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ABSTRACT 

Parkinson’s disease (PD) is a slowly progressing neurodegenerative disorder caused by loss 

of dopaminergic neurons in the substantia nigra (SN), leading to severe impairment in motor 

and non-motor functions. Endogenous subventricular zone (SVZ) neural stem cells constantly 

give birth to new cells which might serve as a possible source for regeneration in the adult 

brain. However, neurodegeneration is accompanied by neuroinflammation and dopamine 

depletion, potentially compromising regeneration. We therefore employed in vivo imaging 
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methods to study striatal deafferentation ([
123

I]Ioflupane SPECT, DaTscan
TM

) and 

neuroinflammation in SN and striatum ([
18

F]DPA-714 PET) in the intranigral 6-

hydroxydopamine (6-OHDA) PD mouse model. Additionally, we transduced cells in the SVZ 

with a lentivirus encoding firefly luciferase and followed migration of progenitor cells in the 

SVZ – olfactory bulb (OB) axis via bioluminescence imaging (BLI) under disease and 

control conditions. We found that activation of microglia in the SN is an acute process 

coming along with the degeneration of dopaminergic cell bodies in the SN. Dopaminergic 

deafferentation of the striatum does not influence the generation of Dcx
+
 neuroblasts in the 

SVZ, but generates chronic astrogliosis in the nigrostriatal system.  

 

1. INTRODUCTION 

Parkinson’s disease (PD) is characterised by loss of dopaminergic neurons in the substantia 

nigra (SN) and their striatal projections. PD is usually diagnosed after 50% of dopaminergic 

neurons in the SN and 80% of striatal dopamine are lost (Fearnley and Lees, 1991). As only 

symptomatic treatment is available, novel endogenous neuroregeneration approaches are 

desired.  

The subventricular zone (SVZ) lining the lateral ventricles and the subgranular zone (SGZ) of 

the dentate gyrus generate progenitor cells that migrate to the olfactory bulb (OB) or granular 

cell layer. In the SVZ, slowly dividing radial glia-like cells give rise to transient amplifying 

cells, which themselves generate neuroblasts. Neuroblasts migrate long distances along the 

rostral migratory stream towards the OB, maturing and integrating into existing neural 

circuits (Ming and Song, 2011). Therefore, SVZ neuroblasts might serve as a source for new 

neurons in the diseased brain. However, endogenous neuroregeneration is insufficient or non-

existent in PD, potentially due to disease-associated alterations in neurogenesis.  
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Different studies report decreased (Baker et al., 2004, Höglinger et al., 2004), unchanged 

(van den Berge et al., 2011), or even increased (Aponso et al., 2008) progenitor cell 

proliferation after striatal dopamine depletion in PD patients and animal models. Moreover, 

dopaminergic neurodegeneration is accompanied by increased numbers of microglia in post-

mortem PD-patients (Imamura et al., 2003, McGeer et al., 1988) as well as PD animal models 

(Czlonkowska et al., 1996). Depending on their plasticity, microglia can have favourable or 

detrimental effects on neurogenesis, and neuron survival (Bastos et al., 2008, Ekdahl et al., 

2003, Sierra et al., 2010, Walton et al., 2006). Activated microglia, reactive astrocytes and 

infiltrating peripheral macrophages produce a variety of cytokines, chemokines, 

neurotransmitters, and reactive oxygen species, which affect the proportion of neuro- and 

gliogenesis, and the amount of progenitor cell proliferation. 

 

Compared to conventional histological techniques, in vivo imaging reduces experimental 

animal numbers and allows for longitudinal studies. Single photon emission computed 

tomography (SPECT) using the tracer [
123

I]Ioflupane, which has high binding affinity for the 

presynaptic dopamine transporters (DaT) (Booij et al., 1997a, Booij et al., 1997b), allows for 

detection of pathological changes in dopaminergic projections in patients and preclinical PD 

models. Translocator protein (TSPO) expression in healthy brain tissue is low (Giatzakis and 

Papadopoulos, 2004). High levels of TSPO expression in activated microglia and reactive 

astrocytes (Chen and Guilarte, 2008, Cosenza-Nashat et al., 2009, Lavisse et al., 2012, Scarf 

and Kassiou, 2011), allow for imaging of brain inflammation with positron emission 

tomography (PET) tracers targeting TSPO (Jacobs and Tavitian, 2012), such as [
18

F]DPA-

714 (Damont et al., 2013, Dollé et al., 2009, James et al., 2008). Bioluminescence imaging 

(BLI) was described as a tool to follow and quantify the migration of firefly luciferase 

transduced progenitor cells in the SVZ – OB axis in vivo (Reumers et al., 2008).  
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Based on the hypothesis that dopaminergic neurodegeneration and the associated microglia 

activation affect subventricular neurogenesis, we aimed to monitor striatal deafferentation, 

neuroinflammation, and progenitor cell migration in a PD mouse model employing non-

invasive multimodal imaging. 

 

2. MATERIALS AND METHODS 

2.1 Cell culture 

Human HEK293T (kind gift of Dr. R. Thomas, Max Planck Institute for Metabolism 

Research, Cologne, Germany) and Gli36∆EGFR (kind gift of Dr. David Louis, Molecular 

Neurooncology Laboratory, Massachusetts General Hospital, Boston, MA, USA) cells were 

grown as monolayer cultures in Dulbecco’s modified Eagle’s medium high glucose 

GlutaMAX (DMEM; Gibco, Darmstadt, Germany) supplemented with 10% foetal bovine 

serum (FBS; Invitrogen, Carlsbad, CA, USA) and 1x Penicillin/Streptomycin (P/S, Penicillin 

1000 IU, Streptomycin 1000 µg/ml; PAA Laboratories, Cölbe, Germany) at 37°C and 5% 

CO2/95% air. 

 

2.2 Generation of reporter vectors 

The pLKO.1-CMV-fLuc-IRES-mCherry plasmid (pLKO.1-CMV-LIC, Fig. S1) was 

constructed in two steps starting from the pLKO.1shControl+Luc plasmid created by G. 

