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Abstract—The optimal decentralization of multi-cell minimum
power beamforming requires exchange of terms related to in-
stantaneous inter-cell interference (ICI) values or channel state
information (CSI) via a backhaul link. This limits the achiev-
able performance in the limited backhaul capacity scenarios,
especially when dealing with a fast fading scenario or a large
number of users and antennas. In this work, we utilize the
results from random matrix theory for developing two algorithms
based on uplink-downlink duality and optimization decompo-
sition relying on limited cooperation between nodes to share
knowledge about channel statistics. As a result, approximately
optimal power allocations are achieved based on statistics of the
channels with greatly reduced backhaul information exchange
rate. The simulations show that the performance gap due to the
approximations is small even when the problem dimensions are
relatively small.

I. INTRODUCTION

In a cellular system, serving nodes share limited resources
to serve users across the coverage area and the individual
decisions of all nodes affect others. Thus, cooperation among
nodes is required for optimal utilization of resources. Coordi-
nated multi-point transmission (CoMP) allows cooperation and
coordination between nodes for delivering services to users
which improves the resource utilization and service quality [1].
However, the coordination requires sharing some information
between nodes which makes the practical implementation
difficult specially when the dimensions of the problem (the
number of users and antennas) grow large or when dealing
with a fast fading scenario.

In general, the coordinated resource allocation problems
can be formulated as optimization problems. Maximizing a
desired utility in the network, subject to some constraints can
be solved iteratively along with exchange of some information
between nodes at each iteration [2]–[7]. Coordinated multi-
cell minimum power beamforming approach, which is the
focus of this paper, satisfies a given signal-to-interference-
plus-noise ratio (SINR) for all users while minimizing the total
transmitted power. In [6], the problem was solved iteratively
relying on the uplink-downlink duality and exchange of dual
uplink powers and channel state informations (CSI) between
serving nodes. An alternative approach based on optimization
decomposition provides the locally feasible beamformers at
each node relying on backhaul information exchange between
BSs [7]–[9].

Part of this work has been performed in the framework of the FP7 project
ICT-317669 METIS, which is partly funded by the European Union.

Assuming the size of the problem becomes large, the result
of random matrix theory (RMT) can be utilized for providing
simpler approximations for the available algorithms. The work
in [10] has considered such approximations for achieving the
optimal regularization parameter for regularized zero forcing
(RZF). A large dimension analysis for the network sum-rate
maximization in a simple channel model with two cells has
been provided in [11].

The authors in [12] extended the uplink (UL) - downlink
(DL) duality approach from [6] for a large dimension system
under i.i.d assumption on channel entries. They show that an
approximately optimal beamformer can be achieved at each
BS relying only on the local CSI and exchanged pathloss
information from the other BS channels. However, the error in
approximations causes variations in the resulting SINR values
which violate the target SINR feasibility. In our earlier work
[13], which is based on the work in [7], we have proposed
another approach for decoupling the subproblems at BSs by
considering the inter-cell interference (ICI) as the principal
coupling parameter among BSs. The large dimension approx-
imation for ICI terms provides an approximately optimal dis-
tributed algorithm that gives the locally feasible beamformers
based on the exchanged pathlosses with a specific assumption
that the channels follow i.i.d. statistics. The approximate
algorithm has lower processing load and backhaul exchange
rate and it guarantees the SINR constraints with slightly higher
transmit power compared to the optimal method. In this work,
we develop both of these approximated algorithms [12], [13]
to a generalized channel model with arbitrary correlation char-
acteristics. The generalized algorithm gives the approximately
optimal beamformers based on statistics of the interfering
channels and local instantaneous CSI. Depending on the
assumptions about the propagation environment and antenna
array, the generalized algorithm can be further simplified and
as special cases with diagonal correlation matrices, the results
from [13] and [12] can be reproduced.

