function

n(M, a) d ln M =
ρm

M
fST(ν(M, a))

�����
d lnσ(M)

d ln M

����� d ln M, (3.17)
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where ρm is the matter density,

fST(ν) =
A
√

2π

(

1 +
1

ν2q

)

νe−ν
2/2, (3.18)

ν(M, a) = bδc/[σ(M)D(a)], (3.19)

and A, q, and b are parameters of the Sheth–Tormen halo mass function. Note that to

avoid confusion with the scale factor, we named the last parameter b instead of
√

a as in the

original paper. The functional form also include the Press–Schechter mass function, which

can be obtained by setting (A, q, b) = (0.5, 0, 1).

As we mentioned, we need a description of the distribution of the collapse epoch for a

given halo radius. We obtain this description by calculating the time derivative of the halo

radius function. One can consider this time derivative as the effective halo forming rate,

which is the rate halos with a certain characteristic radius appear. Note that this rate can

be negative, in which case it means the halos with the particular characteristic radius are

merged faster then forming.

By “time derivative” we actually mean the derivative with respect to ln a. The halo

forming/merging rate in a given log-radius bin and a given log-scale-factor bin is then

U (M, a) d ln a d ln M ≡ dn(M, a)

d ln a
d ln a d ln M =

ρm

M
f ′ST(ν(M, a))

(

d ln D

d ln a

) �����
d lnσ

d ln M

����� d ln a d ln M, (3.20)

where

f ′ST(ν) = −d fST(ν)

d ln ν
=

(

2q

1 + ν2q
+ ν2 − 1

)

fST(ν). (3.21)

Once we have the effective halo forming rate, U (M, a), we then make the following

assumptions to convent this rate into the joint PDF of the scale mass and scale density,

P(Ms, ρs). First, both the physical scale radius and the physical scale density of a halo were

determined at the time when the halo collapsed ac, and then have both remained constant

since then. Second, the scale mass Ms was set as a constant multiple F of the filter mass
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R. Third, the scale density ρs was set as a constant multiple K of the matter density at the

time when the halo collapsed, as proposed in NFW97. Fourth, halos with the same scale

radius all have the same probability to be destroyed (merged into another halo).

The second and the third assumptions give the relations between (Ms, ρs) and (M, ac):

Ms = FM (3.22)

ρs = K ρm,0a−3
c . (3.23)

So we can mapU (M, a) to P(Ms, ρs),

P(Ms, ρs; a0) =
1

3
N (

M = Ms/F, a0

) Ũ (

M = Ms/F, ac = (K ρm,0/ρs)1/3) . (3.24)

Note that in this case the Jacobian is 1
3
. Here Ũ ≡ max(U, 0). This modification is

needed because U can be negative but the probability cannot, and according to the fourth

assumption mentioned above we simply suppress the negative values of Ũ . As a result, we

need to add a prefactor N to match the original halo radius function, and N is defined as

N (M, a0) =

∫ a0

a=0
U (M, a) d ln a

∫ a0

a=0
Ũ (M, a) d ln a

, (3.25)

and for the Sheth–Tormen mass function, it is simply

N (M, a0) =


n(M, a0)/n(M, a∗), a0 > a∗

1, a0 ≤ a∗

, (3.26)

where a∗ is defined by satisfying f ′
ST

(ν(M, a∗)) = 0, and f ′
ST

(ν) is defined in Equation 3.21.

Note that in the expressions above, M = Ms/F. See Figure 3.1 for an illustration.

To convert P(Ms, ρs; a0) into P(M∆, c; a0), one need to calculate the Jacobian

J =

�������
∂ ln Ms/∂ ln M∆ ∂ ln Ms/∂ ln c

∂ ln ρs/∂ ln M∆ ∂ ln ρs/∂ ln c

������� , (3.27)
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Figure 3.1: Comparison of R3U (R, a) (dashed lines) and R3Ũ (R, a) (solid lines) for R =

0.5 (red) and 2 (blue) Mpc. For R = 2, the dashed line and solid line are the same.

and one would have

P(M∆, c; a0) = J (M∆, c) P
(

Ms (M∆, c), ρs (c); a0

)

(3.28)

To calculate the Jacobian, a specific density profile need to be assumed. For the NFW

density profile, the relations between (M∆, c) and (Ms, ρs) are given by Equations 3.3 and

3.4. With these relations one can calculate the Jacobian for the NFW profile

JNFW =
∂ ln ρs

∂ ln c
= 3 − c2

(1 + c)2 [ln(1 + c) − c/(1 + c)]
. (3.29)

With Equations 3.20, 3.21, 3.24, 3.28, and 3.29, we have fully specify our model, which

translates the halo mass function into a PDF of halo concentration and mass at any given

epoch. Figure 3.2 and Figure 3.3 show the prediction of our toy model: the PDFs of

halo concentration conditioned on halo mass at z = 0 and the median concentration–mass

relation at different redshifts, respectively.
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Figure 3.2: The PDFs of halo concentration conditioned on halo mass at z = 0, predicted

by our model. The five lines of different colors are for log10(Mvir/M⊙h−1) = 11, 12, 13,

14, and 15.
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Figure 3.3: The median concentration–mass relation at different redshifts, predicted by our

model. The x-axis represents log10(Mvir/M⊙h−1).
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Figure 3.4: Red lines are the concentration–mass relations predicted by our model. Blue

lines are obtained from the Consuelo simulation from the LasDamas suite3. Dots denotes

the median concentration, and the errorbars denote the concentration values at 16% and

84% for each mass bin. The x-axis represents log10(Mvir/M⊙h−1). The four panels show

the concentration–mass relation at different redshifts (z = 0, 0.33, 1, and 2, from left to

right).

3.4 Comparison with Simulations

A great number of fitting functions and empirical models that describe the concentration–

mass relation in simulations already exist (e.g., Macciò et al., 2008; Prada et al., 2012;

Dutton & Macciò, 2014; Ludlow et al., 2014; Diemer & Kravtsov, 2015). As I mentioned at

the beginning of this chapter, the main purpose of this new toy model is to demonstrate the

connection between halo formation histories and halo density profiles, rather than provide

a new fit to the concentration–mass relation. Nevertheless, it is still interesting to see how

well we can recover the concentration–mass relation in simulations with this model.

Figure 3.4 shows the comparison between the concentration–mass relations in a dark

matter simulation and that of our model prediction. We see that this simple toy model pro-

vides reasonably good description to both the median and the distribution of concentration

as a function of halo mass and redshifts. Given that there are only two free parameters (F

and K) in this model (five if including the parameters in the Sheth–Tormen mass function),

this result certainly demonstrates the potential of this toy model.

However, we still see discrepancies at low mass, where the model over predicts the

concentration. The main reason of this discrepancy is that, the time derivative of the halo
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mass function does not distinguish the formation and destruction of halos of the same mass.

In other words, if at a certain epoch, there are the same number of halos of the same mass

form and destroy, the time derivative of the halo mass function at that mass would be zero.

However, this cancellation between the formation and destruction of halos does not preserve

the concentration distribution, as older halos that destroyed would have higher concentration

and the newly formed halos would have lower concentration. Hence this cancellation effect

results in over predicting the concentration, especially for low-mass halos at low redshifts.

3.5 Summary

We review the universal NFW density profile, and explore different ways to parameterize

the this profile (always with two parameters). We review a few models which explains the

concentration–mass relation by linking halo concentration with halo formation history. We

then propose a new toy model, which assumes that the scale radius and scale density of the

density profile of a halo are set at the time when the halo collapse, and that the distribution

of the halo collapse time can be derived from the time derivative of the halo mass function.

With this two simple assumptions, the toy model can provide a reasonable description of

the observed concentration–mass relation.
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Abstract We examine the Velocity Distribution Function (VDF) in dark matter halos

from Milky Way to cluster mass scales. We identify an empirical model for the VDF with a

wider peak and a steeper tail than a Maxwell–Boltzmann distribution, and discuss physical

explanations. We quantify sources of scatter in the VDF of cosmological halos and their

implication for direct detection of dark matter. Given modern simulations and observations,
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we find that the most significant uncertainty in the VDF of the Milky Way arises from the

unknown radial position of the solar system relative to the dark matter halo scale radius. We

establish a VDF parameter space from DM-only cosmological simulations and illustrate that

seemingly contradictory experimental results can be made consistent within this parameter

space. Future experimental limits should be reported after they are marginalized over a

range of VDF parameters.

4.1 Introduction

Dark matter is the dominant component of matter in the Universe, and the key to the

formation of large-scale and galactic structures. Modern cosmological observations suggest

that dark matter is composed of a yet-unidentified elementary particle (e.g., Feng, 2010).

However, direct evidence for dark matter particles has proved elusive. Experiments that

search for Weakly Interacting Massive Particles (WIMPs), one of the most plausible particle

dark matter candidates, seek to identify the scattering of a WIMP with a nucleus in an

underground detector (Bernabei et al., 2008; CDMS II Collaboration et al., 2010; Aalseth

et al., 2011; Angloher et al., 2012; Aprile et al., 2011). Constraining, and eventually

measuring, the WIMP mass and cross section requires a precise understanding of the dark

matter spatial and velocity distribution at the Earth’s location in the Milky Way (Strigari &

Trotta, 2009; McCabe, 2010; Reed et al., 2011; Green, 2012).

Dark matter is distributed in halos extending beyond the visible components of galaxies;

many statistical properties including the formation and structure of these halos have been

well characterized by simulations. Despite the diversity in the merger and accretion histories

of dark matter halos of different masses, cosmological simulations have long suggested

near universality in the density profiles of halos (Navarro et al., 1996, 1997). There have

been several attempts to connect this universality in the density profile to the dark matter

Velocity Distribution Function (VDF) (Hansen et al., 2006; Kuhlen et al., 2010; Navarro

et al., 2010). However, there is no well-established model or description for the VDF that

has been rigorously tested with cosmological simulations.
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Both the implications for direct detection and the quest for a theoretical understanding

of the phase-space distribution in dark matter halos motivate a study of the VDF. Under

specific, and perhaps too stringent, assumptions, including isolation, equilibrium, spherical

symmetry, and isotropy, the VDF may be determined uniquely from the density profile. For

example, with all assumptions named above and a known density profile, the ergodic distri-

bution function can be calculated using Eddington’s formula (Eddington, 1916). Although

useful as an analytic framework, these assumptions are unlikely to strictly hold for halos

formed via hierarchical merging.

In absence of an understanding from first principles, a practical approach to study

the VDF involves appealing directly to dark matter halos with a wide range of physical

properties in cosmological simulations. Quantifying the VDF directly from cosmological

simulations would provide a better empirically-motivated framework to predict signals in

direct detection experiments. Furthermore, with a parametrized VDF, it becomes more

tractable to study the relations between the VDF and other physical quantities of the halos,

such as mass, density profile, shape, and formation history.

In this study, we use a suite of dark matter halos from cosmological simulations to

study the VDFs at different radii of these halos. We identify a similarity in VDFs among

a wide range of halos with different masses, concentrations, and other physical quantities,

that depends primarily on r/rs, the radius at which it is measured divided by the scale

radius of the density profile. We further notice that neither standard Maxwell–Boltzmann

models (Lewin & Smith, 1996) nor models that have been previously proposed to describe

collisionless structures (Hansen et al., 2006; Kuhlen et al., 2010; Navarro et al., 2010) are

able to provide an adequate description of cosmological VDFs. Instead, we describe the

distribution of the norm of velocity (in the Galactic rest frame) more accurately with an

empirical model:

f (|v|) =


A exp(−|v|/v0)
(

v
2
esc − |v|2

) p
, 0 ≤ |v| ≤ vesc

0, otherwise,
(4.1)
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where the normalization constant A is chosen such that the integral 4π
∫

vesc

0
v

2 f (v)dv

equals the number of particles in the region of interest. Note that in this parameterization

the VDF approaches an exponential distribution instead of a Gaussian distribution at the

low-velocity end. With this model, we quantify the scatter in the VDF from a variety of

sources, including halo-to-halo scatter, scatter from finite particle sampling, and scatter

from the uncertain position of the Earth within a given halo. We further identify the largest

uncertainties that currently exist in our understanding of the VDF at the location of the Earth

in our Galaxy, and quantify their relevance for inferences from direct detection experiments.

4.2 Universal Velocity Distribution in Simulations

To identify the relevant physical quantities which affect the VDF and to quantify scatter

in the distributions among different halos in cosmological simulations, we must examine a

large number of halos across a wide range of mass. We also need high resolution to reduce

sampling error and distinguish differences in VDFs for different parameters.

In this study, we use halos from the Rhapsody and Bolshoi simulations; state-of-

the-art dark-matter-only simulations with high mass resolution. Rhapsody consists of

re-simulations of 96 massive cluster-size halos with Mvir = 1014.8±0.05M⊙h−1. The particle

mass is 1.3 × 108M⊙h−1, resulting in ∼ 5 × 106 particles in each halo. This simulation

set currently comprises the largest number of halos simulated with this many particles in a

narrow mass bin (Wu et al., 2013b, Figure 1). Bolshoi is a full cosmological simulation,

with similar mass resolution, 1.3 × 108M⊙h−1. For detailed descriptions of the Rhapsody

and Bolshoi simulations, refer to Wu et al. (2013b) and Klypin et al. (2011) respectively.

We use the phase-space halo finder Rockstar (Behroozi et al., 2013a) to identify host

halos at z = 0. The masses and radii of the halos are defined by the spherical overdensity

of virialization, M (< rvir) =
4π
3

r3
vir
∆virρc, where ∆vir = 94 and ρc is the critical density.

We examine the VDFs at a range of radii. A VDF at radius r uses all particles within a

spherical shell centered at the halo center with the inner and outer radii of 10±0.05r , so that

the ratio of the shell width to the radius is fixed. In each shell, we assign the escape velocity
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Figure 4.1: Solid colored lines show the stacked velocity distribution for 96 halos in

Rhapsody, at different values of r/rs: (from left to right) 0.15 (blue), 0.3 (red), 0.6 (green),

1.2 (magenta). Bands show the 68% halo-to-halo scatter in those VDFs. Dashed and dotted

colored lines indicate the same values of r/rs in Bolshoi with halos of Mvir ∼ 1012 and

1013M⊙h−1 respectively. The VDFs of low-mass halos are cut at the head and tail due to

limited particle number, and their scatter is not shown. The SHM (v0 = 220 km/s and

vesc = 544 km/s) is shown for comparison (black).

(vesc) as the spherically-averaged vesc of all particles in the shell. We have verified that

vesc determined from this method is consistent with the same quantity deduced from the

best-fitting spherically-averaged smooth density profile.

We fit each halo with an NFW density profile,

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (4.2)

where rs is the scale radius at which the log–log slope is −2. The fit uses maximum-

likelihood estimation based on particles within rvir. The halo concentration is defined as

c = rvir/rs.

Figure 4.1 shows the VDF at different values of r/rs. The value of r/rs affects the shape

of VDF dramatically. The peak of the distribution is a strong function of r/rs. If instead the

velocity is normalized by the circular velocity at each radius rather than the escape velocity,
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this trend will be slightly weakened but still significant. This trend in r/rs is not surprising

because the VDF heavily depends on the gravitational potential. If the density profiles of

simulated halos can be described by the NFW profile, which is a function of r/rs only (up

to a normalization constant), the VDF should mostly depend on r/rs until the isolated NFW

potential breaks down at large radius.

The above trend is robust for halo masses down to ∼ 1012 M⊙, as shown by the Bolshoi

simulation in Figure 4.1. The scatter of the VDFs in the low-mass halos considered is

somewhat larger due to resolution. However, when the high-mass halos are downsampled

to have the same particle number, the spreads in the stacked VDF are comparable to the

low-mass halos. We further investigated the impact of a variety of parameters characterizing

the halo on the shape of the VDF, and found that for a fixed value of r/rs, the halo-to-halo

scatter in the VDFs is not significantly reduced when binning on concentration, shape, or

formation history. A detailed discussion on this halo-to-halo scatter is in Section 4.4.

4.3 Models of the Velocity Distribution Function

The dark matter velocity distribution in halos is set by a sequence of mergers and accretion.

The process of violent relaxation (Lynden-Bell, 1967) may be responsible for the resulting

near-equilibrium distributions observed in dark matter halos and in galaxies. These near-

equilibrium distributions explain why existing VDF models (see e.g., Frandsen et al., 2012),

including the Standard Halo Model (SHM), King model, the double power-law model, and

the Tsallis model, are all variants of the Maxwell–Boltzmann distribution. Recent studies

have shown that the widely-used SHM, which is a Maxwell–Boltzmann distribution with

a cut-off put in by hand, is inconsistent with the VDF found in a handful of individual

simulations (Stiff & Widrow, 2003; Vogelsberger et al., 2009; Kuhlen et al., 2010; Purcell

et al., 2012) and in the study of rotation curve data (Bhattacharjee et al., 2013). The double

power-law model was proposed to suppress the tail of the distribution, by raising the SHM

to the power of a parameter k (Lisanti et al., 2011). The Tsallis model replaces the Gaussian

in Maxwell–Boltzmann distribution with a q-Gaussian, which approaches to a Gaussian as
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q → 1 (Vergados et al., 2008). It was argued that the Tsallis model provides better fit to

simulations with baryons (Ling et al., 2010), although this conclusion may be affected by

the relatively low resolution of the simulations.

In contrast, our empirical model, Equation 4.1, is not based on a Gaussian distribution

but rather on an exponential distribution. It also has a power-law cut-off in (binding) energy.

Figure 4.2 shows the VDF in a simulated halo, along with the best fit from Equation 4.1 and

the best fits from other conventional models. All the best-fit parameters are obtained from

the maximum-likelihood estimation in the range of (0, vesc). The fits using Equation 4.1 are

statistically better than other models or the analytic VDFs, especially around the peak and

the tail. We performed the likelihood-ratio test and found that our model fits significantly

better for all Rhapsody halos than the SHM or the double power-law model at all four radii

shown in Figure 4.1.

In Figure 4.2 we also compare three analytic VDFs. For the isotropic model shown, the

analytic VDF is given by Eddington’s formula, which gives a one-to-one correspondence

between the density profile and the VDF. For anisotropic systems, one must also model the

anisotropy parameter, defined as β = 1− (σ2
θ
+σ2

φ)/(2σ
2
r ), where σ2 is the variance in each

velocity component. There is currently no analytic VDF whose anisotropy profile matches

that measured in simulations, so we choose three simple and representative anisotropic

models: constant anisotropy (with β = 0 and 1/2) and the Osipkov–Merritt model (Osipkov,

1979; Merritt, 1985). The phase-space distributions of these models can be determined

numerically (Binney & Tremaine, 2008). For all three cases, we adopt the NFW profile as

in Equation 4.2, with the best-fit scale radius. For the Osipkov–Merritt model, we use the

best-fit anisotropy radius. It is shown in Figure 4.2 and also suggested by the chi-square test

for the models considered that the analytic VDFs do not describe the simulated VDF well.