Jungwirth (AG Jacobs, Max Planck Institute for Metabolism Research, Cologne, Germany) 

from the pLKO.1 vector (kind gift of Dr. R. Thomas, Max Planck Institute for Metabolism 

Research, Cologne, Germany). The first step consisted in introducing the mCherry gene from 

Kl13-pCDNA (created by Dr. K. Kruttwig, Max Planck Institute for Metabolism Research, 

Cologne, Germany). The sequence of the mCherry gene and the pLKO.1shControl+Luc 

plasmid were digested by NheI and EcoRI before ligation. 
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Fluc-IRES was then amplified by PCR from pBabe-PURO-LITG (Dr. M. Klein, AG Jacobs, 

Max Planck Institute for Metabolism Research, Cologne, Germany) using the following 

primers (NheI restriction site in bolt): 

Forward  5’-CGGATGCTAGCGAGAGCTTGGCA-3’ 

Reverse 5’-TTGATGCTAGCTCCGGGGTACGAAG-3’ 

After restriction with NheI, fLuc-IRES was inserted into the NheI restriction site of pLKO.1-

CMV-mCherry. Sequencing revealed the right orientation of the insert sequence.  

 

2.3 Lentiviral vector particle production 

Lentiviral vector particles were produced as described elsewhere (Palm et al., 2013, Viel et 

al., 2013). In brief, after medium exchange to fresh DMEM without serum and antibiotics, 

HEK293T cells were transfected with a mixture of three plasmids. 2.6 µg of pLKO.1-CMV-

LIC plasmid was mixed with 3.8 µg of a second-generation packaging plasmid (pCMV-

dR8.2 dvpr; provided by Dr. R. Thomas (Max Planck Institute for Metabolism Research, 

Cologne, Germany)) and 0.76 µg of a plasmid encoding the glycoprotein G of vesicular 

stomatitis virus (pCMV-VSV-G; Dr. R. Thomas) in 250 µl OptiMEM I Reduced Serum 

Media (Gibco). 7.16 µl Plus Reagent (Life Technologies, Carlsbad, CA, USA) were added, 

solution was vortexed and incubated for 10 min at room temperature (RT). In a 24 well plate, 

250 µl OptiMEM I Reduced Serum Media was mixed with 21.7 µl Lipofectamine LTX (Life 

Technologies) and 250 µl of the DNA Mix. After 30 min incubation at RT, the transfection 

mix was added to the cells. Supernatant was replaced on the next day by DMEM 

supplemented with 10% FBS without P/S. Supernatants were harvested and pooled on days 2 

and 3, cleared through a 0.45 µm filter and vector particles were concentrated by low-speed 

centrifugation (5 h, 26000 g) at 4°C (Heraeus Biofuge Stratos, Thermo Fisher Scientific, 

Waltham, MA, USA). After resuspension in DMEM supplemented with 8 µg/ml polybrene 
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(hexadimethrine bromide; Sigma-Aldrich, St. Louis, MO, USA), 500-fold concentrated 

vector particles were stored at -80°C. 

 

2.4 Titration of lentiviral particles 

For titration of lentiviral particles, 0.8 x 10
4 

Gli36ΔEGFR cells were seeded in black 96-well 

plates with transparent bottom in 200 µl of DMEM supplemented with 10% FBS and 1x P/S. 

After cells reached confluence, medium was replaced by serial dilutions of concentrated viral 

particles in DMEM supplemented with 10% FBS, 1x P/S and 8 µg/ml polybrene. The next 

day, medium was replaced and mCherry positive cells were counted the day after (AxioCam 

MRm, Carl Zeiss, Oberkochen, Germany). The mean transduction efficiency was 1.7x10
5 

transducing units/µl. 

 

2.5 Animal experiments 

All animal experiments were performed in accordance with the German laws for animal 

protection and were approved by the local bureau for animal care (LANUV, Landesamt für 

Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen). C57Bl6 and FVB mice 

(Janvier, Saint-Berthevin, France) were housed at constant temperature (23°C) and relative 

humidity (40%), under a 12h light / 12h dark schedule. Mice were given ad libitum access to 

food and water. 

 

2.6 6-OHDA Parkinson´s disease model 

For stereotactic 6-OHDA injections, C57Bl6 mice (11-15 weeks of age) were anaesthetised 

with 150 mg/kg ketamine and 6 mg/kg xylazine (i.p.) and fixed into a stereotactic frame 

(Kopf Instruments, Tujunga, CA, USA). A small skin incision was made and a hole was 

drilled into the skull. The needle was placed in position and after 1 min, 2 µl 5 mg/ml 6-
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OHDA (Sigma-Aldrich) in 0.01% ascorbic acid (Carl Roth, Karlsruhe, Germany) and 0.9% 

NaCl (Carl Roth) or vehicle (0.01% ascorbic acid in 0.9% NaCl ) was injected into the left 

SN using a Hamilton 7005KH 5 µl syringe. The syringe was kept in place for 5 min in order 

to allow the solution to diffuse into the surrounding tissue and was then retracted slowly. The 

following stereotactic coordinates in relation to bregma were used for the SN: lateral (La) -

1.5 mm, anterior-posterior (AP) -3.0 mm, dorsal-ventral (DV) -4.4 mm. 

 

2.7 Injection of lentiviral particles 

For the stereotactic injection of lentiviral particles, FVB mice (6-7 weeks old) were 

anesthetised with 180 mg/kg ketamine and 9.6 mg/kg xylazine (i.p.). The surgical procedure 

is described above. The stereotactic coordinates for the SVZ were La -1.4 mm, AP +0.8 mm, 

DV -2.5 mm (-2.7 mm). The two coordinates for DV indicate, that the needle was placed at 

DV -2.7 mm, kept in place for one min, retracted to DV -2.5 mm and kept in place for one 

min before 2 µl of concentrated lentivirus particle solution was injected. 

2.8 Single Photon Emission Computed Tomography (SPECT) 

Animals were anaesthetised with 1.5% isoflurane (Abbott Animal Health, Illinois, USA) in 

100% O2 and the lateral tail vein was cannulated using a 26 Ga catheter (Vasculon Plus, BD, 

Heidelberg, Germany) connected to a 15 cm polyethylene tubing (27 Ga, Smith Medical, 

Kent, UK). 16 MBq [
123

I]Ioflupane (N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-

[
123

I]iodophenyl)nortropane, DaTscan
TM

, GE Healthcare, Chalfont St Giles, GB) were 

injected i.v. and a 15 min SPECT scan was conducted 60 min post injection (p.i.) in a 

combined SPECT/CT imaging system (NanoSPECT/CT preclinical camera; Mediso Medical 

Imaging Systems, Budapest, Hungary), followed by a CT acquisition for acquiring 

anatomical information. Images were reconstructed by an ordered-subsets expectation 

maximization algorithm software (HiSPECT™; SciVis GMBH, Göttingen, Germany). 
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2.9 SPECT data analysis 

Image data analysis of SPECT/CT data was performed using the Inveon™ Research 

Workspace software package (Siemens Healthcare, Erlangen, Germany). Volumes of interest 

(VOIs) in equal size and orientation were applied in order to quantify tracer uptake in left and 

right striatum as well as in the cerebellum. A 50% threshold of the VOI maximum was 

applied to the VOI for right striatum, and the resulting VOI50%right was mirrored to the left 

brain hemisphere in order to quantify the left striatum (VOI50%left). [
123

I]Ioflupane uptake was 

quantified as mean specific tracer uptake ([mean uptake striatum50%left/right – mean uptake 

cerebellum] / mean uptake cerebellum) and the specific uptake ratio left/right was calculated. 