II. SYSTEM MODEL

A cellular system is considered which consists of NB BSs,
each BS has Na transmit antennas and each user has a single
receive antenna. Users allocated to the bth base station are in
set Ub. Each user is served by a single base station and the
BS that serves user k is denoted by bk. Sets of all users and
all BSs are represented by U and B respectively. The signal
for user k consists of the desired signal, the intracell and the
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intercell interference which can be presented as follows

yk = hH
bk,k

xb,k + hH
bk,k

∑
l 6=k∈Ubk

xb,l +
∑
b6=bk hH

b,k

∑
l∈Ub xb,l + nk

(1)
where nk ∼ CN (0, N0) is the noise with power density

N0. xb,k = wkdk is the transmitted vector from the bth BS to
kth user, in which dk is the normalized complex data symbol
(E[|dk|2] = 1) and wk ∈ CNa is the downlink beamforming
vector of the kth user.

hb,k ∈ CNa×1 represents the channel from the bth BS
to kth user. The per-user channel correlation model is used
for representing channel vectors, i.e., hb,k = θ

1
2

b,kzb,k, where
θb,k is the channel correlation matrix and entries of zb,k are
i.i.d of zero mean and variance 1. This channel model allows
different correlation matrices for distinct users which results a
generalized channel model applicable to various propagation
environments.

III. PROBLEM FORMULATION

The optimization problem for achieving the optimal down-
link beamformers as proposed by [7] can be stated as

minimize
wk,εb,k

∑
b∈B

∑
k∈Ub

‖wk‖2

subject to Γk≥γk ∀k ∈ Ub,∀b,∑
l∈Ub

|hH
b,kwl|2 ≤ ε2b,k,∀k 6∈ Ub,∀b,

(2)

where, γk represents target SINR for user k. The intercell
interference from bth base station to user k is denoted by ε2b,k
and the SINR of user k is given as

Γk =
|hH
bk,k

wk|2

N0 +
∑
l∈Ubk\k

|hH
bk,k

wl|2 +
∑
b 6=bk ε

2
b,k

(3)

This problem can be rewritten in a convex form, for example,
as a second order cone program (SOCP) [7], and it can be
solved in a centralized manner by using convex optimization
tools.

A. Solution via uplink-downlink duality

Another approach for solving the optimization problem
defined by (2) is based on UL-DL duality. Authors in [6] have
shown that the problem dual to (2) which gives the optimal
uplink power allocation and detection vectors is defined as
follows

minimize
ŵ,λ

∑
b∈B

∑
k∈Ub

λkN0

subject to
λk|ŵH

khbk,k|2∑
l 6=k λl|ŵH

khbk,l|2 + ‖ŵk‖2
≥γk ∀k∈U .

(4)

The dual uplink power of user k is denoted by λk and its
optimal value can be calculated by a fixed point iteration [6]

λk =
1

(1 + 1
γk

)hH
bk,k

(Σbk + I)−1hbk,k
(5)

where Σb =
∑
l∈U λlhb,lh

H
b,l. The dual UL detection vector

ŵk is given by the minimum mean square error receiver at
the optimal point [6]

ŵk = (Σbk + I)−1hH
bk,k

. (6)

A link between the DL and UL beamformers is provided
by the equation [6]

wk =
√
δkŵk (7)

where, δk can be found by using the matrix inversion [6]

δ = G−11Nu (8)

where δ contains all δk values, 1Nu is a Nu× 1 vector with
all elements equal to one. The elements of G are defined as

[G]i,j =

{ 1
γi
|ŵH

i hbi,i|2 i = j

−|ŵH
j hbj ,i|2 i 6= j.

(9)

The above set of equations defines an algorithm which gives
the optimal power allocation and beamformers for the DL (2)
and UL (4) problems. However, the final step of this algorithm
in (8) requires a global knowledge about the CSI which
makes its distributed implementation difficult, especially when
dealing with a large number of users and antennas.