Our VDF model, Equation 4.1, consists of two terms: the exponential term and the

cut-off term. The origin of the the exponential term can be explained by the anisotropy in

velocity space. Figure 4.3 shows the distributions, the dispersion, and the kurtosis of the

velocity vectors along the three axes of the spherical coordinate. Kurtosis is a measure of

the peakedness of a distribution, defined as (
∑

i v
4
i
)/(

∑

i v
2
i
)2 − 3, where vi is the velocity of
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Figure 4.2: The VDF for one representative dark matter halo in Rhapsody (histogram),

along with the best fits using Equation 4.1 with (v0/vesc, p) = (0.13, 0.78) (black, χ2
=

0.59), SHM (blue, 9.67), the double power-law model (cyan, 9.47), the Tsallis model (green,

1.99), and the analytic VDFs from Eddington’s formula with isotropic assumption (red dash,

8.48), Osipkov–Merritt (magenta dash, 6.41), and constant β = 1/2 (yellow dash, 11.8).

The y-axis is in log scale in the main figure and linear in the inset.

the i-th particle along one axis, and this value is zero for the normal distribution. The ratios

of dispersion between the three axes are close to one at small radii, and the ratios increase

with radius. The kurtosis, on the other hand, is in general non-zero and decreases with

radius. An important consequence of the non-zero kurtosis is that even if the dispersion

along the three axes are similar (anisotropy parameter β ∼ 0), the velocity vectors do not

follow an isotropic multivariate normal distribution in any coordinate system (even after a

local coordinate transformations). In other words, as long as there exists either anisotropy or

non-zero kurtosis in a certain coordinate, the norms of the velocity vectors will not follow

the Maxwell–Boltzmann distribution. Indeed, Figure 4.3 shows that in the simulations,

one always has non-zero kurtosis and/or anisotropy. Other simulations also indicate that

the velocity vectors of dark matter particles have anisotropy (Abel et al., 2012; Sparre &

Hansen, 2012) and non-zero kurtosis (Vogelsberger et al., 2009). We further found that

if the ratios of dispersion between the three axes of a multivariate normal distribution are

around 0.2 to 0.6, the norms of those random vectors will follow a distribution which
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resembles our model without the cut-off term, v2 exp(−v/v0) (for a formal discussion on

this topic, see e.g., Bjornson et al., 2009). This suggests that if one can find a coordinate

system where the distributions of the velocity components are all distributed normally (with

zero kurtosis), there will be a larger difference between the dispersion along the three axes

in this new coordinate system than in the spherical coordinate.

The (v2
esc − v

2)p term in our VDF model introduces a cut-off at the escape velocity. It

further suppresses the VDF tail more than the exponential term alone does. Despite that

this cut-off term has the form of a power-law in (binding) energy, the best-fit values of the

parameter p does not necessarily reflect the “asymptotic” power-law index k, defined as

k = limE→0(d ln f /d ln E), where f (E) is the (binding) energy distribution function. The

relation between k and the outer density slope has been studied in the literature (Evans &

An, 2006; Lisanti et al., 2011). However, because d ln f /d ln E deviates from its asymptotic

value k rapidly as E deviates from zero, the asymptotic power-law index k could be very

different from the best-fit power-law index for the VDF tail (e.g. v > 0.9vesc). Furthermore,

the shape of the VDF power-law tail could be set by recently-accreted subhalos that have

not been fully phase-mixed (Kuhlen et al., 2012), and hence has no simple relation with the

density profile. In high-resolution simulated dark matter halos, particles stripped off of a

still-surviving subhalo are seen to significantly impact the tail of the VDF. A larger sample

of simulations at higher resolution than we consider in the current analysis will be needed

to further test this hypothesis.

4.4 Halo-to-halo Scatter in Velocity Distributions

We demonstrated above that there exists a similarity in VDFs for a wide range of simulated

dark matter halos; Equation 4.1 provides a good description of this similarity. We now

quantify explicitly how the VDF depends on r/rs and the associated halo-to-halo scatter.

Figure 4.4 shows a scatter plot of the velocity distributions for different halos, characterized

by the two parameters of Equation 4.1, for different r/rs. The regions of (v0, p) parameter

space for different r/rs are distinct, which implies that r/rs is the most relevant quantity in
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Figure 4.3: Left: The histograms of vr and vφ of the same halo shown in Figure 4.2, with

the best-fit normal distributions (red lines). Right: The velocity dispersion σv/vesc and the

kurtosis, along the three axes: vr (red), vθ (green), and vφ (blue). Both the dispersion and

the kurtosis are measured in spherical shells at different r/rs and averaged over all halos in

Rhapsody, with the error bars showing the 68% halo-to-halo scatter. The dashed lines are

only to guide the eyes.
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Figure 4.4: Distribution of the best-fit parameters, v0 and p of Equation 4.1, which describes

the simulated VDFs. Each dot represents one halo from the Rhapsody simulation at a

certain r/rs: (from left to right) 0.15 (blue), 0.3 (red), 0.6 (green), 1.2 (magenta). The cross

symbols show the best-fit parameters to isotropic analytic VDFs obtained from Eddington’s

formula at corresponding radii. The typical uncertainty of the fit is shown in the lower left

corner. The lower right inset shows the linear relation between v0/vesc and log(r/rs).

determining the shape of the velocity distribution. We also found that the parameter v0/vesc

has a linear relationship in log(r/rs), as shown in the inset of Figure 4.4.

We note that there is significant degeneracy between the two parameters (v0, p). This

degeneracy comes from the fact that a larger value of p is needed to steepen the tail of

the VDFs which have larger values of v0. In our fitting process we left both parameters

free because there is no simple relation between v0 and p for all radii. Because of this

degeneracy, there also exists a linear relation between p and log(r/rs). However, since the

best-fit p is not well-constrained due to the low number of particles in the tail of the VDF,

the relation between p and log(r/rs) is not well determined either.

In Figure 4.4 we see there exists halo-to-halo scatter even for a fixed r/rs. This intrinsic

scatter could arise from the statistics of the samples or some other physical quantities.

Figure 4.5 shows the best-fit v0/vesc at different radii as a function of concentration, halo

shape (c/a), formation time (z1/2), and local density slope (−d ln ρ/d ln r) respectively, as

defined in Wu et al. (2013b). We found that at a given r/rs (a fixed color), v0/vesc does not
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Figure 4.5: Scatter plots of the best-fit parameter v0/vesc with concentration, halo shape

(c/a), formation time (z1/2), and local density slope on the x-axes respectively. Each dot

represents one halo from the Rhapsody simulation at a certain r/rs: (from bottom to top

in each panel) 0.15 (blue), 0.3 (red), 0.6 (green), 1.2 (magenta). For any fixed r/rs, there is

no significant correlation between v0/vesc and the aforementioned quantities on the x-axes.

See text for details.



CHAPTER 4. THE LOCAL VELOCITY DISTRIBUTION OF DARK MATTER 44

have a significant correlation with the physical quantities on the x-axis (except for z1/2 in the

two smallest radial bins). This reinforces the main result of this study: the VDF is mostly

determined by r/rs (i.e. the gravitational potential). We note that the lower left panel of

Figure 4.5 shows a weak correlation between z1/2 and v0/vesc; however if the halos with

z1/2 < 0.25 are removed, this correlation is no longer statistically significant. Halos with

recent accretion tend to have larger deviations from the NFW profile, and this results in a

slight overestimate of the best-fit scale radius (fit to an NFW profile). We do not expect the

Milky Way has had a recent major merger with z1/2 < 0.25. This indicates that for possible

Milky Way host halos, one can exclude these systems with recent major mergers, and there

will be no remaining correlation between formation time and v0.

For Milky Way size halos, it has been suggested that the VDF has a universal shape

depending only on the velocity dispersion and the local density slope (Hansen et al., 2006).

This is related to our finding in a way that the magnitude of the velocity dispersion is roughly

proportional to vesc and the local density slope for an NFW profile is given by a monotonic

function of r/rs,
d ln ρ

d ln r
= −1 + 3(r/rs)

1 + (r/rs)
. (4.3)

However, our study suggests that r/rs is a more fundamental quantity than the local density

slope in determining the shape of the VDF. Figure 4.5 illustrates that v0/vesc does not grow

with the local density slope when one only looks at a fixed r/rs (points with the same color),

but it does grow with r/rs when the local density slope is fixed.

4.5 The Distribution of the VDF Parameters

So far we identify the best-fit VDF parameters v0/vesc and p of individual halos from

simulations, and indicate an apparent correlation between these two parameters for a fixed

r/rs. This degeneracy between v0/vesc and p impedes a simple description of the parameter

domain of interest. To break this degeneracy, we instead find it useful to parameterize

the VDF of Equation 4.1 by vrms/vesc and p, where vrms is the root-mean-square velocity,
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Figure 4.6: Contours show the value of vrms/vesc as a function of (v0/vesc, p), from the VDF

model of Equation 4.1.

defined as
[
4π

∫

vesc

0
dvv4 f (v)

]1/2
. For simplicity, hereafter we use vrms and v0 to refer to

their respective normalized values, vrms/vesc and v0/vesc.

In Figure 4.6 we show the value of vrms as a function of (v0, p). There is an one-to-one

correspondence between (vrms, p) and (v0, p), so the VDF of Equation 4.1 can be completely

specified by (vrms, p). Furthermore, lines of constant vrms follow the relation between v0

and p for a fixed r/rs, where rs is the scale radius of the density profile; vrms is largely

determined by r/rs, while the halo-to-halo scatter is primarily determined by the parameter

p. This is physically explained by noting that vrms is the ratio of the average energy to the

escape energy, which is directly related to the relative position in the gravitational potential.

Figure 4.7 shows the 90% scatter on the VDF parameters for three different samples of

simulated halos. One sample is from the Rhapsody simulation (Wu et al., 2013b), in which

there are 96 halos with virial mass of ∼ 1014.8M⊙h−1. The other two samples are halos

with virial mass of ∼ 1014M⊙h−1 and of ∼ 1013M⊙h−1 respectively, in the the Bolshoi

simulation (Klypin et al., 2011). We use samples of halos with different masses in order to

determine if there are mass trends of the VDF parameters. As shown in Figure 4.1 and more

explicitly in Figure 4.7, there is no mass trend indicated over three orders-of-magnitude in

mass, implying that it is reasonable to apply the following analysis to MW-mass halos.

We set the domain of interest on vrms based on the current observational constraint on
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Figure 4.7: From left to right, plots show vrms/vesc (from fitted profiles), fitted v0, and fitted

p respectively, as functions of r/rs, for simulated DM halos of three samples. The red,

green, and blue samples consist of halos of ∼ 1013,1014, and 1014.8M⊙h−1, respectively.

See text for the simulation detail. Error bars show the 90% halo-to-halo scatter of each

sample.

r/rs, which is, conservatively, [0.15, 1.2] (we will further discuss this range in Section 4.8;

see also e.g., Kafle et al. 2012). This then sets the domain of interest on vrms to be

[0.35, 0.52]. Since the parameter p is not affected by r/rs, guided by the 90% halo-to-

halo scatter from Figure 4.7 we set the domain of interest on p to be [0, 3]. Note that the

magnitude of the halo-to-halo scatter is comparable to the directional scatter at a fixed radius

within an individual halo, so the above domain will not shrink even if one could remove

the halo-to-halo scatter completely, given our lack of knowledge about the Earth’s angular

position. The simulations used here do not include baryons, so in principle this domain

may be larger than what is discussed here.

4.6 Implications for Direct Detection Rates

Weakly Interacting Massive Particles (WIMPs) are well-motivated candidates for dark

matter (DM), and many theoretical WIMP candidates have been proposed (Jungman et al.,

1996; Bertone et al., 2005; Bertone, 2010; Feng, 2010). Though WIMPs have not been

detected, a variety of direct, indirect, and collider experiments are rapidly progressing in

searching for them (Strigari, 2013).
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Despite rapidly improving sensitivities and analysis methods, direct detection experi-

ments are presenting a conflicting picture. The DAMA (Bernabei et al., 2010), CoGENT

(Aalseth et al., 2011), and CRESST (Angloher et al., 2012) collaborations have reported

hints for low-mass DM in the mass range ∼ 5 − 10 GeV. Most recently, the CDMS-II

collaboration has reported three events in their silicon detectors that are not explained by

known backgrounds. When interpreted as a WIMP signal this yields a most likely mass

of 8.6 GeV (Agnese et al., 2013). However, these candidate events ls are inconsistent with

the null result reported by the XENON100 collaboration (Aprile et al., 2012) and the LUX

collaboration (Akerib et al., 2014). Ideas to alleviate the conflict include improved charac-

terization of experimental backgrounds (Collar & Fields, 2012; Sorensen, 2012), particle

physics explanations such as tuning the ratio of the coupling constants of WIMP scattering

on neutrons and protons (Feng et al., 2011), or more detailed examination of the velocity

distribution function (VDF) (Lisanti et al., 2011; Bhattacharjee et al., 2013; Frandsen et al.,

2012).

The Standard Halo Model (SHM) is commonly adopted by direct detection experiments.

As a consequence, uncertainties in the local DM density (see e.g., Bovy & Tremaine, 2012;

Garbari et al., 2012) and in the VDF are not a standard component of analysis of experimental

data. While the local DM density affects the overall detection rates for all experiments, the

VDF affects different experiments differently. For heavy WIMPs, greater than ∼ 20 GeV,

it is relatively safe to neglect uncertainties in the VDF because the majority of modern

experiments are not sensitive to variation of the VDF in this high-mass regime. However,

for lighter WIMPs uncertainties the VDF may significantly affect experimental results.

Cosmological simulations have suggested that DM halos in a Lambda Cold Dark Matter

(LCDM) universe do not have isothermal profiles (Navarro et al., 1997; Lu et al., 2006),

so one does not expect the VDF in DM halos should necessarily follow the isotropic

Maxwell–Boltzmann distribution. Recent studies also confirmed this inconsistency by

directly comparing the VDFs in simulated halos with the Maxwell–Boltzmann distribution

(Vogelsberger et al., 2009; Kuhlen et al., 2010). VDFs which are consistent with certain

anisotropy profiles have been calculated (Łokas & Mamon, 2001; Evans & An, 2006), and



CHAPTER 4. THE LOCAL VELOCITY DISTRIBUTION OF DARK MATTER 48

parametric VDF models that directly fit to the VDF of simulated halos have also been

proposed (Lisanti et al., 2011).

In addition to the deviation from the Maxwell–Boltzmann distribution due to anisotropy,

large substructures or other dark components such as dark discs (Read et al., 2008; Bruch

et al., 2009) and streams Vogelsberger & White (2011) can result in a non-smooth VDF

that cannot be characterized by the SHM either. Methods to present and compare results

from different experiments without assuming a specific VDF model have been developed

(Fox et al., 2011; Frandsen et al., 2012; Gondolo & Gelmini, 2012; Frandsen et al., 2013),

though a VDF model is still required to translate results from experiments into constraints

or limits on physical parameters of the DM particle (Strigari & Trotta, 2009; Peter, 2010;

Pato et al., 2011, 2013; Kavanagh & Green, 2013; Friedland & Shoemaker, 2013).

It has not yet become standard in the direct detection community to include uncertain-

ties of the VDF or to use a VDF-independent presentation in published results, possibly

because the traditional vanilla WIMP candidate has mass of ∼ 100 GeV and in this regime

experiments are less subject to impact of the VDF. As intriguing signals continue to mount,

and new theoretical models of low-mass DM are constructed (Feng et al., 2008; Kaplan

et al., 2009; Feng et al., 2011; Essig et al., 2012), it is important to systematically address

the issue of the VDF in the context of direct detection experiments.

Due to our lack of knowledge about the exact form of the VDF, it is not straightforward

to include the possible uncertainties in VDF in experimental analyses. As an initial step, a

flexible and parameterized smooth VDF model that is consistent with our understanding of

CDM halos is essential at the current stage. With DM-only cosmological simulations, we

have empirically determined that the VDF in DM halos may be described by Equation 4.1

with two parameters (v0, p).

This particular functional form is flexible enough to incorporate a wide range of peak

velocities and the power-law fall-off near vesc. Although it was motivated by DM-only

simulations, a recent study shows that this functional form provides an excellent fit to

baryonic simulation as well (Pillepich et al., 2014). While the baryonic physics impacts the

best-fit parameters specifying the VDF, it does not appear to change the general functional
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form. We use a suite of cosmological simulations and zoom-in simulations to identify a

domain of the VDF parameter space that is allowed. We further demonstrate that, within

this parameter domain, there exists the intriguing possibility that the tension between these

experiments can be resolved by uncertainties in the Milky Way (MW) halo model, and

motivates the development of a stronger connection between cosmological simulations and

predicted direct detection event rates. We conclude by discussing how this VDF model

provides a framework for studying the uncertainties in VDF and suggesting how to mitigate

these uncertainties in experimental analyses.

Given the known dependence on r/rs, we can now examine the impact on direct dark

matter detection experiments. The differential event rate per unit detector mass of dark

matter interactions in direct detection experiments is

dR

dQ

�����Q =
ρ0σ0

2µ2mdm

A2 |F (Q) |2
∫

vmin(Q)

d3
v

f (v + ve)

v
, (4.4)

where Q is the recoil energy, ρ0 is the local dark matter density, σ0 is the WIMP-nucleus

cross section at zero momentum transfer, mdm is the WIMP mass, µ is the WIMP-nucleus

reduced mass, A is the atomic number of the nucleus, |F (Q) |2 is the nuclear form factor,

vmin = (QmN/2µ
2)1/2 for an elastic collision, f is the VDF in the Galactic rest frame, and

ve is the velocity of Earth in the Galactic rest frame (Lewin & Smith, 1996).

With Equation 4.4 one can calculate the event rate given VDF and vmin. We calculated

this rate for each halo using the best-fit exponential model of the VDF, for different vmin and

different r/rs. The results are shown in Figure 4.8, where we divided the rate by the rate

calculated from the SHM with conventional parameters v0 = 220 km/s and vesc = 544 km/s

for comparison.

The rate as a function of vmin behaves very differently for different r/rs as shown in

Figure 4.8. For low values of r/rs, the change in detection rates between experiments

can be much larger than the predictions of the SHM, e.g., the ratio between the rates of

CoGeNT (Aalseth et al., 2011) to DAMA-I (Bernabei et al., 2008) is three times larger

in our model than in the SHM. This clearly motivates efforts to better constrain the scale
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Figure 4.8: Ratio of detection rate predicted by Equation 4.1 with parameters obtained from

Rhapsody, for different r/rs: (from bottom to top) 0.15 (blue), 0.3 (red), 0.6 (green), to

that of the SHM with conventional parameters. Vertical dotted lines show vmin for different

detectors: (from left to right) CoGeNT, DAMA-Na, XENON, CDMS, DAMA-I, expressed

in (nucleus, threshold energy) (Aalseth et al., 2011; Bernabei et al., 2008; Aprile et al.,

2011; CDMS II Collaboration et al., 2010), assuming a WIMP mass of 10 GeV. The error

bars show the 68% halo-to-halo scatter, and those with wider caps include the scatter in

different directions. The x-axis is slightly offset for clarity. The lines which connect the

data points are only to guide the eyes.
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radius of the Milky Way: comparing the scatter coming from measurements of VDF with

the intrinsic physical differences among halos, the uncertainty on r/rs appears to be the

dominant contribution to the uncertainty in event rates, especially for smaller vmin.