Representative images show SPECT and magnetic resonance (MR) images that were co-

registered using the contour of the mouse skull. 

 

2.10 Positron emission computed tomography (PET) 

Radiosynthesis of [
18

F]DPA-714 (N,N-diethyl-2-(2-(4-(2-[
18

F]fluoroethoxy)phenyl)-5,7-

dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide) was conducted as described elsewhere 

(Damont et al., 2008, James et al., 2008). Animals were anaesthetised with 1.5% isoflurane 

(Abbott Animal Health) in 100% O2 and the lateral tail vein was cannulated as described 

above. PET studies were performed on a high resolution small animal scanner (32 module 

quadHIDAC, Oxford Positron Systems Ltd., Oxford, U.K.). Data reconstruction was 

performed using a one-pass listmode EM algorithm (EMrecon) (Kösters et al., 2011). 

Animals were injected with 10 MBq [
18

F]DPA-714 i.v. and images were acquired 45-75 min 

p.i.. Following the PET acquisition, the animal bed was transferred to the CT scanner 

(Inveon, Siemens Healthcare) for acquiring anatomical information. The CT images were co-

registered to PET images using 3 spheres (Acros Organics, Geel, Belgium) rinsed in 

radiotracer prior to image acquisition as landmarks on the animal bed. 
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2.11 Magnetic resonance imaging (MRI) 

Mice were anaesthetised with 1.5% isoflurane (DeltaSelect; Dreieich, Germany) in 

O2/compressed air, 30/70 1L/min. MRI was performed with a 9.4 T small animal MR scanner 

with 20 cm bore size (Bio-Spec 94/20; Bruker BioSpin MRI GmbH, Ettlingen, Germany), 

operated with the ParaVision 5.1 software (Bruker BioSpin MRI GmbH). Using a helium-

cooled cryoprobe (Bruker BioSpin MRI GmbH), we obtained anatomical 2D T2w RARE 

brain images in three imaging planes (TR/TE 3000-5000/50, 12-28 slices, slice thickness 0.5 

mm, field of view 2 cm², matrix 256², in plane resolution 78 µm²). 

 

2.12 PET data analysis 

PET and MR image data were analysed using VINCI software (Vollmar et al., 2004). Fusion 

of PET and CT images was performed using the landmark tool of the VINCI software and 

PET/CT and MR images were co-registered using the contour of the mouse skull. Co-

registered images were matched to a mouse brain template generated from the Swanson 

mouse brain atlas (Swanson, 2001) and VOIs for SN and striatum were defined based on the 

brain atlas. Quantification is based on mean tracer uptake values for the respective VOIs. The 

VOI for the right unlesioned striatum was used as background VOI. 

 

2.13 Bioluminescence imaging (BLI) 

After virus injection, BLI was performed on a weekly basis using the IVIS Spectrum Imaging 

System and Living Image 4.0 software (PerkinElmer, Waltham, MA, USA). The day before 

measurement, fur on the head was removed using depilatory cream (Pilca) under isoflurane 

(Abbott Animal Health) anaesthesia. Mice were injected i.p. with 300 mg/kg D-luciferin in 

phosphate buffered saline (PBS) without calcium and magnesium (PAA Laboratories). 3 min 

post D-luciferin injection, mice were anaesthetised with 2.5% isoflurane in 100% oxygen and 
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placed in the imaging system before two 10 min time frames were recorded at 8 and 18 min 

p.i. (field of view (FOV): B, subject height 1.5 cm, binning: 4, f/stop: 1). Grayscale 

photographic images and bioluminescence colour images were superimposed. Regions of 

interest were drawn for the right and left SVZ and OB to determine the signal intensity 

(Average Radiance [p/s/cm
2
/sr]). 

 

2.14 Immunohistochemistry 

Mice were deeply anaesthetised with 5% isoflurane and transcardially perfused with 0.9% 

NaCl followed by 4% paraformaldehyde (PFA). Brains were isolated and post-fixed over 

night in 4% PFA. After paraffin embedding, 5 µm thick coronal microtome sections were cut. 

Following deparaffinisation and rehydration, sections were boiled in citrate buffer (pH6, 

25°C) for antigen retrieval and stained according to one of the subsequent protocols using 

primary antibodies against Tyrosine Hydroxylase (Chk α TH 1:1000; ab76442, Abcam, 

Cambridge, UK), Iba1 (Rb α Iba1 1:250; #019-19742, Wako Chemicals, Neuss, Germany), 

Doublecortin (Gp α Dcx 1:400; AB2253, Millipore, Billerica, MA, USA), GFAP (Chk α 

GFAP 1:1000; ab13970, Abcam) or TSPO (Rb α PBR 1:250; EPR5384, Novus Biologicals, 

Cambridge, UK). 

Immunofluorescence staining: After washing with PBS and preincubation with blocking 

solution (4% goat serum, 0.25% Triton-X in PBS) for 20 min, sections were incubated with 

primary antibody in blocking solution at 4°C over night, washed with PBS and incubated 

with the respective secondary antibody (Alexa Fluor 488/555 1:800, Life Technologies) in 

blocking solution for 45 min at RT in a dark chamber. After washing with PBS, sections were 

incubated with 0.5 µg/ml DAPI (Carl Roth) in PBS for 7 min, washed again and mounted 

with Mowiol (Sigma-Aldrich). 
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Immunoperoxidase staining: Blocking was performed with Peroxidase-blocking solution 

(S2023, Dako, Hamburg, Germany) for 10 min followed by washing with PBS. Sections were 

then incubated in primary antibody diluted in antibody diluent (S3022, Dako), washed in 

PBS, incubated with biotinylated secondary antibody (DSB-X™ Biotin Goat Anti-Chicken 

IgG 1:800, Life Technologies) in antibody diluent, washed in PBS and incubated with HRP-

Streptavidin conjugate (1:600 in PBS, P0397, Dako) for 45 min. After final washing in PBS, 

sections were placed in 2% 3,3'-Diaminobenzidine (DAB), 0.0012% H2O2 until reaching a 

good staining intensity. Sections were counterstained with haematoxylin for 5-10 sec (1:3 in 

Aqua dest), dehydrated and mounted in entellan (Millipore). 