B. Decentralized solutions via optimization decomposition

The centralized problem in (2) is decoupled among BSs as
soon as the ICI terms εb,k are set to fixed values. In [7], the
coupling is handled by taking the local copies of the inter-
ference terms at each BS and enforcing consistency between
them. Then, the consistency constraints become decoupled by
applying a standard dual decomposition approach that results
in a distributed algorithm. The decentralized algorithm can
follow the optimal solution in a time correlated scenario by ex-
changing the ICI terms while the channel realizations change.
There are also alternative decentralized solutions based on
primal decomposition [8], [9] and alternating direction method
of multipliers (ADMM) [14].

IV. LARGE SYSTEM ANALYSIS

It is known that the growing dimensions of a random matrix
results in some deterministic behaviors about the distribution
of its eigenvalues that can be utilized for approximations
and processing simplification purposes [15]. The results of
the system with large dimensions (the number of users and
antennas) can be used as an approximation for the system
with practically limited dimensions. In this section we use this
approach for developing two approximated algorithms based
on UL-DL duality and ICI decoupling methods introduced in
previous sections.

A. Generalized approach based on UL-DL duality

This section introduces deterministic approximations for
the solution based on UL-DL duality. In order to get these
deterministic equivalents, the following assumptions on the
correlation matrices are required.

Assumption1: The spectral norm of θb,i on Na is uniformly
bounded:



lim sup
Na,Nu→∞

sup
∀b,i
||θb,i|| ≤ ∞ (10)

Assumption2: The set of all correlation matrices belongs to a
finite family (a set with bounded cardinality) [10].

Assumption31: The variances of entries of zb,k are scaled
by the number of antennas.

Under these assumptions, we can derive approximations for
the power allocation equations (5) and (9), the results of which
are summarized in Theorem 1 and 2.

Theorem 1: If the assumptions 1,2 and 3 on correlation
matrices hold true, then

λk − λok
Na→∞,Na

Nu
= cte.

−−−−−−−−−−−→ 0 (11)

almost surely, where λk is the optimal uplink power and the
approximated power λok is given by

λok = ((1 +
1

γk
)

mΣbk
,θbk,k

(−1)

1 + λokmΣbk
,θbk,k

(−1)
)−1 (12)

where

mΣbk
,θbk,k

(z) = 1
Na
trθbk,k( 1

Na

∑
l∈U

λo
l θbk,l

1+eNa,l(z)
− zINa

)−1.

(13)
The term mΣbk

,θbk,k
(−1) in (12) is the Stieltjes transform of

a measure given by (13). The functions eNa,1(z), ..., eNa,n(z)
are given as the unique solution of the following system of
equations,

eNa,i(z) = 1
Na
trλoiθbk,i(

1
Na

∑
l∈U

λo
l θbk,l

1+eNa,l(z)
− zINa

)−1

(14)
Iterations of (12) converges to the deterministic approximation
λok when the functions eNa,l(z) are properly initialized with
eNa,l(z) = −1

z .
Proof: The proof is similar to the one in [10, Theorem 1].

Due to the lack of space the proof of Theorem 1 is given in
a supporting document [16].

The results of Theorem 1 are very general and can be
applied to various propagation environments. However, under
some assumptions about the correlation properties of the chan-
nels, the results can be further simplified. Diagonal correlation
matrices or the case with the same correlation properties for all
users are some examples. Also, in the single cell case, a closed
form solution can be derived that gives the approximated
uplink powers with a single matrix inversion [16]. However,
these results are neglected due to the lack of space.

Theorem 2: If the assumption 1,2 and 3 hold true, then, for
a set of approximated uplink powers given by Theorem 1, the
deterministic equivalents for the elements of (9) are given by

[G]l,k =


γk

((1+γk)λo
k)

2 l = k

− 1
Na

m′
BN (x=0),θbk,k

(z=−1)

(χbk,k)2(χbk,l)2
l 6= k

(15)

1The channel scaling by Na in Assumption 3 does not change the optimal
beamformer structure. It would just results in scaling the transmit powers by
Na, while the gap between transmit powers of various methods remain the
same. Therefore, the results of Theorem 1 and 2 can be applied to the original
channel model without scaling [16].

where
χb,l = 1 + λolmΣb,θb,l

(−1). (16)