4.7 A Demonstration with Mock Experiments

We further demonstrate the impact of uncertainties in the VDF on direct detection experi-

ments by considering two mock experiments, which we call Exp. X and Exp. S, and investi-

gate how the different parameters of the VDF in Equation 4.1 impact the interpretation of the

results. In this demonstration, we assume a WIMP model which has a mass mdm = 8.6 GeV

and a WIMP-nucleon cross section at zero momentum transfer σ0 = 1.9 × 10−41 cm2, as

inspired by the recent results from the CDMS-II experiment (Agnese et al., 2013). Note

that this mass and cross section are also consistent with the recent CoGENT analysis (Kelso

et al., 2012).

In Exp. X, the target nucleus is xenon, the nuclear recoil energy threshold is 6 keV

(i.e. minimal vmin ∼ 715 km/s), and the effective exposure is 6000 kg-days. In Exp. S,

the target nucleus is silicon, the threshold is 7 keV (i.e. minimal vmin ∼ 443 km/s), and

the exposure is 7.1 kg-day, chosen to obtain a mean event count of 3 in the case of the

SHM. In both experiments, to highlight the theoretical impact of the VDF we assume a

sharp energy cutoff at the threshold energy, and both perfect energy response efficiency and

resolution. We fix the local DM density to be ρ0 = 0.3 GeV/cm3, and assume equal WIMP

coupling to the neutron and proton. We set the Galactic escape velocity to be 544 km/s,

and take the averaged speed of the Earth in the Galactic frame to be 232 km/s. Note that we

have neglected the uncertainties in ρ0 (0.3 ± 0.1 GeV/cm3 (Bovy & Tremaine, 2012)) and

vesc (498 − 608 km/s at 90 per cent confidence (Smith et al., 2007)). In a complete analysis

these uncertainties should also be marginalized over.

Given the parameters stated above, we can then calculate the predicted event rate R,

which is the integral of the differential event rate per unit detector mass over the recoil
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energy Q,
dR

dQ

�����Q =
ρ0σ0

2µ2mdm

A2 |F (Q) |2
∫

vmin(Q)

d3
v

f (v + ve)

v
. (4.5)

Here µ is the WIMP-nucleon reduced mass, A is the atomic number of the nucleus, |F (Q) |2

is the nuclear form factor (Lewin & Smith, 1996), vmin = (QmN/2µ
2)1/2 for an elastic

collision, f is the VDF in the Galactic rest frame, and ve is the velocity of Earth in the

Galactic rest frame.

The question we address in this demonstration is how the probability of a certain

experiment observing N collision events (assuming all the events are real WIMP-nucleus

collisions) varies with different models for the VDF. We define PX to be the probability that

Exp. X observes no events, and PS the probability that Exp. S observes three events. We

calculate the probabilities assuming that WIMP-nucleon collision events follow a Poisson

process, P(N ; λ) =
(

λN/N!
)

e−λ , where N is the number of events, which equals 0 for PX

and 3 for PS, and λ is a dimensionless parameter that equals the predicted rate times the

exposure of the experiment. Note that λ changes with the WIMP model, the experimental

setup, and the VDF. In the demonstration we always fix the WIMP model and the settings

of the two experiments, and only change the VDF to see its effect.

Assuming the SHM, we obtain PX = 4.65 × 10−7 and PS = 0.224. With these assump-

tions (including the sharp energy cutoff), given the low PX , Exp. X rejects the WIMP model

at a high confidence level. So if Exp. S does indeed observe WIMP events, it implies a

strong tension between these two experiments. Note that when the SHM is assumed, this

conflict remains for any escape velocity larger than 515 km/s. However, the results change

dramatically if a different VDF model is assumed. Assuming the VDF in Equation 4.1 with

a range of parameters motivated from cosmological simulations, we calculate PX and PS

and show the results in Figure 4.9.

The uncertainties in the VDF can have distinct effects on different experiments. Fig-

ure 4.9 shows that PX is a strong function of p, while PS only mildly depends on vrms and

is insensitive to p. Because different experiments have different responses to changes in the

VDF, a given VDF can reconcile two experiments that are inconsistent with one another
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Figure 4.9: Contours show the probabilities PX (left), PS (middle), and PX × PS (right),

as functions of the VDF parameters vrms/vesc and p in the region of interest. The color

scale on each panel is the same. PX is the probability that Exp. X observes no event, and

PS is the probability that Exp. S observes 3 events. Values below 0.05 are excluded with

95% confidence. High values of p can significantly reduce the tension between the two

experiments, when compared to the SHM.

when using the SHM.

The left-most panel of Figure 4.9 shows that Exp. X, which is strongly ruled out with

the SMH, can only reject less than half of the parameter domain at a 95% confidence level

when the VDF is allowed to vary. On the other hand, Exp. S could still observe three events,

given that PS > 0.05 for almost all vrms and p within the ranges shown on Figure 4.9. The

right-most panel shows the joint probability PX × PS. In roughly one-third of the parameter

domain, the possibility of Exp. S observing three events and Exp. X observing none cannot

be excluded. To exclude this WIMP model for all possible VDFs considered within this

domain at 95% confidence level, Exp. X must lower its energy threshold to at least 5.25 keV,

if all other conditions and assumptions unchanged.

The above analysis does not include the effect of background noise, the energy cutoff, the

energy response efficiency, and the energy resolution of the mock experiments, and hence

caution should be invoked when drawing strong conclusions regarding the relation between

XENON100 and CDMS-II experiments. Since the original submission of this manuscript,

new results were presented by LUX, and for all values in the VDF parameter space we

proposed, the results from LUX and CDMS-II experiments appear to be inconsistent.

However, it clearly motivates a full self-consistent statistical analysis with a VDF of the

form Equation 4.1, because if the DM is in fact a light WIMP, a more realistic model for
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the VDF will be required to translate measurements into physical parameters of the DM

particle.

4.8 Sources of Uncertainties

When deducing the direct detection event rate from cosmological simulations, the primary

sources of uncertainty arise from: (i) finite particle sampling of the VDF, (ii) intrinsic

scatter from physical processes that affect the VDF during the halo formation process (i.e.

the halo-to-halo scatter), (iii) the quality of the fit and the validity of a smooth model, (iv)

the observational constraint on r/rs for the Milky Way, (v) the variation of the VDFs in

various directions at a fixed radius, and (vi) the impact of baryons.

An important outcome of our analysis is that at present the scatter from (iv) is signifi-

cantly larger than the corresponding scatter due to each of (i), (ii), and (iii), combined, by

more than two orders of magnitude. This is particularly important given that the observa-

tional constraint on the scale radius suggests the concentration c = rvir/rs is 10−20 (Klypin

et al., 2002; Deason et al., 2012), which corresponds to r⊙/rs ∼ 0.15−0.6 (Xue et al., 2008;

Gnedin et al., 2010; Brown et al., 2010; Busha et al., 2011a). Thus, although the distance

from the Earth to the Galactic center is well known (Ghez et al., 2008; Gillessen et al.,

2009), we find that the largest current theoretical uncertainty on the VDF is the uncertainty

in r/rs.

Our determination of the VDF represents an average over a spherical shell. In reality,

spherical asymmetry and substructures will affect the VDF and result in additional scatter

along different directions. In the Rhapsody simulations, if we divide the spherical shell

into several regions while maintaining enough particles (of the order 1000) in each analysis

region, we find that this directional scatter is comparable to the halo-to-halo scatter, and

that the combined scatter will be 10 − 40% larger than only the halo-to-halo scatter, as

illustrated in Figure 4.8. Similar scatter is also seen in the Aquarius Milky Way simulations

(Vogelsberger et al., 2009). This directional scatter will grow at larger radii because it is a

consequence of substructures, tidal effects, and streams (Helmi et al., 2003; Vogelsberger &
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White, 2011; Maciejewski et al., 2011; Purcell et al., 2012). At present, we have no robust

way to relate this scatter to direct observables, and in practice this directional scatter may be

the most important uncertainty in determining the direct detection rates once other sources

have been minimized.

We can also distinguish these sources according to their contribution to the uncertainties

in vrms or in p. We find here that vrms is largely determined by r/rs; the uncertainty in this

parameter is thus driven by observational uncertainty in r/rs for the position of the solar

system with respect to the density profile of the Milky Way. Conservative estimates of the

concentration parameter of the Milky Way imply the region of vrms used in Figure 4.9; with

more optimistic assumptions one can constrain r/rs ∈ [0.32, 0.50] (Kafle et al., 2012). This

will narrow the parameter range shown in Figure 4.9 but would not change our conclusions.

It is likely that future data on the motions of Milky Way halo stars and satellites will be able

to further constrain the density profile of our Galaxy’s halo to minimize this uncertainty.

The uncertainty in p, on the other hand, at present appears to be irreducible. The halo-

to-halo scatter in p could originate from the different intrinsic properties between halos,

but we have not yet found any significant correlations between p and physical properties

of the halo (even if found, the quantity may not be well-constrained observationally). In

principle, one could ignore the halo-to-halo scatter if we had a simulation that resembles

the Milky Way halo in every way; however, there would still be intra-halo scatter due to

variation of VDF in various angular positions at a fixed radius. We found that the intra-

halo directional scatter is not smaller than the halo-to-halo scatter. Nevertheless, future

measurements of stellar streams and the motions of satellites in the halo of the Milky Way,

combined with modeling of large numbers of halos with realistic baryonic physics, could

possibly constrain this parameter even in specific regions. Last but not least, baryons could

also possibly impact the shape of the VDF as characterized by p.

We have not yet investigated the impact of baryons; we expect that adiabatic contraction

of dark matter halos would raise the velocity but preserve the shape of the VDF, so that our

model will serve as a useful tool for these studies in the future. Baryonic effects in isolated

halos have been studied in the context of dark matter detection (Bruch et al., 2009; Ling et al.,
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2010). More recently, more high-resolution baryonic simulations have been carried out, and

it has been shown that the VDF model we proposed still fit the baryonic simulations very

well (Pillepich et al., 2014; Bozorgnia et al., 2016). However, these baryonic simulations

seem to suggest a higher value of p (> 2.5), especially when compared with the same

halo with only DM. They also show a higher value than the median value we obtained

from DM-only simulations. Those this finding is very suggestive, it is still limited to a

small sample of halos (∼ 10) as simulating a statistical sample of halos with both sufficient

resolution and realistic baryonic physics is not yet tractable.

At present it is hence important to include different VDF models or to marginalize

over some VDF parameter space, when making statistical statements about signals or

exclusions, because different VDF parameters/models that are well within the uncertainties

of our current understanding can have very different contribution to the detection rate for

different experiments. Figure 4.10 demonstrates this by showing the relative scatter (defined

as the difference between the maximum and the minimum divided by the mean value) in

g(vmin) due to the two parameters defined in Equation 4.1 for different values of vmin, where

g(vmin) is defined as

g(vmin) ≡
∫

vmin

d3
v

f ( |v + ve |)
v

(4.6)

=

2π

ve

∫

vesc

max(vmin−ve,0)

dy yL(y) f (y), (4.7)

where L(y) = min(y + ve − vmin, 2y, 2ve) and other variables are defined in the same way as

in Equation 4.5. We note that the deduction of Equation 4.7 is valid for any generic, smooth

or not, VDF model which only depends on the DM speed in the Galactic frame.

We note that Equation 4.1 does not account for all possible astrophysical uncertainties.

Non-smooth components such as dark disks and streams could results in some features

in the VDF that cannot be characterized by this model. So far, simulations including

hydrodynamics indicate that Equation 4.1 also fits to the VDF very well in the presence of

baryons, but since we have not yet fully understood all the baryonic physics involved, it is



CHAPTER 4. THE LOCAL VELOCITY DISTRIBUTION OF DARK MATTER 57

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

vmin/vesc

10-3

10-2

10-1

100

101

re
la

ti
ve

 s
ca

tt
e
r 

in
 g
(v

m
in
)

Figure 4.10: Relative scatter in g(vmin), as defined in text, as a function of vmin. The red

solid line shows the effect of vrms ∈ [0.35, 0.52] (with p = 1.5), the red dashed line shows

the effect of a reduced parameter space vrms ∈ [0.43, 0.46] (with p = 1.5), and the blue

solid line shows the effect of p ∈ [0, 3] (with vrms = 0.45). The features (dips) are due to the

non-zero speed of the Earth in the Galactic frame, and only appear in the scatter of g(vmin)

but not in the energy spectra of the detection experiments.

possible that these processes can contribute to the VDF in a non-trivial way that has not

yet been identified. Caution should thus be taken when using Equation 4.1 to represent the

full astrophysical uncertainties. Nevertheless, for low-mass WIMPs or for heavy-nucleon

detectors (i.e. high vmin, the dominant contribution to the uncertainty of VDF is the power-

law fall-off near vesc (and hence also the value of vesc). Equation 4.1 provides a simple yet

flexible functional form for this power-law tail, so in the high vmin regime, the uncertainty

in p will change the results most dramatically.

4.9 Summary

The results presented here highlight the need to significantly improve the determination of

the Milky Way scale radius. Although the concentration is now only weakly constrained with

present data (Busha et al., 2011a; Deason et al., 2012), improvements will be forthcoming

with spectroscopy and astrometry from large scale surveys (An et al., 2012). Analysis along

these lines will usher in a new era of complementarity between astronomical surveys and
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particle dark matter constraints deduced from terrestrial experiments.

In conclusion, we demonstrate that even when restricting to the cosmologically moti-

vated VDFs discussed herein, a wide range of interpretations remain possible for current

experimental results. We should emphasize again that assuming the same halo model does

not imply that different experiments are comparable, and our demonstration clearly shows

this point. Consequently, to present experimental results, especially to make statistical

statements about signals or exclusions, we recommend the following strategies:

• In the low-mass regime, use a VDF-independent method (Fox et al., 2011; Frandsen

et al., 2012, 2013) for several WIMP masses.

• Show at least two different VDF models to highlight the possible uncertainties.

Ideally one should choose two very different ones (e.g. SHM and the VDF function

in Equation 4.1 with high p).

• Choose a family of VDF model and marginalize over its parameters (v0 and p for

Equation 4.1) and the relevant astrophysical quantities (ρ0 and vesc). In the case

of Equation 4.1, here we provide the priors on its VDF parameters deduced from

DM-only cosmological simulations. Future baryonic simulations may change these

priors.
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Abstract Hierarchical structure formation implies that the number of subhalos within

a dark matter halo depends not only on halo mass, but also on the formation history of

the halo. This dependence on the formation history, which is highly correlated with halo

concentration, can account for the super-Poissonian scatter in subhalo occupation at a fixed

halo mass that has been previously measured in simulations. Here we propose a model

to predict the subhalo abundance function for individual host halos, that incorporates both

halo mass and concentration. We combine results of cosmological simulations with a new

suite of zoom-in simulations of Milky Way-mass halos to calibrate our model. We show

the model can successfully reproduce the mean and the scatter of subhalo occupation in

these simulations. The implications of this correlation between subhalo abundance and

halo concentration are further investigated. We also discuss cases in which inferences about
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halo properties can be affected if this correlation between subhalo abundance and halo

concentration is ignored; in these cases our model would give a more accurate inference.

We propose that with future deep surveys, satellite occupation in the low-mass regime can

be used to verify the existence of halo assembly bias.

5.1 Introduction

Bridging our understanding of the processes of galaxy formation and of the evolution of dark

matter halos remains one of the primary challenges in modern cosmology. While N-body

simulations provide detail about the formation and evolution of dark matter halos, it is still

observationally challenging to directly probe their properties. Nevertheless, extensive work

over the past decade has used observations of galaxy’s spatial distributions to constrain

models of the galaxy–halo connection, which reveals how galaxies form in halos (e.g.,

Berlind & Weinberg, 2002; Zehavi et al., 2011; Reddick et al., 2013). As new observations

become more precise, it is crucial to understand possible systematic uncertainty and bias in

those models.

The two main characteristics of a dark matter halo are its mass, usually calculated by

setting a spherical over-density region, and its formation history. The latter is also highly

correlated with the density profile of the halo, and hence with the concentration and with the

maximal circular velocity vmax of the halo (Wechsler et al., 2002). Halos of the same mass

but different formation history can have very different characteristics or reside in different

environments (e.g., Bullock et al., 2001; Allgood et al., 2006; Macciò et al., 2007).

The abundance of subhalos within a dark matter halo most strongly correlates with the

mass of the halo (e.g., Kravtsov et al., 2004). Nevertheless, at a fixed halo mass, the subhalo

abundance also correlates with the formation history of the halo (Zentner et al., 2005; Zhu

et al., 2006; Ishiyama et al., 2009). This correlation, despite its significance in modeling

satellite occupation, is often neglected, mostly because it does not manifest itself when

the Poisson scatter is comparable to the number of subhalos in consideration. Satellite
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occupation, or richness, is often used as a proxy of host halo mass, especially for optical ob-

servations of clusters (Rozo et al., 2009, 2010). The scatter in the mass distribution inferred

from richness can be underestimated if this correlation with concentration is neglected.

In this work, we investigate again the correlation between subhalo abundance and halo

concentration, and propose a simple model that describes this correlation. This model can

also be used to extend the subhalo abundance function for a given host halo beyond the

resolution limit, and enables us to evaluate how this correlation may manifest in a range of

observable statistics.

The simplest approach to extend the subhalo abundance function beyond the resolution

limit is to extrapolate a parametrized subhalo abundance function. The subhalo abundance

function is most commonly modeled by a power law, and the parameters of the model can

be calibrated against simulations. Studies have shown this method describes the subhalo

abundance functions in N-body simulations very well (Gao et al., 2004; Kravtsov et al.,

2004; Giocoli et al., 2008; Springel et al., 2008; Angulo et al., 2009; Boylan-Kolchin et al.,

2010; Ishiyama et al., 2013; Cautun et al., 2014b), at least for host halos in a narrow mass

range.

In order to calibrate this kind of model over a wide range of mass, usually a suite of

cosmological simulations and zoom-in simulations is needed. Zoom-in simulations, such

as the Aquarius and Phoenix simulations (Springel et al., 2008; Gao et al., 2012), are

particularly powerful for measuring subhalo abundance function at high resolution but still

with reasonable costs. However, if one wants to study the halo-to-halo scatter in the subhalo

abundance function, a fairly large sample size is required. More recently, two re-simulation

suites have been completed with tens to hundreds of simulations in specific small mass

ranges: the Rhapsody (cluster-mass halos, Wu et al., 2013a) and ELVIS simulations (Milky

Way-mass halos, Garrison-Kimmel et al., 2014).

While these fitting models can usually describe simulations fairly well, they often

capture the minimal relevant physics for the particular questions that are being addressed.

A more elaborate approach is to consider the assembly histories of dark matter halos and

the evolution of halo mass function (Yang et al., 2011). One can further consider more
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relevant subhalo dynamics when modeling subhalo abundance beyond the resolution limit

by tracking the orbits of subhalos and adding subhalos that do not appear or are disrupted

in simulations (Zentner et al., 2005; Jiang & van den Bosch, 2014; van den Bosch & Jiang,

2014). Instead of fitting the abundance function, this kind of approach considers most

physical details, but at the same time can be more difficult to constrain.