 

2.15 Microscopy 

Stained sections were analysed using a Nikon ECLIPSE Ni-E microscope operated by the 

NIS-Elements AR software. Z-Stacks (± 2 µm in 0.5 µm steps) were recorded and combined 

to a focused image using the extended depth of focus (EDF) function. 

For quantification purposes, cells from 3 images from the respective region of every animal 

were manually counted. 

2.16 Statistical analysis 

Statistical analysis was performed in Sigma Plot 13.0 (Systat Software Inc, San Jose, CA, 

USA). SPECT data and Iba1
+
 cell counts were analysed using a Two Way ANOVA followed 

by a Pairwise Multiple Comparison Procedure (Holm-Sidak Method). PET data were 

analysed using a Mann-Whitney Rank Sum Test. BLI data were analysed using a Two Way 

Repeated Measures ANOVA. For data analysed using ANOVA, values are shown as mean 

values (M) with standard deviation (SD). For data analysed using the Mann-Whitney Rank 

Sum Test, values are shown as median values (Mdn) with upper and lower percentiles. A P-

value below 0.05 was considered as significant. 
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3. RESULTS 

Neurodegenerative processes in PD were reported to be accompanied by neuroinflammatory 

processes, which potentially can both favour or reduce disease progression and regeneration. 

We therefore investigated neurodegeneration, neuroinflammation, and stem cell properties in 

the unilateral 6-OHDA injection mouse model for PD. The detailed experimental setup 

including the exact numbers of studied animals and the timing of the various imaging 

approaches is illustrated in supplementary Figure S2 and S3. 

 

3.1 6-OHDA induced neurodegeneration 

In order to ensure degeneration of dopaminergic nigrostriatal projections in 6-OHDA treated 

animals and integrity of the nigrostriatal system in vehicle injected animals, [
123

I]Ioflupane-

SPECT was performed at different time points post injection (Fig. 1a and supplementary Fig. 

S2). Tracer uptake in the left striatum was observed to be reduced in 6-OHDA treated (nd3 = 

5; nd7 = 4; nd18 = 7) compared to vehicle injected (nd3 = 3; nd7 = 5; nd18 = 8) mice at all studied 

time points (Fig. 1 a & b), whereas tracer uptake in the right striatum did not change (Fig. 

1c), indicating degeneration of ipsilateral striatal projections without compensation on the 

contralateral site. Both, left and right striatum, showed a very variable absolute tracer uptake 

between the different time points, which did not allow for statistical testing with a Two Way 

ANOVA due to violation of the equal variance assumption. As presynaptic dopamine 

transporter (DaT) levels can vary between individuals, and specific activities can vary 

between tracer syntheses, we calculated the ratio of the mean tracer uptake in the striatum 

left/right (Fig. 1d). The specific [
123

I]Ioflupane  uptake ratio between vehicle- and 6-OHDA-

injected animals differed significantly (Two Way ANOVA, F1,26 = 117.67, P < 0.001) and 

was significantly reduced in 6-OHDA treated compared to vehicle treated animals at all time 

points (d3: M6-OHDA = 0.08, SD6-OHDA = 0.30, Mvehicle = 0.96, SDvehicle = 0.08, t = 6.34, P < 
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0.001; d7: M6-OHDA = 0.34, SD6-OHDA = 0.11, Mvehicle = 1.09, SDvehicle = 0.06, t = 5.83, P < 

0.001; d18: M6-OHDA = 0.09, SD6-OHDA = 0.12, Mvehicle = 0.77, SDvehicle = 0.20, t = 6.94, P < 

0.001; Pairwise Multiple Comparison Procedure, Holm-Sidak method). No statistically 

significant interaction between group and time point could be observed (Two Way ANOVA, 

F2,26 = 0.68 , P = 0.52), suggesting that nigrostriatal degeneration is a fast process taking a 

maximal time of a few days to reach the final state of degeneration. Intranigral application of 

6-OHDA induced a fast degeneration of axonal projections towards the striatum, which was 

also visible in histological stainings for tyrosine hydroxylase (TH), the rate-limiting enzyme 

in the synthesis of dopamine (Nagatsu et al., 1964). TH staining intensity was clearly reduced 

in the left striatum as well as numbers of TH
+
 cell bodies in the left SN, compared to the 

unlesioned contralateral side (Fig. 2a & b). The observed amount of degeneration was 

comparable at all studied time points, again stressing the short time frame needed for 

neurodegeneration in this model. 

 

3.2 Neuroinflammatory processes accompanying neurodegeneration 

As several studies reported neuroinflammation accompanying degeneration of dopaminergic 

neurons in PD, we aimed to investigate the presence of neuroinflammation after 6-OHDA 

lesion. To assess this parameter, we performed PET with the TSPO ligand [
18

F]DPA-714 at 7 

(nvehicle = 6; n6-OHDA = 7), 14 (nvehicle = 12; n6-OHDA = 12) and 21 (nvehicle = 11; n6-OHDA = 9) days 

post lesion (supplementary Fig. S2). Tracer uptake was clearly visible in the left SN as well 

as in the injection tract region (Fig. 3a). At 7 days post injection (dpi), tracer uptake was 

higher in the left SN, compared to right SN in 6-OHDA and vehicle treated animals, but 

without reaching statistical significance between both groups (Figure 4b, ratio SNleft/SNright, 

Mdn6-OHDA = 1.29, Mdnvehicle = 1.09, U = 12.0, P = 0.234; Mann-Whitney Rank Sum Test), 

pointing out enhanced inflammatory processes in both groups due to the injection procedure. 
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At 14 days post injection (dpi), the signal-to-background ratio and the SNleft/SNright ratio was 

increased in 6-OHDA lesioned compared to vehicle injected animals (Figure 4a & b), 

showing increased inflammation after neurotoxic degeneration (SN left/background: Mdn6-

OHDA = 1.60, Mdnvehicle= 1.26, U = 29.0, P = 0.014; SN left/right: Mdn6-OHDA = 1.27, 

Mdnvehicle= 1.08, U = 36.0, P = 0.040; Mann-Whitney Rank Sum Test). This 

neuroinflammatory response abated 21 days post injection, as measured by not significantly 

altered signal to background and SNleft/SNright ratios (SN left/background: Mdn6-OHDA = 1.28, 

Mdnvehicle= 1.42, U = 39.0, P = 0.447; SN left/right: Mdn6-OHDA = 1.11, Mdnvehicle= 1.17, U = 

49.0, P = 1.0; Mann-Whitney Rank Sum Test).  