The Stieltjes transform mΣbk
,θbk,k

(−1) is the same as defined
in Theorem 1. m′BN (x=0),θbk,k

(z = −1) is the derivative of
the Stieltjes transform of a measure with respect to an auxiliary
variable x at point x = 0, z = −1 defined as

m′BN (x=0),θbk,k
(z = −1) =

1

Na
tr(θbk,kTbk(

1

Na

∑
i∈U

λoiθbk,ie
′
Na,i

(−1, 0)

(1 + eNa,i(−1, 0))2
+ θbk,l)Tbk

(17)

where

Tbk = (
1

Na

∑
i∈U

λoiθbk,i
1 + eNa,i(−1, 0)

+ INa
)−1 (18)

The functions eNa,i(z, x = 0) are the same as eNa,i(z) in
Theorem 1. Denoting e′Na,i

(−1, 0) = e′i, the scalars e′i are
given by

[e′1, ..., e
′
n]T = (I− L)−1v (19)

where

[L]j,i =
1

N2
a

λojλ
o
i tr(θbk,jTbkθbk,iTbk)

(1 + ei)2
(20)

v = [ 1
Na
tr(λo1θbk,1Tbkθbk,lTbk), ..., 1

Na
tr(λonθbk,nTbkθbk,lTbk)]

(21)
Proof: Due to the lack of space the proof of Theorem 2 is
given in a supporting document [16].

Theorem 2 gives an approximation for G matrix which is
used to get the approximated downlink power allocation δo

defined by (8). Theorem 1 and 2 jointly define an algorithm
that gives the approximations for the optimal UL/DL power
allocations and the corresponding detection/beamforming vec-
tors can be achieved by plugging the powers λok and δo in (6)
and (7), respectively.

The error in approximations of the proposed algorithm
causes variations in the resulted SINRs. Thus, the SINR
constraints cannot be guaranteed and the resulted SINR might
be higher or lower than the target SINRs. In the next section,
we introduce another approximation approach that satisfies the
SINR constraints with slightly higher transmission power.

B. Approximation of intercell interference terms

The method proposed in this section relies on approximately
optimal ICI values, where, the approximations just depend on
statistics of channels. Thus, the obtained approximate ICIs
remain valid for a given set of users until a change occurs
in the statistics of the channel, i.e., when a user changes its
location.

Recalling relations between UL and DL beamformers, the
intercell interference term from the bth base station to user k
is,

ε2b,k =
∑
l∈Ub

|hH
b,kwl|2 =

∑
l∈Ub

√
δb,l|hH

b,kŵl|2 (22)



where δb,l values can be found from (8) and the approxima-
tions for the cross-terms |ŵH

khbk,l|2 are defined by the non-
diagonal elements of G matrix in (15). Therefore,

ε2b,k ' −
∑
l∈Ub

√
δb,l[G]l,k (23)

This approximation allows derivation of approximately op-
timal ICI terms based on statistics of the user channels. Each
BS needs knowledge about user specific average statistics, i.e.,
correlation properties from other BSs based on which each
BS can locally and independently calculates the approximately
optimal ICI values.

C. Distributed approximately optimal algorithm

Using any fixed ICI value in (2) produces a special case
that results in a suboptimal performance in general. In [7]–
[9], an agreement on optimal fixed ICI values is achieved via
the exchange of scalar ICI parameters, i.e., local copies of ICI
terms or corresponding dual variables. Another straightforward
decentralized approach is to enforce all inter-cell interference
to zero [7]. In all cases, however, the intra-cell interference
among local users can be optimally handled. Solving (2) with
the approximated ICI values εb,k developed in the previous
subsection leads to an algorithm that benefits from both the
locally optimal beamforming design and near optimal ICI
knowledge. This property brings significant gains compared to
other suboptimal methods like inter-cell interference nulling.
The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Approximation of the ICI values.

1: Initialize the ICI values based on the exchanged correla-
tion properties.

2: loop
3: if Any change in the user statistics then
4: Exchange the updated correlation properties among

coupled BSs.
5: Update the approximated λk values, mΣbk

(−1) and
its derivative from equations (12), (13) and (17).