In this work, we focus on an empirical model which directly uses mass and vmax of

the host halo to predict the subhalo abundance function, and calibrate the model against

cosmological and zoom-in simulations. This model is essentially the simplest possible

model of subhalo abundance function that takes halo formation history into account. In

principle, a more sophisticated model (i.e., models that track subhalo evolution) could

produce similar results. However, our simple model provides a straightforward way to

evaluate this correlation between subhalo abundance and halo formation history, and to

evaluate its implications for various observables.

This chapter is organized as follows. In Section 5.2 we describe the simulations used in

this study. In Section 5.3 we first discuss the correlation between subhalo abundance and halo

formation history, and then we describe and calibrate the model which predicts the subhalo

abundance. In Section 5.4, we further discuss the implications of this correlation between

subhalo abundance and halo concentration. We summarize this chapter in Section 5.5.

5.2 Simulations

In this study we use a cosmological simulation c125-2048 and also present a new set of

zoom-in simulations of Milky Way-mass halos.

The c125-2048 box1 is a dark matter-only cosmological simulation run with L-Gadget

(based on Gadget-2, Springel et al., 2001; Springel, 2005). The box has 20483 particles and

a side length of 125 Mpc h−1, resulting in a particle mass of 1.8×107M⊙h−1. The softening

length used is 0.5 kpc h−1, constant in comoving length. The cosmological parameters are

Ωm = 0.286, ΩΛ = 0.714, h = 0.7, σ8 = 0.82, and ns = 0.96. The initial conditions are

1Provided by M. R. Becker
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Figure 5.1: Images of the zoom-in simulations of six Milky Way-mass halos, from our suite

of 46 halos. The concentration of these selected halos decreases from left to right.

generated by 2LPTic2 (Crocce et al., 2006) at z = 199, with the power spectrum generated

by Camb.3

The new suite of zoom-in simulations consists of 46 Milky Way-mass halos, se-

lected from the c125-1024 box (see footnote 1), which is a low-resolution version of

the c125-2048 box. The parameters and initial conditions of these two boxes are identical,

but c125-1024 contains only 10243 particles and starts at z = 99. All the selected halos

fall in the mass range Mvir = 1012.1±0.03M⊙ in the c125-1024 box. The initial conditions

of these zoom-in simulations are generated with the publicly available Music code4 (Hahn

& Abel, 2011), and are matched to the cosmological box up to the 10243 scale. The La-

grangian volume where the highest-resolution particles are placed is set by the rectangular

volume which the particles within 10Rvir of the present-day halo occupied at z = 99. The

mass of the highest-resolution particles in the zoom-in simulations is 3.0 × 105M⊙h−1.

The softening length in the highest-resolution region is 170 pc h−1 comoving. Figure 5.1

shows the images of 6 of these zoom-in simulations. Figure 5.2 compares the concentration

distribution of this sample of Milky Way-like halos with the full sample in the mass range

in the c125-2048 box. The concentration distribution of the selected sample is slightly

wider than that of all the host halos in the mass range.

In the analysis, we use Rockstar5 for halo finding and Consistent Trees6 for tree

building (Behroozi et al., 2013a,b). The halos are defined with ∆vir ≃ 99.2 for this

2http://cosmo.nyu.edu/roman/2LPT/

3http://camb.info/

4https://bitbucket.org/ohahn/music

5https://bitbucket.org/gfcstanford/rockstar

6https://bitbucket.org/pbehroozi/consistent-trees

http://cosmo.nyu.edu/roman/2LPT/
http://camb.info/
https://bitbucket.org/ohahn/music
https://bitbucket.org/gfcstanford/rockstar
https://bitbucket.org/pbehroozi/consistent-trees
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Figure 5.2: The cumulative distribution of concentration (in log scale) for the zoom-in

Milky Way halos (red) and all the halos in the same mass range in thec125-1024 box

(blue).

cosmology. Subhalos are defined as halos that are within Rvir of any other larger halo.

Halos that are not a subhalo are called host halos throughout this paper.

The particle mass of a simulation cannot be directly translated into the maximal circular

velocity, vmax, to which the simulation converges. By inspecting the velocity function,

we estimate that a conservative lower limit for the convergence of the c125-2048 box is

40 km s−1, and that of the zoom-in Milky Way simulations is 9 km s−1.

5.3 Modeling Subhalo Abundance

In this section, we present a framework to model the subhalo abundance of individual host

halos. We first discuss the correlation between subhalo abundance and host halo concen-

tration, and observe qualitatively how host halo concentration affects subhalo abundance

function. We further argue that for a given host halo, the number of subhalos is consistent

with a Poisson distribution. Then we describe both the framework and the specific param-

eterization of our model, and calibrate the model against the aforementioned simulations.

Finally we briefly discuss the universality of the subhalo abundance function.
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5.3.1 Dependence of Subhalo Abundance on Halo Concentration

N-body simulations have shown that the subhalo abundance function averaged over a

sample of host halos of a similar mass approximately follows a power law, and its form is

nearly universal for different host halo masses when scaled properly (e.g., Gao et al., 2004;

Kravtsov et al., 2004; Boylan-Kolchin et al., 2010). Hence, the simplest model of subhalo

abundance is to describe the mean number of subhalos, 〈Nsub〉, as a function of host halo

mass only. Although this simple kind of model can predict the mean number of subhalos

at a given host halo mass in simulations fairly well, it cannot explain the dependence of

subhalo abundance on host halo concentration, as shown in Zentner et al. (2005).

To see how host halo concentration affects the number of subhalos, in Figure 5.3 we

plot the mean number of halos (including hosts and subhalos) whose vmax (or vpeak) is larger

than 60 km s−1 (or 75 km s−1) as a function of host halo mass. We plot this relation for

all the host halos and for only halos with the highest and the lowest 25% of concentration

in each mass bin. We can clearly see that halos of high concentration tend to have fewer

subhalos, and also see that this is not a small effect, especially when the halo halo mass is

about 1012M⊙h−1. We note that at higher host halo mass, this difference becomes smaller

because high-mass halos have a smaller spread in concentrations than low-mass halos.

We now take a closer look at how concentration affects the subhalo abundance on a

halo-by-halo basis for host halos of the same mass. In Figure 5.4, we plot the subhalo vmax

function for all the zoom-in simulated Milky Way-mass halos. The subhalo vmax functions

in Figure 5.4 are colored according to the concentration of their respective host halos. We

observe two prominent features:

1. All these halos fall in a very narrow mass bin (smaller than 0.08 dex), yet there is

a significant halo-to-halo scatter in their subhalo vmax functions. The halo-to-halo

scatter seems to affect mostly the normalization of the subhalo vmax function, and the

trend roughly follows the concentration trend, which is indicated in colors — darker

lines sit lower.
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Figure 5.3: Number of galaxies, i.e., halos (including both hosts and subhalos) with a cut in

vmax (upper) or in vpeak (lower), as a function of host halo mass. The black solid line shows

all host halos, while the blue dashed line and the red dash–dot line show the host halos with

the lowest and the highest 25% of concentration, respectively.
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Figure 5.4: The subhalo vmax function for the 46 zoom-in simulations of the Milky Way

halos. Each line represents one host halo and is colored according to the ratio Vmax/Vvir

of the host halo. Darker color reprensents halos of higher concentration (larger Vmax/Vvir).

The gray band on the left shows the regime affected by resolution, where the abundance

function bends due to unresolved subhalos.

2. On the log–log plot, subhalo vmax functions are mostly parallel to one another, espe-

cially in the regime where Nsub > 10. This suggests the power-law index is roughly

a constant from halo to halo. Also, for each individual halo, the deviation of the

abundance function from a simple power law is much smaller than the halo-to-halo

scatter when Nsub is large.

In Wu et al. (2013a), the authors also find that the numbers of subhalos in different vmax

bins are correlated, especially when Nsub is large. This agrees with our findings here.

This correlation between the subhalo number and host halo concentration has been found

and discussed in, for example, Zentner et al. (2005), Watson et al. (2011). This correlation

can be understood by the hierarchical formation of halos: conditioned on a fixed halo mass,

halos with higher concentration form early, and subhalos in these halos are stripped longer

to a lower mass and vmax, and some could already be completely disrupted and merged with

the host. Both effects would result in a smaller number of subhalos at a fixed velocity cut.
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5.3.2 Small-scale Poisson Scatter

It is also known and shown explicitly by Boylan-Kolchin et al. (2010) that the scatter in the

number of subhalos is super-Poissonian when the mean number is much larger than 1, The

authors argue this super-Poissonian scatter is a sum of a Poisson scatter and an intrinsic

scatter (see also related discussion in Busha et al., 2011b).

Here we further claim that the Poisson scatter should exist on a single-halo basis. That

is, given a host halo and its environment, the small-scale variation would result in a Poisson

scatter in its subhalo abundance. On the other hand, the intrinsic scatter (or more precisely

called the halo-to-halo scatter) is then in principle all possible scatter among host halos.

To verify that the subhalo abundance function is always subject to this small-scale

Poisson scatter when we consider a single host halo, i.e.,

(Nsub | host) ∼ Pois(〈Nsub | host〉), (5.1)

we run 13 zoom-in simulations of a single halo, with different random seeds for the small-

scale modes. All these 13 realizations have the same simulation setup as described above,

and also the same large-scale initial conditions down to the scale of k ∼ 16.4 h Mpc−1,

which is equivalent to 20483 particles in the box. This scale roughly corresponds to a host

halo mass of 2.5 × 1010M⊙h−1, or host Vmax ∼ 50 km s−1.

Figure 5.5 shows σ/σPois, where σ is standard deviation and σPois =
√
〈N〉, i.e., the

square-rooted ratio of the variance to the mean of the number of subhalos, in bins of

vmax of the subhalos. The variance and the mean are calculated over the 13 halos of the

same large-scale initial conditions. If the number of subhalos in a given vmax bin follows

a Poisson distribution, this ratio would be 1. In Figure 5.5, one can see that at higher

values of vmax, this ratio is less than 1, which is expected due to the constrained large-scale

modes. At smaller vmax, this ratio approaches 1. Although the sample size is small, the

typical number of subhalos above vmax = 10 km s−1 is already more than 200. Hence, if

the super-Poissonian scatter truly exists at the scales within a single host halo, one would

expect the ratio to be larger than 1 at small vmax, scaling similar to the green dashed line,
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Figure 5.5: The blue line shows σ/σPois in bins of vmax, calculated over the 13 halos of

the same large-scale initial conditions. The red bands show the 1-σ (dark) and 2-σ (light)

confidence interval if N follows a Poisson distribution and given that there are 13 samples.

The green dashed line shows the super-Poissonion scatter (Boylan-Kolchin et al., 2010,

Figure 8) for comparison.

which includes the super-Poissonian scatter. This test suggests that, for a given host halo

(and its environment), the scatter of its subhalo abundance is consistent with Poisson scatter.

The super-Poissonian scatter in a fixed host halo mass cannot solely come from small-scale

modes, and should be a result of the scatter in the host halo properties at that fixed mass,

combined with dependence of the subhalo abundance on these properties.

5.3.3 Framework of the Model

Now we present the framework of our subhalo abundance model. We first outline our model

that describes the number of subhalo for a given host halo, and the parameters of the model.

Then we further present how to relate these model parameters to the properties of the host

halos. In this fashion, we can clearly separate the Poisson scatter in each individual host

halo from the halo-to-halo scatter.

Mathematically, we can model the subhalo abundance function as a counting process.

Here the counting process we consider is counting over the proxy variable (i.e., vmax or

Mvir), not over the physical time. Although the mathematical term we used is process, we
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are not considering the physical evolution of the subhalo merging process, but only the

number of subhalos at a given time.

Let N (v) denote the number of subhalos whose vmax (or other proxy, which for simplicity

we call v) is greater than or equal to v. Note that N (v) is always an integer and has the

following properties:

N (v1) ≥ N (v2), if v1 ≤ v2, (5.2a)

N (v) = 0, if v ≥ Vcut, (5.2b)

where Vcut is a scale above which there are no subhalos. The value of Vcut depends on the

host halo.

We further argue that this counting process is an inhomogeneous Poisson process. That

is, the number of subhalos in the interval [v1, v2) follows a Poisson distribution and is

independent of the counts in any other disjoint intervals. We can write

[N (v1) − N (v2)] ∼ Pois(λ(v1, v2)), (5.3)

and

λ(v1, v2) =

(

v1

V0

)n

−
(

min(v2,Vcut)

V0

)n

, (5.4)

where V0 is a positive parameter and n is a negative parameter, and both could depend on

the host halo. Note that the parameters V0 and Vcut should have the unit of the proxy. For

example is the proxy is vmax, they should have the unit of velocity. If one uses Mvir instead

as the proxy, they should have the unit of mass.

The expected number of subhalos whose vmax ≥ v is then simply

〈N (v)〉 =
(

v

V0

)n

−
(

Vcut

V0

)n

. (5.5)

We note that by introducing the Vcut scale, we do not need an additional exponential

cutoff in the model. The average subhalo abundance function naturally drops off at the high
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end, and resembles a exponential cutoff. There are two strengths of this approach. First, the

parameter Vcut has a clear physical meaning; no subhalo can have vmax (or any proxy in use)

that is larger than Vcut. Second, when implementing this model, one does not need to worry

about the chance of having a subhalo with a very large vmax. The chance of having such an

outlier is remote but still finite when using an exponential cutoff, while in our model the

probability of a subhalo with vmax ≥ Vcut is zero by construction.

With our framework, there is a straightforward algorithm to create a set of values which

represents the set of the subhalo vmax values of a particular host halo, given a known

threshold vthres. This algorithm helps to generate a mock catalog of subhalos beyond the

resolution limit. To generate this set, one first draws one random number k from a Poisson

distribution of mean N (vthres) according to Equation 5.5, with vthres being the minimal

possible vmax value in the desired set. Then one draws k random numbers X1, . . . , Xk from

a uniform distributionU (0, 1). The desired set would then be { f (X1), . . . , f (Xk )}, where

f (x) := V0

[
N (vthres) · x +

(

Vcut

V0

)n]1/n

(5.6)

is the inverse function of Equation 5.5.

5.3.4 Calibrating the Model

So far we have introduced three parameters that are associated with the host halo: Vcut, the

largest scale a subhalo could have; V0, the overall normalization of the subhalo abundance

function; and n, the power-law index (log–log slope) of the subhalo abundance function. In

principle, the values of these three parameters in different host halos do not need to follow

any universal relation, and can depend on any host halo property. Nevertheless, since

the dark matter halos in dissipationless simulations do have many universal properties, it

is plausible that some universal relations relating these three parameters to the host halo

properties would already make a good approximation.

For conventional models that describe 〈N〉 as a function of host halo mass only, one can



CHAPTER 5. THE ABUNDANCE OF DARK SUBSTRUCTURES 72

parameterize the variables in Equation 5.4 as follows

V0 = a Vvir, (5.7a)

Vcut = b Vvir, (5.7b)

n = n0, (5.7c)

where Vvir refer to the circular velocity at Rvir of the host halo, a, b, and n0 are all constants

that do not depend on any host halo properties.

However, we already know that the parameterization above cannot account for the

dependence on halo concentration. Here we present a specific parameterization that replaces

a and b in Equation 5.7 with functions of (Vmax/Vvir). Particularly, we set

a := a0

(

Vmax

Vvir

)α

, (5.8a)

b := b0

(

Vmax

Vvir

) β

, (5.8b)

where a0, b0, α, and β are constant. Here Vvir and Vmax refer to the host halo, and their ratio

can be viewed as a proxy of the halo concentration or formation time. When α = β = 0,

this falls back to the conventional model which has no concentration dependence.

With this particular parametrization which incorporates host halo concentration, we

can calibrate the model against simulations. With the c125-2048 box, we find the values

listed in Table 5.1 provide decent descriptions to both the mean and the scatter of subhalo

abundance across a wide range of mass. We also find the values for two different redshifts

(z = 1 and 3) and for using vpeak as the proxy. Note that if one use vpeak as the proxy

instead of vmax, the dependence on concentration is slightly weaker (see the values of α in

Table 5.1).

Figure 5.6 compares simulations with the prediction from this model with the parameters

listed in Table 5.1. In the simulations, we bin host halos according to their mass, in a wide

range of masses (1012–1014M⊙h−1), and measure the mean and variance of number of
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Proxy Redshift a0 α b0 β n0

vmax 0 0.49 −0.9 1.4 −2.5 −2.90

vmax 1 0.85 −1.0 1.4 −1.0 −2.80

vmax 3 1.70 −1.0 1.4 −0.8 −2.60

vpeak 0 0.67 −0.8 1.4 −2.5 −2.75

Table 5.1: Parameter Values. See Equations 5.7 and 5.8 for the definitions of these

parameters. See text of Section 5.3.4 for details.

subhalos whose vmax > 50 km s−1 in each bin. For each host halo we also predict the

number of subhalos with the model, and measure the binned mean and variance in the same

way as with simulations. Then we plot the relative difference between the model prediction

and the simulation as a function of host halo mass in Figure 5.6. The relative difference is

defined as δX := Xmodel/Xsim − 1, where X could be the mean (upper panels) or variance

(lower panels) of number of subhalos in each mass bin.

As Figure 5.6 shows, our model can reproduce the mean and variance of the number

of subhalos in all mass bins very well. We also plot the model with no concentration

dependence (α = β = 0) for comparison. While this kind of model can reproduce the

mean value, it fails to reproduce the variance. Especially for the predicted variance, our

model successfully recovers the scatter in high-mass bins, where a model that depends

only on mass or the Poisson scatter cannot. For halos of the highest and the lowest 25%

concentration in each mass bin, our model also fits the simulation reasonably well.

In this work, we do not focus on refining these relations to obtain the best mock subhalo

abundance function. In fact, the essence of this work is to show that with our simple model

one can already reproduce most important features in the subhalo abundance function.

There are two main reasons for not pursuing the best-fit model here.

First of all, the parameterization proposed above is not unique. For example, one can

substitute the ratio Vmax/Vvir that appears in V0 with some generic function of concentration

f (c), or put in a mass/velocity dependency in n. The parameters can also involve other

host properties, or even be stochastic (i.e., involving random variables). Also, while

the parameters provide insight on the dependence on concentration, they do not bear clear
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Figure 5.6: Relative difference between the model prediction and simulation of mean (upper

row) and of variance (lower row) of the number of subhalos, in bins of host halo mass.

The middle and the right columns show the lowest and the highest 25% of concentration,

respectively. Blue solid line shows the model we present here. The green dashed line is a

model that depends only on host halo mass (i.e., α = β = 0). The red dotted line shows the

Poisson scatter given the mean value in each bin.

physical meaning and the parameterization choice is somewhat arbitrary.