The median left/right tracer uptake ratio for the striatum was comparable at day 7 and day 21 

(Figure 3b & 4e), while it was slightly, but significantly, higher in the 6-OHDA lesioned 

striatum at day 14 (d7: Mdn6-OHDA = 1.08, Mdnvehicle = 1.01, U = 7.0, P = 0.051; Mdn d14: 

Mdn6-OHDA = 1.03, Mdnvehicle = 0.95, U = 31.0, P = 0.019; d21: Mdn6-OHDA = 0.98, Mdnvehicle =  

1.01, U = 45.0, P = 0.761; Mann-Whitney Rank Sum Test).  

As the injection procedure itself might cause increased inflammation and thereby influence 

quantification of tracer uptake in 6-OHDA vs. vehicle, we calculated the ratio injection 

tract/background and mean %ID tracer uptake in the injection tract at 7 (nvehicle = 6; n6-OHDA = 

8) and 14 dpi (nvehicle = 9; n6-OHDA = 10) (Figure 4c & 4d). Due to advanced healing processes, 

the injection tract was not visible in all cases on day 21 in the MRI data and was therefore not 

quantified. Median tracer uptake in the injection tract did not differ significantly between 6-

OHDA and vehicle injected brains (injection tract/background: d7: Mdn6-OHDA = 1.64, 

Mdnvehicle = 1.55, U = 18.0, P = 0.491; d14: Mdn6-OHDA = 1.49, Mdnvehicle =  1.49, U = 44.0, P 

= 0.967; %ID injection tract: d7: Mdn6-OHDA = 2.21, Mdnvehicle = 1.92, U = 19.0, P = 0.573; 

d14: Mdn6-OHDA = 1.89, Mdnvehicle =  1.63, U = 39.0, P = 0.653; Mann-Whitney Rank Sum 

Test), and was lower at d14 in general, but without reaching statistical significance. 
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3.3 Histological analysis of microglial and astrocytic markers 

We performed immunohistological stainings of SN and striatum for the microglial markers 

ionized calcium-binding adapter molecule 1 (Iba1) and TSPO, as well as for the astrocytic 

marker glial fibrillary acidic protein (GFAP) at 7, 14 and 21 dpi. Increased staining for Iba1
+
 

microglia was observed in the ipsilateral 6-OHDA-injected SN compared to the vehicle 

injected SN at all time points (Fig. 5a). The vehicle-injected SN displayed a certain amount 

of microgliosis, but without reaching the magnitude of the 6-OHDA condition. A peak in 

Iba1
+
 microgliosis in the SN could be observed at day 14 post lesion. Microglia in the 

lesioned SN displayed an activated phenotype, as determined by increased cell body size and 

reduced ramifications (arrows in Fig. 5a). TSPO staining displayed the same regional 

patterning as Iba1 staining, while the staining was speckled over the cell body, prohibiting 

determination of the cell morphology (Fig. 5b). Astrogliosis, as shown by GFAP positivity, 

was persistent over time in the ipsilateral SN in 6-OHDA injected animals, but also observed 

in the ipsilateral SN of vehicle injected mice, indicating the role of astrocytes in wound 

healing (Fig. 5b).  

TSPO staining was barely detectable in the ipsilateral striatum of 6-OHDA and vehicle 

injected animals, suggesting weak or no activation of striatal microglia. In the ipsilateral 

striatum of 6-OHDA lesioned animals, Iba1 staining was unchanged (Figure 5 c, e-f ) and the 

left/right ratio of Iba1
+
 cells was not significantly different between 6-OHDA and vehicle 

condition (Two Way ANOVA, F1,15 = 3.737, P = 0.072). In contrast, increased numbers of 

GFAP
+
 cells were observed (Figure 5d), compared to striatum of vehicle injected specimen. 

Likewise, vehicle injection led to a slight increase in GFAP
+
 cells compared to the 

contralateral site, but not to the same extent as after 6-OHDA injection. 
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3.4 Effect of neurodegeneration and –inflammation on neural stem cell proliferation 

and migration 

In order to study the effect of neurodegeneration and neuroinflammation on neural stem cell 

(NSC) proliferation and migration in the unilateral 6-OHDA PD model, we first established 

injections of virus particles into the SVZ of FVB mice (the experimental setup is illustrated in 

supplemental Fig. S3). FVB mice were used because pigmented fur and skin of C57Bl6 do 

not allow for reliable quantification of optical imaging data due to light absorption and 

scattering. The plasmid used for production of lentiviral particles encodes mCherry and 

firefly luciferase protein and is driven by a cytomegalovirus (CMV) promoter (supplemental 

Fig. S1). BLI was conducted weekly in order to follow migration of infected neuroblasts, and 

proliferation and migration of progeny of infected NSCs in the same animal over time. One 

week post injection, BLI signal was detected at the site of injection in n = 24 out of 24 

animals (100 %), but could not be quantified accurately due to remaining fur. At two to four 

weeks post injection, signals showed anterior extension in 12 out of 24 animals (50 %), 

demonstrating migration of labelled neuroblasts towards the OB (Fig. 6a). Animals which 

showed no anterior light signal extension were excluded from the study as virus particles in 

these cases failed to infect progenitor cells probably due to mislocated injections. Over time, 

the OB/SVZ changes significantly (Figure 6c; One Way Repeated Measures ANOVA, F5,40 = 

8.62, P < 0.001) and from week 5 post virus injection on, the mean OB/SVZ ratio was 

significantly higher compared to week 2 (Holm-Sidak Pairwise Multiple Comparison; week 5 

vs. week 2: t = 3.33, P = 0.021; week 6 vs. week 2: t = 4.36, P = 0.001; week 7 vs. week 2: t 

= 5.65, P < 0.001) clearly showing signal accumulation in the OB over time. At 7.5 weeks 

post virus injection, 6-OHDA and vehicle injections into the SN were performed (n6-OHDA = 5, 

nvehicle = 4) and weekly measurements were performed for additional 6 weeks (Fig. 6b). We 

used the OB/SVZ ratio for quantification in order to correct for fluctuations in total signal 
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which originate from varying intraperitoneal absorption dynamics between different substrate 

injections. In order to correct for individual differences in signal distribution, the relative 

signal change compared to the mean value of the two measurements before lesion was 

computed (Fig. 6d & e).The absolute OB signal, SVZ signal, and OB/SVZ signal ratio is in 

addition displayed in supplemental Figure S4. After lesion induction, no significantly 

different mean SVZ/OB ratio change (Fig. 6e) in the 6-OHDA group was observed compared 

to the vehicle group (Two Way Repeated Measures ANOVA, F1,42 = 0.0962, P = 0.765). The 

mean OB signal change (Fig. 6d) showed high intra-individual differences and did not fulfil 

the equal variance assumption of the ANOVA (Shapiro-Wilk, P = 0.03). 