6: Get approximated δ values from (8).
7: Update the approximated ICIs based on (23).
8: end if
9: Use the approximated ICIs as a fixed ε2b,k in (2) and

solve the subproblems locally for getting the optimal
downlink beamformers.

10: end loop

The local problems can be solved independently (till a
change in statistics of the channels happen) by reformulat-
ing (2) as BS specific SOCP or solved iteratively as in [9].
The proposed algorithm guarantees the target SINRs because
the feasible solution of the optimization problem defined by
(2) always satisfies the constraints and the possible error in
approximations is translated into a somewhat higher transmit
power at BSs compared to the optimal centralized solution.

V. NUMERICAL ANALYSIS

Two algorithms developed in the previous section for mul-
ticell system with large dimensions provide good approxi-
mations even when the dimensions of the problem (i.e. the
number of users and antennas) are practically limited. In order
to show the performance of the approximate algorithms, some
numerical examples are presented in this section. Due to lack
of space, we just present the results for the algorithm based on
ICI approximation. This algorithm satisfies the target SINRs
for all users; however, the error in approximations results a
higher transmit power at BSs.

A network with 7 cells is considered and users are equally
distributed between cells. Exponential pathloss model is used
for assigning the pathloss to each user, ab,k = (d0/db,k)2

where db,k is distance between base station b and user k. The
pathloss exponent is 2.3 and the reference distance (d0) is
1m. The pathloss from a base station to the boundary of the
reference distance of the neighboring base station is fixed to
60dB. The correlation among channel entries is introduced
using a simple exponential model

[θb,k]i,j = ρ|i−j| (24)

where, ρ represents the correlation coefficient which is
0.8 for the following simulations. The users are dropped
randomly for each trial and in total 1000 user drops are used
for calculating the average transmit power. The number of
antennas at each BS varies from 14 to 84 and the total number
of users is equal to half the number of antennas at each BS.
Thus, the spatial loading is fixed as he number of antennas is
increased.

Fig. 1 and 2 illustrate the transmit powers versus the num-
ber of antennas for 0 dB and 10dB SINR target respectively.
It is clear that the gap between the approximated and optimal
algorithm (denoted as SOCP) diminishes as the number of
antennas and users increase. Small gap in small dimensions
indicates that the approximate algorithm can be applied to
the practical scenarios with a limited number of antennas and
users.

From the results it is clear that SOCP algorithm and the
approximated ICI algorithm outperform the ZF method. Note
that the number of antennas at each BS per number of served
users is increasing while the gap between ZF and optimal and
approximated method is fixed which is due to the fixed ratio of
the number of antennas to the total number of users. The gap
in performance is mainly due to the fact that the ZF algorithm
wastes a degree of freedom for nulling the interference towards
the distant users while the SOCP algorithm finds the optimal
balance between interference suppression and maximizing the
desired signal level. MF beamforming must be dealt with more
care since the SINR target is below the target SINR and it can
be guaranteed only asymptotically, i.e., when the ratio of the
number of antennas to the number of users approaches infinity.

VI. CONCLUSIONS

In this work, we used the theory of large-dimensional
random matrices for the development of two algorithms for



Fig. 1: Comparison of required transmit power for 0 dB SINR
target.

Fig. 2: Comparison of required transmit power for 10 dB SINR
target

minimum power beamforming based on uplink-downlink du-
ality and optimization decomposition. These algorithms give
the simplified approximately optimal UL/DL power alloca-
tions and the corresponding detection/beamforming vectors
based on other BSs channel statistics and local CSIs. The
channel model utilized here is fairly general and applicable
to various propagation environments. The algorithms can be
further simplified depending on the characteristics of the
propagation medium. The same correlation properties with
different channel gains for all users or the case with diagonal
correlation matrices are such examples. The simulation results
indicate that these approximations are accurate even for small
system dimensions. Thus, the framework presented in this
paper can be used for both the theoretical analysis as well
as the practical algorithm development.
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