Second, although simulations do provide constraints on the model parameters, these

parameters are very degenerate and the Poisson scatter of individual halos makes it very

difficult to tightly constrain the best-fit parameters. Multiple sets of values could give equally

good fits to simulations, and the choice of the objective function (statistics to minimize)

would also affect the best-fit values. The reported value in Table 5.1 are obtained by fitting

only the mean and scatter of subhalo abundance in the full c128-2048 box in bins of host

halo mass (i.e. to minimize the two leftmost panels in Figure 5.6), yet these values also

provide decent fits to the individual abundance function as shown in Figure 5.7.

As a result, here we do not give meaningful error bars on the parameter values, but

rather simply demonstrate the model’s capability of reproducing the subhalo abundance

functions. Until the statistics of high-resolution halos improves significantly, we recommend

optimizing the fit every time for each specific use case.
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5.3.5 The Power-law Index

So far we have been fixing the power-law index (log–log slope) to be a constant that does

not change with halo properties when calibrating our model against the c125-2048 box.

This assumption is consistent with previous studies (e.g., Gao et al., 2012). However, due

to the resolution limit, low-mass host halos in a cosmological box do not constrain the index

as well as the high-mass halos because the number of resolved subhalos in low-mass host

halos is smaller and subject to larger relative Poisson scatter. As a result, the value of n0 in

Table 5.1 is mostly set by those high-mass halos in the box.

To investigate whether the power-law index is indeed a constant, we check if the model

would work for both the zoom-in Milky Way halos and the high-mass halos in the box. In

Figure 5.7 we compare the subhalo abundance function in simulations with that predicted

by the model. We discover that a constant index which can fit the subhalo abundance

function very well for cluster-size halos fails to fit the abundance function for zoom-in

Milky Way-size halos. The log–log slope of the abundance function is steeper for Milky

Way-size halos than for cluster-size halos.

We emphasize again that this mass trend is difficult to detect in a cosmological box

due to limited dynamical range. As shown in the upper right panel of Figure 5.7, at

vmax = 50 km s−1, both the number of subhalos and the scatter are still consistent with the

prediction from a constant slope.

Recall that the power-law index also changes with redshift, as shown in Table 5.1: at

higher redshift, the log–log slope of the abundance function is shallower. The relation

between the power-law index, host halo mass, and redshift is also discussed in Zentner et al.

(2005), Watson et al. (2011). An intriguing question is then whether this redshift trend and

the aforementioned mass trend in the index have the same physical origin.

Specifically, we find that we can fit the subhalo vmax functions of the zoom-in Milky

Way halos and of the cosmological box simultaneously (see the lower panels of Figure 5.7)

if we replace the constant index by this relation,

n = −3.05 ν(M, z)−0.1, (5.9)
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Figure 5.7: Subhalo abundance function in simulations (red) and predicted by the model

(blue). The shade of colors represents the concentration (Vmax/Vvir) of the halo: the darker

the more concentrated. The two columns show two different host halo masses. The upper

row uses the model with constant index (n = n0), while the lower row uses Equation 5.9.

The model with constant index cannot reproduce the subhalo abundance function for zoom-

in Milky Way halos (upper left panel). The gray band on the left shows the regime affected

by resolution.
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where

ν(M, z) =
δc

σ(M)D(z)
,

δc ≈ 1.686 is the critical overdensity, D(z) is the linear growth rate, and σ(M) is the

squared root of the mass variance (at z = 0) with a top-hat filter of mass M .

Figure 5.8 shows the relation of Equation 5.9 and compares it with the constant values

of n0 in Table 5.1. Although this is not a proof of the validity of Equation 5.9, it indeed

demonstrates the possibility that the mass and redshift trends in the power-law index have

the same physical origin. To robustly verify this connection between n and ν(M, z) would

require several sets of zoom-in simulations of halos of different masses, preferably also

with different cosmologies. This is beyond the scope of this work, but worth exploring as

simulation suites expand.

5.4 Implications and Discussion

So far we have been focusing on subhalo abundance function and its dependence on host

halo concentration. In this section, we discuss its observational implications. While we
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cannot observe dark matter subhalos directly, we can certainly count the satellite galaxies

that sit in those subhalos. Hence, the subhalo occupation can be viewed as a proxy of the

satellite occupation, subject to the effect of baryons on the subhalo abundance function (e.g.,

Cui et al., 2012; Vogelsberger et al., 2014). Here we ignore baryonic effects and directly

translate the subhalo occupation above a certain velocity cut to the satellite abundance at a

luminosity threshold by specifying a galaxy–subhalo connection.

The simplest relation between subhalos and satellite galaxies is a one-to-one relation,

Nsub(> v) = Nsat(> L(v)), (5.10)

where L(v) specifies the correspondence between velocity cut and luminosity threshold

by matching their abundance functions. This is commonly known as abundance matching

(e.g., Kravtsov et al., 2004; Vale & Ostriker, 2004), which has been shown to work fairly

well for predicting measurements such as the correlation functions (e.g., Conroy et al., 2006;

Reddick et al., 2013). With this abundance matching scheme, the model we introduced in

Section 5.3 directly becomes P(Nsat |M, c), and it implies that satellite occupation depends

on both host halo mass and concentration.

A different, but also widely used approach is to use Halo Occupation Distribution (HOD).

Instead of specifying the galaxy–subhalo connection, standard HOD directly models the

probability distribution of satellite occupation at a luminosity threshold as a function of

host halo mass (e.g., Peacock & Smith, 2000; Seljak, 2000; Scoccimarro et al., 2001;

Berlind & Weinberg, 2002; Cooray & Sheth, 2002). That is, it specifies P(Nsat > L |M),

and this distribution of satellite occupation does not depend on host halo concentration.

Nevertheless, one can also generalize the HOD to include the concentration dependence

and to specify P(Nsat |M, c). Yet most studies constraining HOD assume the sole dependence

on mass.

Abundance matching and HOD also differ from each other in how the positions of

the satellite galaxies are assigned. However, in the context of satellite occupation, the

only relevant difference is whether or not the satellite occupation depends on host halo
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concentration (at a given host halo mass). It is clear that subhalo occupation does depend

on host halo concentration, but the stochastic process of galaxy formation could diminish

this dependence. Nevertheless, it is also possible that Equation 5.10 is only perturbed,

and the concentration dependence of subhalo abundance still survives and results in the

concentration dependence of satellite abundance.

In this section, we assume the simple relation of Equation 5.10, and investigate the

implications of the correlation between concentration and satellite occupation. We com-

pare the different inferences between these two models (with and without concentration

dependence) when using satellite occupation as a proxy of halo mass. Then we look at the

the possible signal of halo assembly bias with satellite occupation.

5.4.1 Satellite Occupation as a Proxy of Halo Mass

Satellite occupation, especially in the cluster-mass regime, has been used to probe the host

halo mass (Old et al., 2014, 2015; Oguri & Lin, 2015; Rozo et al., 2015). Conventionally,

this is done within the standard HOD framework, which ignores the dependence of satellite

occupation on host halo concentration. Here we would like to investigate the effects of

ignoring this dependence. We consider the two subhalo models, as presented in Figure 5.6:

one only depends on halo mass like the standard HOD, and the other incorporates the

dependence on concentration as introduced in Section 5.3. We then take the host halos

from simulations and populate them with subhalos according to these two models. This

procedure is repeated multiple times to obtain enough statistics and to smooth the Poisson

noise.

Figure 5.9 shows the joint distribution of the host halo mass and concentration at a fixed

satellite occupation, Nsat(vmax > 75 km/s) = 100, in the context of cluster-size halos. We

see significant differences between the inferences from the two subhalo models, with or

without the dependence on concentration. Although the mean value of inferred mass does

not differ more than 1 σ, the inferred distribution of mass is much wider in the case with the

dependence on concentration, and also includes many more high-concentration high-mass
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Figure 5.9: The joint and marginal distributions of logarithmic concentration (y-axis) and

logarithmic mass (x-axis) of all the host halos which have exactly 100 subhalos whose

vmax > 75 km s−1. The upper and lower parts demonstrate the inference from the two

models: (1) with only mass dependence (upper) and (2) with both mass and concentration

dependence (lower). Dotted lines in the side panels show the same marginal distribution for

the other model just for convenient comparison by eyes. Both models are the same as used

in Figure 5.6. The number in the marginal distribution of logarithmic mass shows σ value.
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Figure 5.10: Same as Figure 5.9, but showing the distributions of log vhost
peak
/v1st sub

peak
(y-axis)

and logarithmic mass (x-axis). The magenta dashed line in the lowest panel shows the mass

distribution when selecting only halos whose “gap” is larger than 2.5.

or low-concentration low-mass halos.

The difference seen in Figure 5.9 would be especially prominent when the number of

subhalos in consideration is large compared to the Poisson noise, i.e., Nsat ≫
√

Nsat. Thus

when estimating the mass of galaxy clusters with richness or satellite occupation, one should

consider including halo concentration in the model, especially in cases when not only the

mean estimator but also the resulting inference is relevant.

To refine the mass estimator for halos of a fixed occupation, we then need some inde-

pendent observable to probe halo concentration. We discuss three possible choices here.

1. The radial distribution of satellites. If satellites trace the density profile of the
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host halo, then by the radial distribution of satellites could provide independent

information on host halo concentration. By comparing the number of satellites in

different projected radial bins, one may be able to select those more concentrated

halos in a fixed-richness sample.

2. The luminosity of the central galaxy. For example, the abundance matching scheme

of Equation 5.10 matches luminosity with vmax or vpeak instead of Mvir, and results

in the dependence of luminosity on concentration. Hence a further selection on

the luminosity of central galaxy may provide a tighter mass distribution (see also

Reyes et al., 2008). R. M. Reddick et al. (2016, in preparation) also finds a negative

correlation between the central luminosity and richness at a fixed halo mass, which

agrees with trends proposed here.

3. The magnitude gap. In addition to the concentration dependence of luminosity, the

magnitude gap between the central galaxy and the brightest satellite galaxy can further

depend on the host halo concentration. For instance, as suggested by our model, the

parameter Vcut itself has a concentration dependence, regardless how luminosity is

matched to halo properties. It has also been shown in simulations that the gap is

correlated with the formation history of the host halo, and hence with concentration

(D’Onghia et al., 2005; Zentner et al., 2005; Dariush et al., 2010; Deason et al., 2013;

Wu et al., 2013a).

It has been suggested that selecting on magnitude gap can refine the mass distribution

of a fixed-richness sample (More, 2012; Hearin et al., 2013b; Lu et al., 2015). Here we

revisit this method by considering the correlation between occupation (richness) and halo

concentration. Figure 5.10 shows the distributions of magnitude gap and halo mass, for a

sample of a fixed occupation (100 subhalos whose vmax > 75 km s−1, same as in Figure 5.9),

for the two subhalo models. Here the magnitude gap is approximated by log vhost
peak
/v1st sub

peak
,

and can be translated into the actual magnitude map by abundance matching. As we

already learned, the distribution of halo mass is much wider (lower panel) than that from

the assumption that satellite occupation depends on host halo mass only (upper panel).
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Nevertheless, if we apply a further selection on the magnitude gap, selecting only halos

with larger gaps, we can obtain a sample of halos whose mass distribution is much closer

to that in the upper panel.

This may provide a viable method to obtain a sample of halos in a narrower halo mass

bin, especially in the high-mass regime. It has been shown that selecting on magnitude gap

can indeed narrow the velocity dispersion distribution of the sample (Hearin et al., 2013b).

As for halo mass, it remains to be seen how strong these effects are in specific observed

samples, but we expect that the relative impact of the central galaxy luminosity and the

magnitude gap could be tested in the near future using either lensing or X-ray measurements

of large samples of optically selected clusters with fixed galaxy number.

5.4.2 Satellites of the Milky Way

In the context of Milky Way-mass halos, the number of subhalos in consideration is much

smaller, and the Poisson noise of individual halos would dominate and diminish the differ-

ence between these two subhalo models. Nevertheless, in Figure 5.9 we observe a positive

correlation between the host halo mass and concentration for this sample of a fixed satellite

occupation. This positive correlation differs from the commonly known concentration–

mass relation (e.g., Navarro et al., 1997), and can also been seen when the number of

subhalos in consideration is small.

Figure 5.11 shows the joint distribution of the host halo mass and concentration at another

fixed satellite occupation, Nsat(vmax > 30 km/s) = 4. In this case, the marginal distributions

of mass or of concentration barely differ between the two subhalo models. Nevertheless,

the predicted correlation between mass and concentration is fairly different in the two

cases. Without the dependence on concentration, a sample of a fixed satellite occupation

basically corresponds to a sample of halos in a mass bin, and the correlation between halo

concentration and mass inherits the usual, negative, concentration–mass relation of host

halos. On the other hand, with the dependence on concentration, the inferred correlation

between concentration and mass becomes positive.
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Figure 5.11: Same as Figure 5.9, but showing of all the host halos which have exactly four

subhalos whose vmax > 30 km s−1.
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This discrepancy again highlights the need to consider this dependence of satellite

occupation on concentration when inferring the mass or other properties of the Milky Way

halo from satellites (e.g., Busha et al., 2011a; Rodríguez-Puebla et al., 2013b,a; Cautun

et al., 2014a). If the inference is not derived completely from simulations but with the

help of a subhalo model which does not account for dependence on concentration, such as

the conventional HOD, then one might need to consider the effect discussed above when

interpreting the results, particularly the degenerate correlation between concentration and

mass. We also note that recent constraint on the mass and concentration of the Milky

Way from dynamical tracers have a negatively correlated degeneracy (Wang et al., 2015),

while occupation-based constraints will have the opposite degeneracy if the concentration

dependence is properly accounted for, as demonstrated here.

This dependence on concentration also suggests that one should take the concentration

of the Milky Way halo into account when investigating the tension between the population

of subhalos in N-body simulations and that of the observed Milky Way satellite galaxies

(e.g., Kauffmann et al., 1993; Klypin et al., 1999b; Moore et al., 1999; Bullock, 2010;

Boylan-Kolchin et al., 2011; Purcell & Zentner, 2012). While a Milky Way-like halo is

conventionally defined by selecting on halo mass only, it is clear that the concentration of the

Milky Way halo could potentially change the statistical significance of the aforementioned

tension. In a follow-up paper, we further investigate these implications of this dependence

on concentration for the Milky Way and its population of satellites (Y.-Y. Mao et al. 2016,

in preparation).

5.4.3 Observing Halo Assembly Bias

Given that satellite occupation is a direct observable that is correlated with halo concentra-

tion, it may provide a way to observationally detect the halo assembly bias. Halo assembly

bias has been shown to exist in simulations; particularly it is found that host halos of different
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formation histories or concentrations cluster differently,

bh(M, c) , bh(M), (5.11)

where bh is the halo bias function (Gao et al., 2005a; Wechsler et al., 2006; Gao & White,

2007). The question we want to address here is whether we can measure

bh(M, Nsat) , bh(M), (5.12)

and if so, whether it implies the existence of halo assembly bias as in Equation 5.11.

Instead of calculating the bias function directly, we use the mark correlation function

(MCF) to probe the bias. The MCF is defined as

MCF(m, r) =
∑

(i, j)∈Sr

mim j

m̄2
, (5.13)

where Sr = {(i, j) :
���xi − x j

��� ∈ [r, r + dr]}, and m̄ is the mean of mi over i. The MCF of a

specific mark m shows whether the averaged value of this mark for halos in pairs is higher

or lower than the averaged value of the whole sample. For each radial bin Sr , we find all

pairs of halos whose separation falls in that bin and measure the mark of those halos. To

accommodate the possible large range of the mark values, we use the ranks of the mark

instead of the actual value for m, normalized by the total number of different values. If

Equation 5.12 holds, we expect either a positive or a negative excess in the MCF of Nsat.

In Wechsler et al. (2006), the authors found a positive excess in the MCF of Nsat in the

regime above M∗, but were not able to find a similar signal below M∗. To interpret these

results, recall that for halos below the typical collapse mass M∗, high-concentrated halos

are more clustered; for halos above M∗, high-concentrated halos are less clustered. In the

regime above M∗, halos in pairs are on averaged more massive but less concentrated, and

both characters give a higher Nsat. As a result, the excess in the MCF of Nsat comes from a

mixed effect of both mass and concentration, and hence it is easy to detect this excess but
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Figure 5.12: The MCFs of concentration (left) and of satellite occupation (vmax > 60 km s−1)

(right), for host halos whose mass is within 1011 and 1011.4 M⊙h−1. The red shaded area

shows the range of MCF consistent with no correlation within 2-σ.

would be difficult to distinguish whether this signal is really coming from halo assembly

bias.

On the other hand, in the regime below M∗, the dependence of the clustering strength on

halo concentration switches sign, but the dependence of Nsat on concentration remains the

same: host halos that form earlier still have fewer subhalos at a fixed mass. As a result, in

the regime below M∗, halos in pairs are on averaged more massive and more concentrated,

and these two characters have opposite effects on Nsat. If a negative excess in the MCF

of Nsat is detected, this signal must come from the contribution of concentration, or halo

assembly bias. However, in Wechsler et al. (2006), there were not enough subhalos resolved

in the simulation for the correlation between subhalo abundance and halo concentration to

manifest itself, and hence this signal was not detected.

We first calculate the MCFs of halo concentration and of satellite occupation by selecting

all resolved subhalos whose vmax > 60 km s−1 in our cosmological box, for host halos in a

mass range, 1011–1011.4 M⊙h−1, and plot the results in Figure 5.12. The result we found

here is consistent with previous studies: significant bias in concentration, but not in satellite

occupation. This result, however, does not directly answer whether or not the satellite

occupation can probe assembly bias, because the variance in Nsat can be large. As we
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argued in Section 5.3,

(Nsat |M, c) ∼ Pois(〈Nsat |M, c〉). (5.14)

For host halos in this mass range, the number of resolved subhalos is typically less than

10, even for a high-resolution cosmological box (e.g., with a particle mass of 107M⊙h−1).

Despite the correlation between subhalo abundance and host halo concentration, the scatter

in subhalo abundance can wash out this correlation, especially for host halos with few

subhalos, and render the bias in subhalo occupation unobservable.

To verify our conjuncture that Equation 5.12 would hold for low-mass halos if the typical

value of Nsat is large (> 10), one would need a cosmological box large enough to measure

clustering statistics and with a particle mass of ∼ 105M⊙h−1, but this kind of simulation

is still beyond the reach of current computational capabilities. Zoom-in simulations can

easily provide a much better resolution, but those do not provide large-scale statistics.

With our model, we can predict the expected number of subhalos (satellites) to a lower

velocity cut (higher number density), while preserving the dependence on host halo mass

and concentration. We then can quantify at what velocity cut (number density) we can start

to observe the bias in subhalo occupation in low-mass host halos.

Figure 5.13 shows the model-predicted MCF of subhalo occupation for four different

thresholds, in the same mass range of the host halos, 1011–1011.4 M⊙h−1. The host halos are

selected from the cosmological box, and for each host halo we re-populate its subhalos with

our model. At vmax = 60 km s−1 the result can be directly compared with the right panel

of Figure 5.12. Since our model by construction correlates subhalo abundance and halo

concentration (Vmax/Vvir), the lack of signal in the MCF at vmax = 60 km s−1 results from

the Poisson scatter. Moving the threshold down to vmax = 40 km s−1 we start to see a clear

negative excess in the MCF. As we discussed above, this negative excess must originate

from the fact that paired halos are on averaged more concentrated, and hence have fewer

subhalos.