Degeneration of dopaminergic neurons in the 6-OHDA lesioned SN and integrity of 

dopaminergic neurons in the vehicle-injected SN was validated after the final BLI acquisition 

by immunohistochemistry for TH in all animals included in the BLI data analysis (data not 

shown). 

3.5 Histological analysis of neural progenitor cells post 6-OHDA lesion 

As the detection of very small alterations in progenitor cell migration is challenging 

employing BLI, we additionally analysed sections from C57Bl6 mouse SVZ at different time 

points post intranigral 6-OHDA/vehicle injection. As a marker for neurogenesis, we used 

Doublecortin (Dcx, Fig. 7). Dcx is a microtubule-associated protein transiently expressed in 

neuronal progenitor cells and immature neurons (Brown et al., 2003) mainly in SVZ, dentate 

gyrus, rostral migratory stream and OB. Visual inspection at 4, 8, 15 and 21 days post lesion 

indicates no difference in Dcx staining between the contra- and ipsilateral SVZ of 6-OHDA 

lesioned and vehicle injected animals, leading to the assumption that neuroblast generation is 

not affected by the pathophysiological changes in the 6-OHDA lesioned brain (Fig. 7). 

Furthermore, only single or no Dcx
+
 cells were observed at more lateral positions of the 

striatum.  
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4. DISCUSSION 

This study sought to shed light on the complex interplay of neurodegeneration, 

neuroinflammation and neurogenesis in the unilateral intranigral 6-OHDA-injection model of 

Parkinson’s disease.  

Employing [
123

I]Ioflupane-SPECT, we observed significantly reduced tracer binding in the 

lesioned striatum at 3, 7, and 18 days post lesion, indicating degeneration of ipsilateral striatal 

projections with loss of DaTs in a time frame of several days. 

At 14 dpi, increased uptake ratios for [
18

F]DPA-714 were measured in 6-OHDA lesioned 

compared to vehicle injected animals via PET. Striatal DPA-714 uptake ratios were 

comparable at day 7 and day 21, while they were slightly, but significantly, higher in the 6-

OHDA lesioned striatum at day 14.  

Histological analysis revealed a peak in Iba1
+
 microgliosis in the SN at day 14 post lesion, 

but no increased numbers of microglia in the striatum. Astrogliosis, as shown by GFAP 

positive staining, was persistent over time in the ipsilateral SN in 6-OHDA injected animals, 

but it was also observed in the ipsilateral SN of vehicle injected mice. Increased astrogliosis 

was also detectable in the ipsilateral striatum of 6-OHDA injected mice. 

We could visualise migration of labelled neuroblasts towards the OB using BLI after virus 

injection, with a stable signal distribution at week 7. After 6-OHDA lesion, no significantly 

different OB or OB/SVZ signal was observed compared to the vehicle group. Histological 

analysis of Dcx expression in the SVZ underlined unaltered neuroblast generation. 

4.1 Intranigral 6-OHDA-injection induces a fast degeneration of the nigrostriatal 

system 

Induction of dopaminergic neurodegeneration by 6-OHDA injection into the SN allows the 

study of SVZ neurogenesis after degeneration of striatal projections without direct influence 

from the damage caused by the injection procedure itself. After intranigral injection, we 
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observed degeneration of dopaminergic neurons taking place over several days, as also 

described after SN or medial forebrain bundle (MFB) neurotoxin administration (Jeon et al., 

1995, Walsh et al., 2011). The major portion of dopaminergic neurons in the SN was reported 

to die during the first 10 days post lesion in rats, while fibre degeneration in the striatum was 

observed between day 1 and 7 in the striatum (Jeon et al., 1995). We could observe this 

reduction in dopaminergic innervation as a strong reduction in DaT ligand accumulation in 

the ipsilateral striatum and reduced TH staining intensity at early and at late time points.  DaT 

density in the striatum is directly correlated with the number of dopaminergic cell bodies in 

the SN, making Ioflupane-SPECT an excellent read-out for dopaminergic neurodegeneration 

in the SN (Bäck et al., 2013). The detected amount of tracer uptake in the contralateral 

striatum was comparable at all time points, indicating that the contralateral site does not 

compensate for loss of innervation on the ipsilateral site. 

 

4.2 Degeneration of dopaminergic cell bodies is accompanied by acute 

neuroinflammation 

Degeneration of dopaminergic neurons was reported to be accompanied by 

neuroinflammatory processes in patients (Imamura et al., 2003, McGeer et al., 1988), and in 

animal models of PD (Akiyama and McGeer, 1989, Czlonkowska et al., 1996). Our in vivo 

PET study showed an acute increase in TSPO-ligand accumulation at the direct lesion site in 

6-OHDA compared to vehicle injected animals, while tracer accumulation in the striatum was 

significantly, but very slightly (Mdn6-OHDA = 1.03, Mdnvehicle = 0.95) increased. However, 

visual inspection of the PET datasets as well as analysis of the corresponding 

immunohistochemistry for Iba1 and TSPO gave no evidence for significant microglial 

activation in the striatum. We would expect to observe left/right ratios of 1.0 in control 

animals and > 1.0 in animals with increased inflammation of the ipsilateral side, while we 
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observed a value of < 1.0 in the control condition. Most likely, the measured values are in the 

range of the normally occurring variations in tracer uptake and the observed P-value of below 

0.05 is coincidentally and has no biological relevance. 

As numbers of Iba1
+
 cells were unchanged in the striatum and TSPO reactivity was barely 

detectable, our data indicate, that degeneration of nerve terminals is no trigger for microglia 

activation, while degenerating cell bodies strongly trigger inflammatory cells.  