This negative excess in the MCF would manifest in the projected correlation function

by lowering the one-halo term if the low-threshold data is available. With upcoming deep
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number density (and corresponding halo vmax) for two example surveys with different sky

coverage (given in square degrees).
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spectroscopic surveys, such as DESI (Levi et al., 2013), data with low thresholds will be

accessible in the near future. Figure 5.14 demonstrates the number of galaxies in a volume-

limited sample from two exemplary surveys, assuming the luminosity function reported in

Blanton et al. (2003, 2005a). Both surveys have a detection limit of mr = 19.5, and their

sky coverages are 290 and 14,000 square degrees, roughly representing the GAMA Survey7

(Driver et al., 2011) and the DESI Bright Galaxy Survey,8 respectively. With the latter

survey, a volume-limited sample of a few hundred thousand galaxies with mr < 19.5 down

to the number density at 0.4 (Mpc/h)−3 would be accessible, and this sample would be

sufficient for a precise measurement of the projected correlation function.

We note that although we assume the simple relation of Equation 5.10 in this discussion,

this signal has the advantage that it is less sensitive to the details of the galaxy–halo relation

because it only utilizes the number of satellites above a certain luminosity threshold, but not

other properties (e.g., color) of the satellites. Even if galaxy formation introduces additional

scatter in the satellite occupation, as long as this scatter is smaller than the halo-to-halo

scatter due to halo concentration, this signal would survive in the projected correlation

function.

5.5 Summary

In this work, we model the subhalo abundance on the basis of individual halos. The

framework of our model is based on the fact that the scatter in Nsub for an individual halo

is consistent with Poisson scatter, and the additional halo-to-halo scatter in Nsub for halos

in a mass bin primarily affects only the overall normalization of the subhalo function. For

a large sample of halos, we find that the subhalo velocity functions of a sample of halos in

a mass range are nearly parallel to one another. As a result, we can model this halo-to-halo

scatter by introducing additional parameters to the model that specify the normalization as

a function of additional halo properties.

7http://www.gama-survey.org/

8http://desi.lbl.gov/cdr/

http://www.gama-survey.org/
http://desi.lbl.gov/cdr/
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We hence present a model which predicts the subhalo abundance based on two proper-

ties: Vvir (equivalent to mass) and Vmax/Vvir (roughly equivalent to concentration) of the host

halos. This model successfully reproduces the mean and scatter in the subhalo abundance

in a given host halo mass bin. It can then be used to predict the number of subhalos for

thresholds that are lower than the resolution limit of the simulation. It also enables one to

conveniently sample a sequence of vmax values that represent the subhalos of a given host

halo.

This model further provides plain insight into the dependence of subhalo abundance on

halo concentration. We found that the halo concentration affects the subhalo abundance

function mainly through the overall normalization (V0 in our parameterization), but also

through the “cutoff” scale (Vcut). A constant power-law index (n) fits the cosmological

simulations well; however, we also find that an index that depends on halo mass would fit

the zoom-in Milky Way halos better. This dependence on mass may have the same physical

origin as the dependence on redshift.

With this model, we then investigate the observable implications of the correlation

between the subhalo abundance and halo concentration. We find that when using sub-

halo or satellite occupation as a proxy of halo mass, one might need to consider using a

concentration-dependent model, such as the one presented here, to obtain a more accurate

inference. We show that ignoring this dependence on concentration could result in a biased

mass inference and an incorrect joint distribution of mass and concentration of the sample.

Although these biases are small, they may become important as other sources of systematic

errors decrease.

We further propose that satellite occupation can be used to probe halo assembly bias

if we can detect all satellites which reside in subhalos down to ∼ 40 km s−1. Because in

the low-mass regime, high-concentration halos are more clustered but have fewer subhalos,

this signal can probe the halo assembly bias in concentration and is not degenerate with

the contribution from halo mass. This method is also less sensitive to the detailed galaxy

formation processes because it only depends on the total count.



Chapter 6

The Flexibility in the Galaxy–Halo

Connection

An earlier version of this chapter was published as a preprint:

• B. V. Lehmann, Y.-Y. Mao, M. R. Becker, S. W. Skillman, R. H. Wechsler, “The

Concentration Dependence of the Galaxy–Halo Connection,” arXiv:1510.05651v1

[astro-ph.CO] (2015)

The chapter presented here has been revised to incorporate new results (e.g., Section 6.5.3)

and also many improvements to the presentation of the manuscript.

Abstract Empirical methods for connecting galaxies to their dark matter halos have

become essential in interpreting measurements of the spatial statistics of galaxies. In

this work, we present a novel approach for parameterizing the degree of concentration

dependence in the abundance matching method. This new parameterization provides a

smooth interpolation between two commonly used matching proxies: the peak halo mass

and the peak halo maximal circular velocity. This parameterization controls the amount of

dependence of galaxy luminosity on halo concentration at a fixed halo mass. Effectively

this interpolation scheme enable abundance matching models to have adjustable assembly

bias in the resulting galaxy catalogs. With the new 400 Mpc h−1 DarkSky Simulation,
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whose larger volume provides lower sample variance, we further show that low-redshift

two-point clustering and satellite fraction measurements from SDSS can already provide

a joint constraint on this concentration dependence and the scatter within the abundance

matching framework. We also find that the choice of using peak values for abundance

matching proxy is favored by the current clustering observations.

6.1 Introduction

Understanding the connection between galaxies and their dark matter halos is at the heart

of modern cosmology and astrophysics. Galaxies are our primary tool to probe the spatial

distribution of dark matter and its evolution, both of which are being mapped at increasingly

high precision with cosmological surveys. However, because galaxies are biased tracers

of this distribution, taking full advantage of these measurements requires accurate and

flexible models for modeling the connection between galaxies and their dark matter halos.

In addition, understanding the statistical mapping between galaxies and halos provides key

insights into the physical processes responsible for galaxy formation.

The effects of assembly bias in particular remain a significant uncertainty in modeling

the galaxy–halo connection (Zentner et al., 2014). In dark matter-only cosmological simu-

lations, it has been shown that halo concentration, along with other properties of the halos

and their assembly histories, can have an impact on halo clustering, generally known as

halo assembly bias (e.g., Wechsler et al., 2001; Gao et al., 2005b; Wechsler et al., 2006;

Croton et al., 2007). Despite a series of studies on the observational evidence for assembly

bias (Yang et al., 2006; Tinker et al., 2012; Lin et al., 2016; Miyatake et al., 2015; More

et al., 2016), the extent to which halo assembly bias results in observable bias in the galaxy

population remains highly uncertain.

Thus it is critical to characterize the assembly bias inherited through the galaxy–halo

connection. For hydrodynamic simulations and semi-analytic models (SAMs), galaxy

assembly bias is an end product rather than a controlled parameter, as these two methods
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attempt to incorporate the microscopic physics of galaxy formation. (For the latest large-

scale hydrodynamic simulations, see e.g., Vogelsberger et al. 2014; Chaves-Montero et al.

2015; for SAMs, see e.g., Bower et al. 2006; Croton et al. 2006; Somerville et al. 2008.)

In principle, one can characterize directly the assembly bias for each set of parameter

values used in these methods. Practically, hydrodynamic simulations are computationally

expensive, even when used to produce a handful of realizations. With SAMs, while it is

possible to generate many different realizations, the large number of parameters makes it

challenging (though not impossible, see e.g., Lu et al., 2014; Henriques et al., 2015) to

explore and statistically constrain the full parameter space. Also, neither hydrodynamic

simulations nor SAMs have been shown to reproduce the detailed clustering properties of

observed galaxies at the accuracy with which they have been measured, partly due to our

incomplete understanding of star formation and feedback mechanisms.

On the other hand, the widely-used, conventional halo occupation distribution (HOD)

models prescribe the probability that a halo of a given mass M hosts N galaxies above

a given luminosity threshold, P(N |M), commonly with a parameterized functional form

(Peacock & Smith, 2000; Seljak, 2000; Scoccimarro et al., 2001; Berlind & Weinberg, 2002;

Cooray & Sheth, 2002; Bullock et al., 2002). In this fashion, the HOD approach erases

much of the halo assembly bias, as it explicitly assumes that the galaxy population in a halo

depends only on its mass. Recently, some HOD models incorporate dependence on other

parameters (e.g., Paranjape et al., 2015; Hearin et al., 2016). In particular, Hearin et al.

(2016) (submitted shortly after this work) parameterize the assembly bias in an HOD-like

model, and the approach is closely related to this work.

In this work, we characterize the assembly bias in another commonly used empirical

model of the galaxy–halo connection: the abundance matching technique (or subhalo

abundance matching, SHAM). Abundance matching is a fairly generic scheme for linking

galaxies with dark matter halos, without a full description of baryonic physics (Kravtsov

et al., 2004; Vale & Ostriker, 2004, 2006; Conroy et al., 2006). The basic assumption

of abundance matching is that galaxies live in halos, and one particular galaxy property

(typically luminosity or stellar mass) is approximately monotonically related to a halo
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property (typically virial mass, Mvir, or maximum circular velocity, vmax), by matching

their “abundance” (i.e., matching at fixed number densities).

A major strength of abundance matching is the fact that it uses the full predictive power

of the cosmological model, including the predictions for the number and properties of

substructures and their relation to their host halos. Certain abundance matching models

have been shown to reproduce the observed two-point correlation function with surprising

accuracy, with only a very small number of parameters (Conroy et al., 2006; Trujillo-Gomez

et al., 2011; Reddick et al., 2013), as well as three-point statistics, galaxy-galaxy lensing,

and the Tully–Fisher relation (e.g., Marín et al., 2008; Tasitsiomi et al., 2004; Desmond &

Wechsler, 2015). Similar models have also been shown to reproduce a wide range of other

statistics of the galaxy distribution (Hearin et al., 2013a, 2014).

The abundance matching parameters that have typically been considered are the scat-

ter in the galaxy–halo relation, usually in terms of the standard deviation of the galaxy

luminosities or stellar masses at a fixed value of the halo property, and the choice of halo

property. Commonly used halo properties (or proxies) include the halo mass (Mvir or vari-

ants), the maximum circular velocity vmax, and these two properties evaluated at different

epochs. For example, Reddick et al. (2013) perform a systematic search for a best-fit model

to spatial clustering and the conditional luminosity function and find that using the peak

value of vmax throughout all timesteps (i.e., vpeak) as the proxy with a scatter of ∼ 0.2 dex

gives the best predictions. Other studies obtain similar results (e.g., Chaves-Montero et al.,

2015; Guo et al., 2016).

Although different proxies have different physical meanings attached to them, abundance

matching is only sensitive to the relative rankings of halos when they are ranked by the

proxy in consideration. Hence, the seemingly distinct choices of using proxies based on

vmax or Mvir are merely different ways to rank the halos. For instance, ranking halos by vmax

is similar to ranking by Mvir, except that more concentrated halos are given a higher rank,

since at a fixed Mvir, more concentrated halos have larger vmax (Klypin et al., 2011). As a

result, this choice influences the dependence of galaxy luminosity or stellar mass on halo

concentration at a given halo mass. Our current understanding of galaxy formation physics
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is not yet sophisticated enough to quantify this concentration dependence, and hence it is

natural to parametrize this dependence on concentration by continuously interpolating the

rankings that different proxies give. Furthermore, such a parametrization also provides a

natural way to control how halo assembly bias propagates to galaxy assembly bias in an

observed population.

This work is the first to present results on the clustering statistics using abundance

matching with a continuous parameter controlling the matching proxy, and hence the amount

of concentration dependence and assembly bias. This work is also the first to compare

the observed two-point clustering with a cosmological box of (400 Mpc h−1)3 at a mass

resolution of better than ∼ 108 M⊙h−1 (from the “Dark Sky” Simulations). The large

volume of this box yields much tighter constraints on abundance matching parameters,

which provide further insight into the amount of galaxy assembly bias present.

Note that this work differs from the recent development on the two-parameter abundance

matching technique (commonly known as conditional abundance matching, CAM), which

attempts to match two halo proxies with two galaxy properties (Hearin et al., 2014; Kulier

& Ostriker, 2015). The model we propose in this work, by contrast, still matches one halo

proxy with one galaxy property, yet the halo proxy in consideration is a linear combination

of two different halo properties. The proposed technique to combine distinct halo properties

into one matching proxy can still apply to other variants of abundance matching, including

CAM.

This chapter is organized as follows. In Section 6.2 we describe the simulations and

the observed catalogs used in this study, and also describe the procedure for generating

mock galaxy catalogs and the covariance. In Section 6.3 we present this novel model of

concentration-dependent abundance matching and explore how the new parameter affects

the galaxy clustering, the satellite fraction, and the assembly bias. In Section 6.4 we

compare the galaxy clustering signals from this model and from observations to constrain

the model parameters. We then discuss some detailed aspects of our results in Section 6.5.

In particular, we test whether the choice of using peak values for matching proxy is a

physical choice. We summarize this chapter in Section 6.6.
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Box name Side length Particle h ΩM ns σ8 Particle mass Code

[ Mpc h−1] number [ M⊙h−1]

c250-2048 250 20483 0.7 0.286 0.96 0.82 1.44 × 108 L-Gadget

Bolshoi 250 20483 0.7 0.27 0.95 0.82 1.35 × 108 Art

BolshoiP 250 20483 0.678 0.295 0.968 0.823 1.49 × 108 Art

MDPL 1000 38403 0.678 0.307 0.96 0.823 1.51 × 109 L-Gadget

DarkSky-250 250 25603 0.688 0.295 0.968 0.834 7.63 × 107 2Hot

DarkSky-400 400 40963 0.688 0.295 0.968 0.834 7.63 × 107 2Hot

DarkSky-Gpc 1000 102403 0.688 0.295 0.968 0.834 4.88 × 109 2Hot

Table 6.1: Cosmological and simulation parameters for boxes used in this study. See

Chapter 2 for more details. For DarkSky-Gpc, the halo catalogs and merger trees are

constructed with 1/32 of the total particle number. The particle mass for DarkSky-Gpc in

this table is the effective mass of the downsampled particles.

6.2 Simulations and Galaxy Catalogs

6.2.1 Simulations

This study uses several cosmological boxes that are described in Chapter 2. We list the

boxes used in this study in Table 6.1. The c250-2048 box comes from the “Chinchilla”

suite, run with the L-Gadget code, a variant of Gadget (Springel, 2005). The “Chinchilla”

suite spans a wide range of box sizes and resolutions with the same cosmology. Bolshoi

and BolshoiP have the same box size and resolution as c250-2048, but have different

cosmologies and were run with the ART N-body code (Klypin et al., 2011). MDPL is part

of the “MultiDark” suite (Klypin et al., 2014), and was also run with Gadget. The three

DarkSky boxes of different sizes are smaller boxes that accompany the 8 Gpc h−1 box from

the “Dark Sky” Simulations (Skillman et al., 2014), run with the 2HOT code (Warren,

2013). Here we refer to these boxes as DarkSky-250 (ds14_j_2560), DarkSky-400

(ds14_i_4096), and DarkSky-Gpc (ds14_b). The particles used to build the halo

catalogs and merger trees for the DarkSky-Gpc box were down-sampled (1/32 particles)

from a high-resolution box run with 102403 particles.

For each of these boxes, we use the halo catalog generated by the Rockstar halo finder

(Behroozi et al., 2013a) and the Consistent Trees merger tree builder (Behroozi et al.,

2013b). We use the virial overdensity (∆vir) as our halo mass definition (Bryan & Norman,
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1998).

6.2.2 Mock Galaxy Catalogs

The mock galaxy catalogs used in this work are generated with the abundance matching

technique. We follow the procedure of Behroozi et al. (2010) and Reddick et al. (2013)

in order to implement abundance matching with scatter in luminosity at fixed halo proxy.

First we deconvolve the scatter from the luminosity function. We then abundance match

luminosity with the halo proxy, producing a catalog of galaxy luminosities. Finally, we

replace the scatter by adding a log-normal scatter to the catalog.

We make measurements of the projected two-point correlation function, wp(rp), from

the mock catalogs as follows. We use the plane-parallel approximation in redshift-

space and integrate along one of the axes (i.e., the line-of-sight), with integration depth

2zmax = 80 Mpc h−1. Redshift-space distortions are applied along the integration axis

before integration. We account for the periodic boundary conditions of the cosmological

boxes when computing the projected correlation function in the directions perpendicular to

the integration axis.

6.2.3 SDSS Galaxy Catalogs

In this study, we use the luminosity function (for abundance matching) and the two-point

clustering measurements (for comparison) extracted by Reddick et al. (2013). These mea-

surements were made on the volume-limited samples from the New York University Value

Added Galaxy Catalog (NYU-VAGC) (Blanton et al., 2005b), based on Data Release 7 from

the Sloan Digital Sky Survey (Padmanabhan et al., 2008; Abazajian et al., 2009). We note

that these measurements are quite consistent with the measurements of Zehavi et al. (2011),

but here a consistent sample was used to determine both the luminosity function and clus-

tering measurements. We refer the readers to Section 2 and Appendix C of Reddick et al.

(2013) for details on these measurements. In this work, we focus primarily on constrain-

ing our models with galaxies of luminosity ∼ L∗ and brighter in order to be conservative
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about the resolution requirements for the complete halo and subhalo samples needed for

abundance matching, but we present results from dimmer samples in Section 6.4.4.

6.2.4 Calculating the Covariance

In Section 6.4, when we compare the SDSS data to the predicted wp(rp) obtained from the

mock catalogs with a χ2 statistic, we use a covariance matrix composed of three parts. First,

we estimate the sample variance in the predictions of abundance matching due to the finite

volume of the N-body simulations used in this work. We employ a jackknife procedure in

order to estimate the contribution to the covariance matrix from this effect. Each N-body

box is divided into smaller square patches with a side length of 25 Mpc h−1. We then omit

one patch at a time in the jackknifing process (i.e., omitting everything along the line of sight

in the square patches), and compute the jackknife covariance. The second contribution to

the covariance comes from the scatter in abundance matching. Since we apply log-normal

random scatter in luminosity directly to the catalogs, multiple catalogs generated with the

same abundance matching parameters produce slightly different predictions for wp(rp).

Thus, from each set of abundance matching parameters, we generate 40 catalogs, compute

wp(rp) for each, and calculate the covariance on wp(rp) due to this random variation.

Finally, we estimate the effects of sample variance in the SDSS measurements through

jackknifing the SDSS dataset. These three contributions to the covariance matrix are added

together to compute the χ2 statistic.

We note that the estimate of the covariance of the mock wp(rp) has a direct impact

on the goodness of fit, and hence on the derived constraints on the abundance matching

parameters. Nevertheless, Norberg et al. (2009) find that the jackknife method does not

typically underestimate the covariance.
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Figure 6.1: Relation between the two halo properties vvir and vmax (both evaluated at ampeak)

and abundance matching rankings. Each point represents a host halo (blue) or a subhalo

(black). The total number of halos is down-sampled for illustration purposes. Each arrow

shows the direction of decreasing abundance matching rank when a particular value of α is

used (from light to dark: vα=0 = vvir, vα=0.5, and vα=1 = vmax). The figure indicates how the

choice of proxy impacts both the fraction of subhalos that are included in the sample, as well

as the concentration of the included halos, which will impact their clustering properties.

6.3 Abundance Matching with Adjustable Concentration

Dependence

6.3.1 Interpolating between Abundance Matching Proxies

Here we present an interpolation scheme which generalize the conventional abundance

matching model to allow continuously adjustable concentration dependence. To build

such a scheme, we adopt the parameterization used in Mao et al. (2015), defining a new
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generalized proxy to be used in abundance matching:

vα := vvir

(

vmax

vvir

)α

, (6.1)

where vmax is the maximal circular velocity and

vvir :=

(

GMvir

Rvir

)1/2

=

(

4π

3
∆virρcritG

3

)1/6

M
1/3
vir
, (6.2)

with ∆vir being the virial overdensity and ρcrit the critical density.

This generalized proxy captures the continuously-varying dependence on concentration

through the parameter α because the ratio vmax/vvir can be viewed as a proxy for halo

concentration. In principle, this ratio can be replaced by f (c) with a general function f .

Nevertheless, using this ratio facilitates comparisons with other proxies that have been used

in the literature. In particular, when α = 0, the dependence on concentration is turned off,

as vα=0 = vvir ∝ M
1/3
vir

, and when α = 1, this proxy reduces to the maximal circular velocity

vα=1 = vmax.

Figure 6.1 illustrates how the value of α affects the ranking. In this log–log plot, an

arrow represents the direction of descending rank when the halos are ranked by vα, and

the slope of the arrow is α/(1 − α). Hence, different values of α effectively rank the

halos with different slopes. As a result, at a given number density, different values of α

select out different halos. In particular, a larger value of α selects out more low-mass,

high-concentration halos, and also more subhalos.

We note that the specific choice of the parameterization of the concentration dependence

should not impact our results significantly, as the essence of our model is to vary how much

we weight the concentration of halos when ranking halos by their masses in the abundance

matching procedure. However, one could instead weight other halo properties, such as

halo formation time, in order to study the dependence on other properties in abundance

matching. In this work, we only study the dependence on concentration. Nevertheless,

we expect qualitatively similar results would also apply to other proxies that are highly
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correlated with concentration.

6.3.2 Evaluating the Proxy at the Epoch of Peak Mass

So far we have only discussed how to model the concentration dependence in our new proxy.

In abundance matching, the choice of epoch at which the ranking proxy is evaluated also

significantly impacts the results (Reddick et al., 2013; Chaves-Montero et al., 2015). For

example, if the proxy is evaluated at the present day, subhalos are usually ranked lower due

to stripping, and the resulting mock catalog is less clustered. Conroy et al. (2006) argues

that the time at which a subhalo enters the virial radius of its parent halo is a natural time

at which to set proxies. Reddick et al. (2013) further uses the peak values of those proxies

(e.g., Mpeak and vpeak) throughout history. In this work, we limit our discussion to a single

choice of epoch. We evaluate the value of vα for each halo at the epoch when Mvir reaches

its peak value, and let v̂α denote this quantity. In follow-up work, we will explore this choice

of proxy epoch in detail.

Since v̂α is evaluated at the time of peak mass for each halo, ranking with v̂α=0 and v̂α=1

is equivalent to ranking with Mpeak and vmax at Mpeak respectively. (However, the former is

only approximately true in our case because ∆vir in Equation 6.2 has a weak dependence on

the scale factor, and for different halos, Mpeak occurs at different scale factors.) Our choice

of evaluating the abundance matching proxy at the scale when Mpeak rather than when vpeak

occurs was motivated by the finding that halos at the largest circular velocities may be out of

dynamical equilibrium (Ludlow et al., 2012); e.g. Behroozi et al. (2014) showed that vpeak

is commonly set by major mergers, and hence may not represent the physical time at which

the subhalo started to be stripped. Evaluating the proxy at the scale factor of Mpeak then

avoids this unphysical epoch probed by vpeak, and is similar to using the relaxation criterion

proposed by Chaves-Montero et al. (2015). Nevertheless, for the purpose of abundance

matching, the difference between matching to vpeak and to vmax(ampeak) is minimal, as the

rank orders are very similar when halos are ranked by these two proxies. As a result, the

clustering signals with these two proxies are also similar.
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Figure 6.2: Dependence of galaxy clustering on the abundance matching proxy. Top row

shows wp(rp) for three thresholds (Mr < −20.5, −21, and −21.5; from left to right) in the

DarkSky-400 box. Lines of different colors shows different values of α (−10, 0, 0.5, 1, 10;

from light to dark). Larger values of α correspond to stronger concentration dependence.

The gray band shows the SDSS measurements and the errors combined with mock errors.

Bottom row shows the relative difference in wp(rp) with respect to v̂α=0.5.

6.3.3 Impact of α on Clustering

We first demonstrate the impact of α, as defined in Section 6.3.1, on clustering. Figure 6.2

shows the wide range of clustering predictions that can be produced by varying α. We

find that changing α can significantly change the clustering, and that a higher value of α

produces a more clustered catalog.

There are two effects that contribute to this result. Firstly, at a given halo mass, on

average, subhalos have higher concentrations than host halos. Hence, when a higher value

of α is used, subhalos are more likely to make it through the threshold cut, resulting in

a more clustered sample. Effectively, increasing α increases the difference between the

luminosity–halo mass relation of host halos and that of subhalos. This effect impacts both

the one- and two-halo terms, and also boosts the satellite fraction.

Secondly, when we use a higher value of α, high-concentration halos are ranked higher
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Figure 6.3: Dependence of galaxy clustering on the abundance matching scatter and proxy.

Relative difference in wp(rp) between the DarkSky-400 galaxy catalog and the SDSS

measurements, for three thresholds (Mr < −20.5, −21, −21.5; from left to right), three

values of scatter (0, 0.15, 0.25; from top to bottom), and three values of α (0, 0.5, 1; from

light to dark). Gray bands indicate combined SDSS and mock errors.
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in the catalog and are more likely to make it through the threshold cut. Since in this mass

regime, high-concentration halos are more clustered due to halo assembly bias (Wechsler

et al., 2006), the resulting catalog is also more clustered. This effect impacts mostly the

two-halo term, and is less significant in brighter samples. In the sections below, we discuss

these two effects in detail.

It is known that increasing the scatter in abundance matching would decrease clustering

strength because it brings in lower-mass halos (e.g., Reddick et al., 2013). Thus, there exists

a degeneracy between α and the scatter. This degeneracy is demonstrated in Figure 6.3,

which shows the correlation function for several values of α and scatter. The clustering

strength decreases with decreasing α and also with increasing scatter. Nevertheless, the

scatter has a stronger effect on the brighter samples, while α has a stronger effect on the

fainter samples. This implies that samples of different thresholds are likely to give different

constraints on α and scatter, and might be able to break the degeneracy between α and

scatter.

6.3.4 Impact of α on Satellite Fraction

Here, we define the satellite fraction to be the fraction of satellites in bins of luminosity.

In this study, we did not apply a group finder on the mock galaxies, so galaxies labeled as

satellites are exactly the same as those labeled as subhalos in the initial halo catalog. That

is, the satellite fraction we measured here is actually the fraction of galaxies assigned to

subhalos in each luminosity bin. A subhalo is defined as any halo whose center falls within

another larger halo. We refer to a halo that is not a subhalo as a host halo.

Figure 6.4 shows the satellite fraction as a function of luminosity for several values of

α. As expected, increasing α increases the satellite fraction, since subhalos are on average

more concentrated than host halos of the same mass; hence subhalos are ranked higher

when α is larger. This is especially true at the faint end as the ratio vmax/vvir differs more

between subhalos and host halos for low-mass halos.

Applying scatter to abundance matching increases the satellite fraction at the bright
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Figure 6.4: Satellite fraction as a function of luminosity, for three values of α (0, 0.5, 1.0;

from light to dark), computed with zero scatter (solid) and 0.15-dex scatter (dashed), using

the DarkSky-400 box. Error bars show the jackknifing error. Circles show the satellite

fraction measured from SDSS groups (Reddick et al., 2013), and the gray band indicates

the sum of the error from SDSS data and the estimated systematic error introduced by the

group finder (see text of Section 6.3.4 for detail).
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Figure 6.5: Luminosity–halo mass relation for several values of α (0, 0.5, 1.0; from light

to dark). Lines with different styles show the relation for all halos (solid), host halos only

(dashed), and subhalos (dotted) only. The leftmost top panel shows that the value of α has

very little effect on the relation that includes all halos. The right three panels show that

the difference between the relations of central halos and subhalos increases with α. The

bottom row shows the relative difference with respect to the relation for all halos (and for

the leftmost bottom row, with respect to the relation for α = 0).
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end because more satellites in the fainter luminosity bins are scattered up to the brighter

luminosity bins. Applying scatter does not significantly change the satellite fraction for

samples fainter than Mr = −21.

Another way to demonstrate this change in the satellite fraction is to look at the difference

between the luminosity–halo mass relation of host halos (central galaxies) and that of

subhalos (satellite galaxies). Previous studies have explored the case in which the stellar

mass–halo mass relations of central and satellite galaxies differ from each other (e.g.,

Neistein et al., 2011; Rodríguez-Puebla et al., 2012, 2013a). Here, using the α parameter

we can evaluate this difference quantitatively. Figure 6.5 shows the luminosity–halo mass

(L − Mh) relations for all halos, only host halos, and only subhalos, for different values of

α. We see that changing α changes the overall L − Mh relations very little, but changes

the difference between the halo and subhalo L − Mh relation. Specifically, increasing α

effectively more strongly differentiates the L − Mh relations for halos and subhalos, while

maintaining the overall L − Mh relation.

In Figure 6.4, we also compare our results with the observed satellite fraction. The

observed satellite fraction measurements are taken from Reddick et al. (2013), who used a

group finder (Tinker et al., 2011) applied to the same sample used to make the clustering

measurements. Since we did not apply the same group finding procedure on our mock

catalogs, this comparison is subject to the systematic errors introduced by the group finder.

The gray band shown in Figure 6.4 is the sum of the error from SDSS data and the estimated

systematic error introduced by the group finder; the latter was estimated by taking the one-

sided difference between the satellite fractions before and after the catalog was processed

with a group finder, shown in the left panel of Figure 21 in Reddick et al. (2013). We see

that these systematic errors increase significantly at the bright end, due to the fact that the

group finder does not always select the right galaxy as the central. However, both scatter

and group finding have much a smaller impact at luminosities dimmer than Mr = −21,

which is also where α has a larger impact. Up to the systematic errors, the observed satellite

fraction agrees well with the model prediction when α ∼ 0.5. We show in Section 6.4.2

that this is also consistent with the inference from galaxy clustering.
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Figure 6.6: Relative difference in wp(rp) between shuffled and unshuffled catalogs for three

thresholds (Mr < −20.5, −21, −21.5; from left to right) and three values of α (-1, 0, 0.5,

1; from light to dark), for the DarkSky-400 box. No scatter is applied in the abundance

matching procedure. The gray band shows the combined error from the observed data and

the mock catalogs. Assembly bias increases the large-scale clustering in our best-fit model

by ∼ 8% for the dimmest sample shown here.

6.3.5 Impact of α on Assembly Bias

In our model, α also controls how much halo assembly bias can manifest in the mock

catalogs as galaxy assembly bias. To quantify this, we need to separate the effects of the

satellite fraction and halo assembly bias. To that end, we shuffle our mock catalogs to

remove halo assembly bias, but leaving the satellite fraction intact. Here we adopt the same

shuffling procedure as described by Zentner et al. (2014). We divide the catalogs into bins

of halo masses, with a bin width of 0.1 dex. For each bin, we first shuffle the central galaxies,

and then independently shuffle the satellites (while retaining their relative positions to the

central galaxies). This procedure preserves the halo occupation and the satellite fraction in

the catalogs by construction.

Figure 6.6 shows the relative difference in wp(rp) between the shuffled and unshuffled

catalogs. Since the shuffling procedure preserves the satellite fraction, the difference seen

in this figure comes from halo assembly bias alone. We see that the difference is larger

for fainter samples and for larger values of α. This behavior is expected: halo assembly

bias impacts the fainter samples more strongly, and catalogs with a larger value of α have

stronger halo assembly bias and are more clustered. We note here that although models with
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more concentration dependence have stronger assembly bias, there is still some assembly

bias in the models with α = 0, because the relationship between Mvir and Mpeak has some

dependence on formation time and/or halo concentration.

Figure 6.6 also shows the scale dependence of assembly bias for each value of α. We

find that halo assembly bias impacts both the two-halo term and the transition regime around

1–2 Mpc h−1, in agreement with the findings of Sunayama et al. (2016). At the smallest

scales, the original catalog and the shuffled catalog exhibit similar clustering, since the

clustering at small scales is dominated by the change in satellite fraction. This implies that

our v̂α model is distinct from merely introducing halo assembly bias to a non-biased catalog

(e.g., modeling the halo occupation distribution). In particular, varying α simultaneously

changes the amount of halo assembly bias and the satellite fraction.

6.4 Constraining the Concentration-dependent Model

6.4.1 Jointly Constraining α and Scatter

In the previous section we present how this α parameter, which controls the concentration

dependence in abundance matching, affects the clustering signals in the mock catalog.

Given this finding, here we investigate whether the current galaxy clustering measurement

can already provide constraints on the this α parameter. Since the effect of the α parameter

on the clustering signals and that of the scatter in abundance matching are degenerate, here

we present the joint constraints on α and scatter using the SDSS galaxy catalog.

We compute the χ2 statistic to evaluate the goodness-of-fit for a set of values in the

(α, scatter) parameter space for each threshold. We also compute the χ2 statistic for several

different cosmological boxes to determine whether the constraint on (α, scatter) varies

significantly between boxes using different cosmologies and codes.

The χ2 statistic is computed as

χ2
=

∑

i

∑

j

d(r i
p)d(r

j
p)C−1(r i

p, r
j
p), (6.3)
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where d(rp) := w
mock
p (rp)−wSDSS

p (rp), C(r i
p, r

j
p) is the covariance, and i, j denote the indices

of the bins of rp. Note that here C already includes the covariance from the SDSS data, as

well as the covariance from jackknifing the mock catalog and from multiple realizations of

abundance matching.

Figure 6.7 shows the constraints from the three DarkSky boxes and the MDPL box for

four different luminosity thresholds separately. Note that the two 1 Gpc h−1 boxes do not

have the resolution to generate a complete sample below roughly Mr = −21, and hence we

omit the lowest luminosity panels for these boxes in Figure 6.7. We will discuss detailed

resolution requirements for abundance matching in upcoming work.

We see several interesting features here. First, the degeneracy between α and scatter is

most visible in the samples of Mr < −21.5 and −21. In both cases we see the degeneracy

as expected: a larger α requires a larger scatter to balance the additional clustering since

more highly concentrated halos are included.

Second, as expected, larger boxes provides stronger constraints, indicating that the

constraining power of most previous studies, which have almost exclusively used boxes of

∼ 250 Mpc h−1 on a side, have been dominated by sample variance. This is especially true

for the brighter samples, as the numbers of galaxies in those samples are small. While

the sample of Mr < −22 from DarkSky-250 and -400 provide little constraint on α and

scatter, the samples from the 1 Gpc h−1 boxes give clear constraints on scatter, and exclude

zero scatter in this range of α at p < 0.001.

Third, on the faint end, we obtain a much stronger constraint on α. The luminosity

dependence of halo bias is significantly weaker in this regime, and thus these galaxies

do not provide strong constraints on scatter. However, with DarkSky-400, this sample

excludes both α = 0 and 1 at p < 0.001.

6.4.2 Combining Constraints from Different Thresholds

If we assume that α and scatter are constant with respect to luminosity, then the samples at

different thresholds can be combined to produce an overall constraint on α and scatter. Here,
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Figure 6.7: Constraints on α and scatter in each of the three DarkSky boxes and the MDPL

box, for four thresholds (Mr < −20.5, −21, −21.5, −22; from left to right). The contours,

from dark to light blue, show the one-side p-value of 0.05, 0.01, and 0.001 for the χ2 fit.
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Figure 6.8: The combined joint constraint on α and scatter from four thresholds (Mr <

−20.5, −21, −21.5, −22.0) for DarkSky-400. The contours, from dark to light blue, show

the one-side p-value of 0.05, 0.01, and 0.001 for the χ2 fit. Crosshairs show best-fit point

(α = 0.57+0.20
−0.27

; scatter = 0.17+0.03
−0.05

dex).
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Figure 6.9: Comparison between our best-fit model and SDSS data. Top row shows the best-

fit wp(rp) for DarkSky-400 (blue line; α = 0.57; scatter = 0.17 dex) and MDPL (green line;

α = 0.49; scatter= 0.16 dex). The χ2 values are shown for DarkSky-400 at each threshold.

Circles show SDSS wp(rp). Four columns represent four thresholds (Mr < −20.5, −21,

−21.5, −22; from left to right). To compare with previous work, the red line shows v̂1.0

model with best-fit scatter of 0.22 dex in DarkSky-400 (χ2/dof = 8.9, 2.5, 1.9, 1.8 for the

four thresholds respectively). MDPL is omitted from the Mr < −20.5 column, which is not

used in fit computation for that box. Bottom row shows the relative difference with respect

to SDSS data. Gray bands indicate combined SDSS and mock errors: the outer region

indicates combined errors for DarkSky-400, while the inner region indicates combined

errors for MDPL.
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we also assume that the constraints from samples at different thresholds are independent.

This assumption is only approximately correct for two reasons. First, although the sample

at each threshold is dominated by the fainter galaxies, it does include galaxies from higher

thresholds. Second, for a given simulation, the clustering signals at different thresholds are

also correlated. Here we assume the independence for simplicity, and because the effects

are both small, we do not expect that they will significantly impact our conclusions.

The combined constraint from four thresholds (Mr < −20.5, −21, −21.5, −22) for

DarkSky-400 is shown in Figure 6.8. This combined constraint excludes both α = 0

(resembling Mpeak) and 1 (resembling vpeak) at p < 0.001, and also excludes zero scatter at

p < 0.001. The best-fit values for DarkSky-400 are α = 0.57+0.20
−0.27

and scatter = 0.17+0.03
−0.05

dex. This value of α is consistent with the value that best matches the observed satellite

fraction shown in Section 6.3.4.

The wp(rp) corresponding to this best-fit model is shown in Figure 6.9. We find that,

with this new v̂α proxy, we can reproduce the wp(rp) observed in the SDSS data at all

four luminosity thresholds very closely, with a fixed value of α and scatter. In the same

figure, the best-fit wp(rp) for MDPL is also shown. The large size of the MDPL box results

in much smaller errors on the mock wp(rp), yet we still obtain excellent agreement with

observations. We note that the agreement is good down to the small scales measured by

Zehavi et al. (2011).