In line with this, previous studies proved increased microglia activation at the direct 6-OHDA 

lesion site in the SN, but only weak or missing microglia activation in the striatum (Kitamura 

et al., 2010, Walsh et al., 2011). In contrast, intrastriatal injections led to increased 

inflammation at the primary and secondary lesion site (Cicchetti et al., 2002, He et al., 2001, 

Maia et al., 2012). Concerning the time course of microglia activation, a peak in microglia 

activation in the SN at 2 weeks post lesion was reported for intrastriatal 6-OHDA injection in 

rats (Cicchetti et al., 2002, Maia et al., 2012) and mice (He et al., 2001), further underlining 

our observation that microglia activation is an acute process in this PD model. If microglia 

activation appears only after the neurodegenerative process is complete, or already during the 

neurodegenerative process remains elusive. Due to the invasiveness of the intranigral 

injection, we cannot distinguish between early degeneration-induced neuroinflammation and 

the inflammatory response caused by the injection procedure itself. Therefore, we cannot rule 

out, that inflammation is already present during the neurodegenerative process and not only 

after completion of this process. In addition, blood brain barrier (BBB) integrity might be 

crucial for the quantification of tracer uptake, as the mechanical damage caused by the 

injection procedure certainly increases BBB permeability early after lesion. However, this 

effect will influence tracer uptake in both, vehicle and 6-OHDA-lesioned animals and 

therefore does not interfere with our analysis. Moreover, our histological findings confirmed 

our PET imaging findings. As the variability of tracer uptake and inter-individual differences 
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are major challenges for PET quantification, longitudinal imaging and injection of 6-OHDA 

and vehicle in the same animal might reduce group variability in future studies. However, this 

experimental setup lacks the possibility for direct histological validation and does not allow 

the evaluation of the integrity of the nigrostriatal system following vehicle injection by in 

vivo imaging. 

 

4.3 Degeneration of the nigrostriatal system leads to persistent astrogliosis 

Despite the missing striatal microgliosis, we found severe and persistent astrogliosis in SN 

and striatum after 6-OHDA lesion, demonstrated by GFAP immunoreactivity. Increased 

numbers of nigral and striatal astrocytes were previously shown in several models of 6-

OHDA administration (Akiyama and McGeer, 1989, Maeda et al., 2008, Sheng et al., 1993). 

Striatal astrocytes might derive from resident astrocytes that undergo de-differentiation 

(Buffo et al., 2008), as well as from SVZ progenitor cells (Levison and Goldman, 1993). 

After intraventricular application of 6-OHDA in rats, numbers of Ki67
+
 proliferating cells 

were reported to be unchanged in the SVZ, while proliferation was increased in striatum and 

cortex (Wachter et al., 2010). These proliferating cells did not co-localise with the microglial 

marker Iba1, but with the astrocytic marker GFAP, identifying them as locally proliferating 

astrocytes. Persistent astrogliosis potentially reflects residual astrocytic scarring, which 

remains after the phagocytotic activity has been completed (Akiyama and McGeer, 1989). 

 

4.4 Subventricular neurogenesis is unaffected by striatal deafferentation 

Previous studies implemented lentiviral in vivo transduction of neural stem cells with 

constructs encoding for firefly luciferase as a tool to follow migration of progenitor cells in 

the SVZ – OB axis and showed that sensitivity of this method is sufficient to detect 

alterations in neurogenesis caused by bone derived neurotrophic factor overexpression 
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(Reumers et al., 2008) or cuprizone treatment (Guglielmetti et al., 2013). We established 

injections of LV-CMV-LIC into the SVZ and could follow progenitor cell migration towards 

the OB over time using BLI. Neurotoxin injection into the left SN led to unchanged relative 

OB/SVZ signal ratios. However, we observed a smaller absolute OB/SVZ ratio in 6-OHDA 

lesioned compared to vehicle injected animals. In fact, this difference was already present 

prior to lesion, indicating that it is independent of the lesion procedure, and is not present in 

the quantification of the OB/SVZ ratio relative to the mean value of the two last 

measurements before lesion. Taken together, our data suggest unaffected neural progenitor 

cell migration in FVB mice following 6-OHDA lesion. Our histological analysis of Dcx
+
 

cells in the SVZ of C57Bl6 mice further supports this in vivo imaging based observation. 

These findings are in line with results from intrastriatal 6-OHDA injections in rats, which led 

to increased numbers of proliferating cells in the SVZ, without affecting numbers of Dcx
+
 

cells (Aponso et al., 2008). The characterisation of these new born cells revealed high 

expression of the astrocytic marker GFAP, indicative of lesion-induced astrogenesis. 

Additionally, intranigral injection of 6-OHDA in mice was reported to lead to no changes in 

striatal 5-Ethynyl-2’-deoxyuridine (EdU) incorporating cells or SVZ neuroblasts, while 

inhibition of neuroinflammation by minocycline led to increased EdU
+
 cells and neuroblasts 

migrating deeply into the striatum in 6-OHDA but not vehicle injected animals (Worlitzer et 

al., 2012). On the other hand, a 40% reduction in proliferating neural precursors in the SVZ 

was reported after 6-OHDA lesion of the MFB and SN in mice (Baker et al., 2004). It is 

important to notice that these mice received double 6-OHDA injections which led to a nearly 

complete dopamine deprivation. As neural progenitor cells might be dopamine-sensitive 

(O’Keeffe et al., 2009), a complete loss of striatal dopamine could affect cell proliferation in 

a different manner than a reduction in dopamine content.  Based on our findings and the 

existing literature, neurodegeneration and neuroinflammation do not seem to affect 
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neuroblast generation, but might affect the proliferation of progenitor cells and in parallel 

shift the ratio of neuro-/gliogenesis towards gliogenesis, in particular astrogenesis. One 

possible explanation for the lack of neurogenesis coming along with increased progenitor cell 

proliferation might be the lack of stimulatory cues and a restrictive microenvironment 

(Raponi et al., 2007). 