6.4.3 Consistency between Different Simulations

We repeat our study on the clustering with the other simulations listed in Table 6.1 to

test the robustness of our results and to investigate their cosmology dependence. We use

four 250 Mpc h−1 boxes with approximately the same mass resolution but with different

cosmologies, three different N-body codes, and different initial conditions.

Figure 6.10 shows the p > 0.05 regions in (α, scatter) from these four boxes, and also

DarkSky-400 for reference. Despite the difference between these boxes, the p = 0.05

contours agree with one another very well, and the best-fit points are all in proximity in this
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Figure 6.10: Contours of p-value = 0.05 for the combined samples (Mr < −20.5, −21,

−21.5), for different simulations: DarkSky-250 (blue), c250-2048 (magenta), Bolshoi

(cyan), BolshoiP (green), and DarkSky-400 (black dashed). Crosshairs and the dot show

best-fit points for the corresponding boxes.
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Figure 6.11: Comparison between our best-fit model and SDSS data, for dimmer thresholds

than are used in the fit. Top row shows wp(rp) for DarkSky-400 with α = 0.57 and scatter

= 0.17 dex. The χ2 values are also shown for this model at each threshold. These values are

the same as those used in Figure 6.9. Circles show SDSS wp(rp). Four columns represent

four dimmer thresholds (Mr < −18.5, −19, −19.5, −20; from left to right). To compare

with previous work, the red line shows v̂1.0 model with scatter 0.22 dex in DarkSky-400.

Bottom row shows the relative difference with respect to SDSS data. Gray bands indicate

combined SDSS and mock errors.

parameter space. This result demonstrates the robustness of our analysis. It also suggests

that, within the range of cosmologies tested here (all modern ΛCDM cosmologies but with

a range of values of e.g., ΩM and σ8), the cosmology dependence is weak enough that it

cannot be distinguished in these 250 Mpc h−1 boxes.

6.4.4 Application to Dimmer Galaxy Samples

Since abundance matching models are based on the halo catalogs of N-body simulations,

they suffer from the same limitations due to finite resolution. Particularly, for dimmer

samples, abundance matching models tend to underpredict small-scale clustering (Guo

et al., 2016). To avoid possible impact of the limited resolution and to obtain unbiased

constraints on α and scatter, we only used galaxy samples brighter than Mr = −20.5 in the
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main results. We demonstrate that α can already be constrained even with only the bright

samples.

Nevertheless, the model presented here can also provide good fits to dimmer galaxy

samples given its flexibility. Even with the best-fit values of α and scatter used in Figure 6.9

(i.e., solely from the bright samples), we can obtain reasonably good matches to the clus-

tering of dimmer samples, as shown in Figure 6.11. We note that for these four dimmer

samples with Mr > −20.5, observed galaxies are more clustered at small scales and less

so at large scales when compared to the model prediction with these particular parameter

values. This hints at larger values of both α and scatter, and hence at the mass dependence

of α and scatter. However, this hint could be a result of the bias due to resolution limit,

and simulations of higher resolution are needed to obtain a definitive conclusion on this

possible mass dependence of α and scatter.

6.5 Discussion

6.5.1 Consistency with Previous Work

We note that Reddick et al. (2013) are able to get reasonable fits to the clustering measure-

ments by abundance matching to vpeak. However, the amount of scatter required in the vpeak

case is large (0.22 dex) compared to other constraints in the literature (e.g., More et al.,

2009). Additionally, this vpeak model requires the exclusion of subhalos whose current mass

is less than some fraction of the peak mass (using the parameter µcut := Mvir,now/Mpeak),

and we do not find this to be required with v̂α. Furthermore, the vpeak model did not provide

a good fit to the brightest samples when matching to luminosity (see the top left panel of

Figure 26 of Reddick et al., 2013), nor did it fit the satellite fraction without excluding halos

of low Mvir,now/Mpeak (i.e., with µcut = 0 in Reddick et al. 2013, Figure 22).

The analysis in our present paper uses a larger box with about four times the volume,

and thus provides more constraining power. In Figure 6.10, one can see that given the

degeneracy between scatter and α, the smaller Bolshoi box does allow for a region with
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α = 1 (corresponding to vpeak) with higher scatter (& 0.2). This region is consistent with the

best-fit result of Reddick et al. (2013), but is ruled out here with the larger DarkSky-400

box.

6.5.2 The Abundance Matching Framework

The core idea of abundance matching is two key assumptions: (1) all galaxies live in dark

matter density peaks, and (2) galaxy properties are well correlated with halo properties.

However, abundance matching should not be viewed as a “parameter-free” model, but

instead, can be viewed as a flexible description of the galaxy–halo connection whose

parameters can be constrained by observations.

By introducing this new interpolation scheme with the parameter α, we demonstrate

that the abundance matching technique is more flexible than the version that was originally

proposed. This interpolation scheme also provides a novel interpretation of the matching

proxy. Traditionally, when we compare the performance of two abundance matching proxies,

we tend to overemphasize the physical meaning of the proxy that performs better. With this

α parameter, we demonstrate that, under the framework of abundance matching, there is

indeed nothing special about the maximal circular velocity. It is only that observations of

clustering statistics favor more concentration dependence than using simply halo mass as a

proxy.

On a different note, the α parameter affects the galaxy clustering in the resulting catalog

by changing the satellite fraction and the amount of assembly bias. However, we also note

that, within the framework of abundance matching, these two effects (assembly bias and

satellite fraction) are linked in the specific way when one changes the parameter α. This link

is physically justified if all galaxies live in resolved halos and if galaxy and halo properties

can be effectively rank matched with one of the proxies considered. On the contrary, the

model in Hearin et al. (2016) do not assume this link, and the two effects can be adjusted

separately. Nevertheless, with the clustering statistics we tested here, there is no evidence

that this link, implicitly assumed when one uses abundance matching, needs to be broken.
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This linked feature also enables us to constrain α with only the two-halo clustering. In

fact, when we exclude small scales in our analysis, we obtain a consistent, though weaker,

constraint on α. This is promising due to the more difficult nature of modeling the smallest

scales, which can be impacted by fiber collisions in the data, and by resolution and baryonic

effects in the simulations. At present, our best constraint on α still comes from scales in the

one-halo regime, but stronger large scale constraints will be possible as data samples become

larger. This result suggests that many of the key details of the galaxy–halo connection may

be constrained even without the smallest scales.

It is also important to note that, in addition to the concentration dependence discussed in

this work, there is still a rich set of parameters that can potentially be included in abundance

matching without breaking the core assumptions mentioned above, such as using non-

constant or non-Gaussian scatter, evaluating the matching proxy at different epochs, and

adopting different treatments for central and satellite galaxies. With future simulations that

have larger volumes and higher resolutions, we can constrain these potential abundance

matching parameters, and in return obtain insights on the physical processes of galaxy

formation.

6.5.3 Using Abundance Matching Proxy at its Peak Values

The discussion here made us wonder whether we also attach superfluous physical meaning

to the choice of evaluating the abundance matching proxy at its peak values. This choice of

peak values has been explained by that the luminosity of satellite galaxies correlates more

with the subhalo properties before the stripping happens. In other words, after a subhalo

infalls into a halo, the star formation would cease, but the galaxy resides in that subhalo is

not immediately affected by the stripping process.

With the interpolation scheme we propose, we can also test whether the observed galaxy

distribution only prefers peak values to present values, or it actually favors peak values. To

test this, we introduce another parameter, β, to interpolate between peak values and present
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Figure 6.12: A figurative illustration of the interpolation scheme as defined in Equation 6.4.

values. We define a new proxy:

vα,β :=
(

v
now
vir

) (1−α)(1−β)
·
(

v
peak

vir

) (1−α) β
·
(

v
now
max

)α(1−β)
·
(

v
peak
max

)αβ
, (6.4)

such that when β = 1, vα,β=1 = vα evaluated at the epoch when Mvir peaks, as we defined

in Equation 6.1, and when β = 1, vα,β=0 = vα evaluated at the current epoch. Figure 6.12

illustrates this interpolation scheme with a Cartesian coordinate system of α and β.

Note that in this new interpolation scheme, the β parameter interpolates the values at

different epochs, but not the epoch itself. Hence, for any β , 0, it does not correspond to a

single epoch for all halos. Also, we allow the β parameter to be larger than 1, in which case

the matching proxy would be greater than the corresponding peak value. This setting itself

might seem unphysical, but it enables us to test how physical the use of peak value actually

is. If the observation data prefer a value of β that is much larger than 1, then we may infer

that some unphysical assumptions have been made in the framework.
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Figure 6.13: Constraints on α and β in the DarkSky-400 box, for four thresholds (Mr <

−20, −20.5, −21, −21.5; from left to right). The scatter value used in abundance matching

is fixed to 0.15 dex. The contours, from dark to light blue, show the one-side p-value of

0.5, 0.05, 0.01, and 0.001 for the χ2 fit. Note that the y-axis spans from β = 0.6 to 1.4.

With this new interpolation scheme, we can simply repeat our analysis for the α parame-

ter. The β parameter should be degenerate with the α parameter, as both parameters change

the ranks of subhalos. Hence, a larger value of α and a larger value of β would both boost

the one-halo term in the clustering signal. In order to better explore the degeneracy between

α and β, here we fix the scatter parameter to 0.15 dex. The scatter parameter is already

well constrained by the brightest threshold (Mr < −22), as we discussed in Section 6.4.2.

In Figure 6.13 we show the constraints on α and β for four different luminosity thresh-

olds. The constraints are obtained with the χ2 statistic, using the same procedure as in

Section 6.4.2. The simulation used here is the DarkSky-400 box. As expected, the con-

straints on parameters α and β are highly degenerate, and the preferred values of α and

β are anti-correlated. We also see that the β parameter is be more sensitive to luminosity

thresholds, and that fainter samples prefer a higher value of β.

Figure 6.14 shows the combined constraints on α and β, for both with and without the

faintest threshold considered here (Mr < −20). We see that the allowed region for α is much

larger when we allow β to vary. In fact, if we only include samples down to Mr < −20.5,

we cannot rule out (at p = 0.05) any value of α that is between 0 and 1 when allowing

β to vary. In other words, with only 2-point correlation functions, the current dataset is

still not constraining enough to pin down the concentration dependence under this more
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Figure 6.14: The combined joint constraint on α and β from four thresholds (left; Mr <

−20, −20.5, −21, −21.5) and three thresholds (right; Mr < −20.5, −21, −21.5), for

DarkSky-400. The scatter value used in abundance matching is fixed to 0.15 dex. The

contours, from dark to light blue, show the one-side p-value of 0.5, 0.05, 0.01, and 0.001

for the χ2 fit. Note that the y-axis spans from β = 0.6 to 1.4.

generic abundance matching framework that includes β. However, the best-fit value for

α (that corresponds to the lowest χ2 value) is still ∼ 0.6, consistent with our findings in

Section 6.4.

On the other hand, the range of β allowed by this dataset is much narrower than that

of α. At p = 0.05, even with samples down to Mr < −20.5, we can rule out β > 1.15

and < 0.65, for any α between 0 and 1. With samples down to Mr < −20, we can further

rule out β > 1.1 and < 0.8 for any α. This result clearly favors the choice of peak values

for abundance matching proxies, even when given the freedom of adjustable concentration

dependence. In other words, the adjustable concentration dependence is not enough to

compensate the lower ranks subhalos receive when the abundance matching proxy is not

evaluated at peak. This result is also consistent with the findings of Chaves-Montero et al.

(2015), who used EAGLE simulations to test the correlation between the galaxy stellar mass

and the matching proxy evaluated at different epochs.

The degeneracy between α and β may be broken by other statistics, as other probes

can provide complementary or independent constraining power on the abundance matching

parameters. For example, although in this paper we have not completed a full analysis of
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satellite fractions, Figure 6.4 already demonstrates that the satellite fraction as a function

of luminosity can provide independent constraints on α. Similarly, other group statistics,

such as the conditional luminosity function, should also provide additional constraints on

α, β, and scatter.

6.5.4 Constraining Power from Other Statistics

Several other probes can provide complementary constraining power on the parameters

α and β. Although in this paper we have not completed a full analysis of satellite frac-

tions, Figure 6.4 already demonstrates that the satellite fraction as a function of luminosity

can provide independent constraints on α. Similarly, other group statistics, such as the

conditional luminosity function, should also provide additional constraints on α and scatter.

As an example, R. M. Reddick et al. (2016, in preparation) have studied the conditional

luminosity function of galaxies in the redMaPPer cluster sample (Rykoff et al., 2014).

This sample consists of a very large number of photometrically identified clusters, and

hence allows for very small statistical errors on the parameters. This work finds that

for models with lower scatter, data require a stronger anti-correlation between satellite

occupation and central luminosity. Since satellite occupation is also anti-correlated with

host halo concentration (Zentner et al., 2005; Mao et al., 2015), the result of R. M. Reddick

et al. (2016, in preparation) implies an anti-correlation between scatter and α (i.e., the

concentration dependence of luminosity). This result would then be complementary to

the clustering results presented here, since the latter finds a positive correlation between

scatter and α, provided that the correlation between scatter and α behaves the same in both

luminosity-selected and redMaPPer samples.

Although we do not investigate this directly here, measurements of galaxy voids may be

able to put further constraints on the amount of assembly bias (Tinker et al., 2008; Tinker &

Conroy, 2009). Combining clustering results with measurements of galaxy–galaxy lensing

may be able to put further limits on the scatter and on the concentration dependence (e.g.,

Tasitsiomi et al., 2004; Mandelbaum et al., 2006; Neistein & Khochfar, 2012). In addition,
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data that have more information on redshift dependence, such as the pseudo-multipole

correlation function, can provide more constraints on these parameters (Reid et al., 2014;

Guo et al., 2016; Saito et al., 2016).

Another way to put a physical prior on the parameters in empirical models is to compare

the model predictions with hydrodynamic simulations. For example, Chaves-Montero

et al. (2015) evaluated the galaxy–halo connection in the EAGLE simulation with various

abundance matching models with different epochs at which the matching proxy is evaluated.

In this work we establish that the galaxy luminosity has at least some dependence on halo

concentration. It will be interesting to fully understand whether and to what extent such

a luminosity dependence arises in modern hydrodynamic simulations, and what physical

parameters it depends on.

6.6 Summary

We introduce a generalization of abundance matching which allows adjustable concentration

dependence. In particular, we propose a model that abundance matches to a parameter v̂α,

which smoothly interpolates between vvir (when α = 0) and vmax (when α = 1), both of

which are evaluated at the peak value of the mass accretion histories.

Within the framework of abundance matching, the parameter α controls the concen-

tration dependence of luminosity at given halo mass. Hence, α impacts both the satellite

fraction and the assembly bias in the resulting mock galaxy catalog. Both effects lead to

larger clustering for higher values of α, but the satellite fraction primarily increases cluster-

ing at small scales (the one-halo term), while assembly bias primarily increases clustering

at larger scales (the two-halo term). This model is the first to introduce a continuously

adjustable assembly bias within the abundance matching framework.

We further demonstrate that the current clustering measurements from SDSS already

have constraining power on this parameter α. SDSS data prefer a range of α in the

region between 0 and 1, i.e., with v̂α between vvir, peak and vmax, peak. Our best-fit value is

α = 0.57+0.20
−0.27

, with a scatter value of 0.17+0.03
−0.05

dex. With the high-resolution 400 Mpc h−1
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box, DarkSky-400, we show that the halo parameters Mvir, peak and vmax, peak which have

been previously used in the literature are both ruled out at p < 0.001 when the various

luminosity thresholds are combined.

We also extend the interpolation scheme to test if the choice of using peak values for

abundance matching proxy is favored by the current clustering observations. We interpolate

the proxy between its current value and its peak value using a single parameter β, and found

that despite the degeneracy between the two parameters α and β, β is well constrained to

be close to 1, indicating the choice of using peak values is indeed favored by observations.

In conclusion, this more general abundance matching model we present here is an

important step in the quest for precise and accurate models of galaxy clustering down

to small scales, which will be essential to take full advantage of the next generation of

cosmological surveys.



Chapter 7

Conclusion and Outlook

In this dissertation, I use empirical models to improve the descriptions of the local velocity

distribution function of dark matter (Chapter 4), the subhalo abundance function (Chapter 5),

and the galaxy–halo connection under the abundance matching framework (Chapter 6). In

all three cases, we find that the halo concentration (or equivalently the formation history)

plays important roles in these models. Ignoring the concentration dependence will result in

systematic biases when we use these models to interpret the results from various observations

and experiments, such as the dark matter direct detection experiments, the abundance of

dwarf galaxies, the richness–mass relations, and the large-scale spatial clustering of galaxies.

The improved models provide us better precision in theoretical predictions, and also new

insights into the connection among the halo formation history, the distribution of dark

matter, and the galaxy–halo connection.

The importance of these improved models will likely even increase in the future. For

example, thus far, we have not yet detected the collision events between dark matter and

nuclei in the direct detection experiments, and hence the detailed features of the velocity

distribution are not the dominate uncertainty in deriving the limits on the collision cross

section. However, once we detect real collision events, a precise model for the local velocity

distribution will be needed as we try to constrain the cross section, dark matter particle mass,

and even Milky Way halo properties. We will also need to know the prior on the model
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parameters to derive those constraints. Our work on the velocity distribution has already

made one step towards this upcoming future.

On a different note, our model for the subhalo abundance function extends the utility of

current simulations beyond their resolution limits, and provides a more accurate description

of subhalo abundance. This model is particular useful for the study of dark substructures

and dwarf galaxies. In a recent study of a strong-lensed system observed by ALMA, we

used this model to test the consistency between ΛCDM predictions and observed results

(Hezaveh et al., 2016). Also very recently, several optical imaging surveys, including the

Dark Energy Survey (DES), has discovered 17 candidate satellite galaxies in the Milky Way

within the DES footprint (Bechtol et al., 2015; Koposov et al., 2015; Kim & Jerjen, 2015;

Drlica-Wagner et al., 2015). It would be interesting to see if this overdensity of satellite

galaxies near the Magellanic Clouds is consistent with the ΛCDM prediction.

However, the abundance of dwarf galaxies does not directly translate into the abundance

of dark matter subhalos. Hence, understanding the galaxy–halo connection is a key step

for interpreting the abundance of dwarf galaxies. So far, our work on the flexibility of the

galaxy–halo connection has focused on bright galaxies (Mr < −20). An intriguing future

direction is to fully model the faint end of the galaxy–halo connection.

We will soon have several rich datasets on the dwarf galaxies: in addition to the recent

discovery of Milky Way satellites, the Satellite Around Galactic Analogs (SAGA) Survey,

which surveys the satellite populations of Milky Way-like systems beyond the local group,

will also have new results soon (Geha et al. in preparation). To fully utilize these new results,

we will combine our work on the subhalo abundance and galaxy–halo relation to build a

framework that can translate different aspects of the observation—luminosities, colors,

velocity dispersions, and spatial distributions—into the constraints on different components

of the model of the galaxy–halo connection. In the long run, this approach will provide a

comprehensive picture of the galaxy–halo connection from large scales to small scales.
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