 

4.5 Conclusion 

To our knowledge, this is the first study which covered in vivo imaging of neurodegeneration, 

neuroinflammation, and neurogenesis in the SVZ-OB axis in the same Parkinson’s disease 

mouse model. We were able to validate our imaging findings with extensive histology for 

TH
+
 dopaminergic neurons, GFAP

+
 astrocytes, as well as TSPO

+
 and/or Iba1

+
 microglia, 

showing that in vivo imaging is able to pick up changes in neurodegeneration and 

neuroinflammation following 6-OHDA lesion. After our careful immunohistochemical 

analysis, these methods can now be used to perform longitudinal studies, thereby reducing 

interindividual differences while at the same time reducing the numbers of animals. We 

found that activation of microglia is an acute process coming along with the degeneration of 

dopaminergic cell bodies, and potentially reinforcing neuronal loss. Dopaminergic 

deafferentation of the striatum has no impact on the generation of Dcx
+
 neuroblasts in the 

SVZ, but strongly triggers chronic astrogliosis. Our results suggest, that early anti-

inflammatory treatment might reduce neuronal loss in the SN, while at later time points, 

treatments that increase neural progenitor cell proliferation and shift the fate of newly 

generated cells towards a neuronal phenotype could be a favourable approach. 
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ABBREVIATIONS 

%ID percent injected dose 

[
18

F]DPA-714 N,N-diethyl-2-(2-(4-(2-[18F]fluoroethoxy)phenyl)-5,7-

dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide) 

6-OHDA 6-hydroxydopamine  

BBB blood brain barrier 
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BLI bioluminescence imaging  

CMV cytomegalovirus 

d day 

DaT presynaptic dopamine transporter 

Dcx doublecortin 

dpi days post injection 

EdU 5-Ethynyl-2’-deoxyuridine  

GFAP glial fibrillary acidic protein 

Iba1 ionized calcium-binding adapter molecule 1 

MFB medial forebrain bundle  

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridin 

MRI Magnetic resonance imaging  

NSC neural stem cell 

OB olfactory bulb  

PD Parkinson’s disease 

PET positron emission tomography  

SGZ subgranular zone  

SN substantia nigra  

SPECT single photon emission computed tomography 

SVZ subventricular zone  

TH tyrosine hydroxylase  

TSPO translocator protein  
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FIGURE LEGENDS 

 

Figure 1: Intranigral 6-OHDA infusion leads to a fast degeneration of the nigrostriatal 

system. (A) Representative pictures of [
123

I]Ioflupane-SPECT/T2w MRI in 6-OHDA- and 

vehicle-injected mice at different time points post injection in axial projections of the 

striatum. (B) Quantification of specific [
123

I]Ioflupane uptake in the left striatum. (C) Specific 

striatal [
123

I]Ioflupane uptake in the right striatum. (D) Specific [
123

I]Ioflupane uptake ratio 

striatum left/right. Significance levels: * P<0.05, ** P<0.01, *** P<0.001, Two Way 

ANOVA. Error bars: SD. 

 

Figure 2: Histological validation of 6-OHDA induced neurodegeneration. Representative 

Tyrosine hydroxylase (TH) immunostainings in the striatum (A) and the substantia nigra (B) 

at day 8, 15, and 22 post intranigral vehicle or 6-OHDA injection.  

Figure 3: Degeneration of dopaminergic neurons is accompanied by acute microglia 

activation in the substantia nigra. Representative pictures of coregistered [
18

F]DPA-714-

PET/T2w MRI and [
18

F]DPA-714-PET alone in 6-OHDA- and vehicle-injected mice at 

different time points post injection in axial views of the substantia nigra (A) or the striatum 

(B). The white cross marker shows the position of the substantia nigra (A) or the striatum (B).  
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Figure 4: Quantification of [
18

F]DPA-714 uptake in substantia nigra, injection tract and 

striatum. (A) Signal to background ratio for the left substantia nigra. (B) Nigral uptake ratio 

left/right. (C) Signal to background ratio for the injection tract. (D) Mean %ID tracer uptake 

in the injection tract. (E) Quantification of mean striatal tracer uptake ratio left/right. 

Significance level: * P<0.05, Mann-Whitney Rank Sum Test. Box plot shows median value 

and upper/lower quartiles. Whiskers display minimal and maximal values obtained. The 

dotted lines mark the left /right ratio of 1.0. 

 

Figure 5: Histological markers validate presence of micro- and astrogliosis in the 

substantia nigra, but lack of substantial microgliosis in the striatum.  

(A) Costaining for dopaminergic neurons (TH) and microglia (Iba1) in the ipsilateral SN at 8, 

15 and 22 dpi. Arrows show microglia cells displaying an activated phenotype. (B) 

GFAP/TSPO costaining in the ipsilateral SN at 8, 15 and 22 dpi. (C) Microglia (Iba1) 

staining in the striatum at 8, 15 and 22 dpi. (D) GFAP staining in the striatum at 8, 15 and 22 

dpi. (E) Quantification of Iba
+
 cell ratio left/right in the striatum. Two Way ANOVA. 

Significance level: P < 0.05. Error bars: SD.  (F) Costaining for GFAP (astrocytes) and TSPO 

(activated microglia) in the striatum at 15 days post lesion. Scale bars: 100 µm. 

 

Figure 6: BLI of subventricular neurogenesis indicates no detectable alterations 

following chemical lesion. (A) Representative images of BLI signal post virus injection. (B) 

Representative images of BLI signal pre- and post vehicle or 6-OHDA infusion. Dotted lines 

mark the region in between anterior OB and SVZ (injection site). (C) The mean OB/SVZ 

signal ratio after virus injection increases significantly over time. Significance level: vs. week 

2 *P < 0.05, **P < 0.01, ***P < 001; vs. week 3 
#
P < 0.05, 

##
P < 0.01; vs. week 4 

§
P < 0.05; 

One Way Repeated Measures ANOVA.  (D) Relative change of OB signal post 6-
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OHDA/vehicle infusion (relative to the mean value obtained in the two measurements before 

lesion).  (E) No significant change in the relative OB/SVZ ratio was observed between 6-

OHDA and vehicle treated groups (relative to the mean value obtained in the two 

measurements before lesion). Two Way Repeated Measures ANOVA, F1,42 = 0.0962, P = 

0.765. Significance level: 0.05. Error bars: SD. 

Figure 7: Dcx expression pattern in the SVZ is unaltered after neurotoxic lesion.  

Staining for neuroblasts (Dcx) after intranigral injection of 6-OHDA or vehicle in C57Bl6 

mice. Both contra- and ipsilateral SVZ are displayed.  Lesion leads to an unchanged 

expression of Dcx in the contra- and ipsilateral SVZ in both 6-OHDA and vehicle injected 

animals. The dotted line defines the border of the lateral ventricle. Str: Striatum, LV: lateral 

ventricle. Scale bar: 50 µm. 
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