IAJPS 2016, 3 (12), 1488-1491

K. Sai Sasank *et al*

ISSN 2349-7750

CODEN (USA): IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF

PHARMACEUTICAL SCIENCES

Available online at: <u>http://www.iajps.com</u>

Review Article

NANO TECHNOLOGY: A NEW THERAPEUTIC APPROACH FOR DIABETES

K. Sai Sasank *¹, Dr. Greeshma Musunuru², Nalluri Kranthi Koushik ¹, Dr. R. Venkateswara Rao², Dr. Ramarao Nadendla³

¹ Doctor of Pharmacy, Chalapathi Institute of Pharmaceutical sciences, Guntur, Andhra Pradesh.
² Assistant Professor, Chalapathi Institute of Pharmaceutical sciences, Guntur, Andhra Pradesh.
³ Principal, Chalapathi Institute of Pharmaceutical sciences, Guntur, Andhra Pradesh.

Abstract:

Nano technology an exciting area of scientific development offers ways to create smaller, cheaper, lighter devices that can help to do better. The current literature has recognized and reported many possibility and applications of nano technology. The medical applications of nano technology are tremendous and could give medicine including the treatment of diabetes a new therapeutic approach. The frequency of diabetes is growing rapidly all over the globe at an alarming rate. Hence, the application of nano technology plays a very vital role in diabetes. Nano technology is useful in detection of even very minute amounts of insulin and blood sugar levels in the body. The treatment of diabetes includes proper delivery of insulin into blood stream which can be attained by nano technology by developing oral insulin which can make patient comfortable and patient compliance. Development of artificial pancreas can also be accomplished by using nano technology. Silicon boxes can also be implanted under the skin of diabetic patient that could temporarily restore the bodies' glucose feedback loop. Without the need of powerful immunosuppressant's that is acquired by nano technology. Another important approach of nano technology is a nano pump which injects insulin to the patient's body at a constant rate balancing the amount of sugar in blood. And also can administer the small drug doses over a prolong period of time. Therefore, nano technology a new mode of treatment may help in making the everyday lives of millions of diabetics patients more tolerable.

Key words: Diabetes mellitus, nanotechnology and nanoparticals.

Corresponding author: K. Sai Sasank,

Doctor of Pharmacy, Chalapathi Institute of Pharmaceutical sciences, Guntur,Andhra Pradesh.

Please cite this article in press as K. Sai Sasank et al, Nano Technology: A New Therapeutic Approach for Diabetes, Indo Am. J. P. Sci, 2016; 3(12).

INTRODUCTION:

The application of nanotechnology to medicine is called nanomedicine, it is defined as: "Research and technology development at the atomic, molecular and macromolecular levels in the length scale of approximately 1 - 100 nanometer range, to provide a fundamental understanding of phenomena and materials at the nanoscale and to create and use structures, devices and systems that have novel properties and functions because of their small and/or intermediate size." The size domains of components involved with nanotechnology are similar to

that of biological structures. Because of this similarity in scale and certain functional properties, nanotechnology is a natural progression of many areas of health-related research such as synthetic and hybrid nanostructures that can sense and repair biological lesions and damages just as biological nanostructures (e.g. white-blood cells and woundhealing molecules) [1].

DIABETES MILLETUS:

Diabetes mellitus often referred to simply as diabetes.It is a syndrome of disordered metabolism, usually due to a combination of hereditary and environmental causes, resulting in abnormally high blood sugar levels (hyperglycemia). There are two major forms of diabetes: Type 1 and Type 2. Type2 diabetes is commonly linked to obesity, which promotes insulin resistance [2]. In many obese individuals, insulin resistance is compensated for by increased insulin production, which can occur if there is an increase in β cell mass [3]. In approximately one third of obese individuals, there is a decreased cell mass caused by a marked increase in cell apoptosis, rendering these individuals Incapable of compensating for the insulin-resistant state. Similarly, type 1 diabetes is associated with a loss of beta cell mass, typically caused by autoimmuneinduced inflammation and apoptosis [4]. Thus, both type 1 and type 2 diabetes are negatively affected by the death of beta cells in the pancreas, resulting in production. inadequate insulin Long-term manifestations of diabetes include retinopathy, nephropathy, angiopathy, neuropathy, atherosclerosis, periodontitis, and other diabetic complications, such as impaired wound-healing.

USE OF NANO TECHNOLOGY IN THE DETECTION OF BLOOD SUGAR AND INSULIN:

A new method that uses nanotechnology to rapidly measure minute amounts of insulin and blood sugar level. It can be achieved by following ways :

By microphysiometer:

The microphysiometer is built from multiwall carbon nanotubes, which are like several flat sheets of carbon atoms stacked and rolled into very small tubes. The nanotubes are electrically conductive and the concentration of insulin in the chamber can be directly related to the current at the electrode and the nanotubes operate reliably at pH levels characteristic of living cells. Current detection methods measure insulin production at intervals by periodically collecting small samples and measuring their insulin levels. The new sensor detects insulin levels continuously by measuring the transfer of electrons produced when insulin molecules oxidize in the presence of glucose. When the cells produce more insulin molecules, the current in the sensor increases and vice versa, allowing monitoring insulin concentrations in real time [5].

By implantable sensor:

Use of polyethylene glycol beads coated with fluorescent molecules to monitor diabetes

Blood sugar levels are very effective in this method the beads are injected under the skin and stay in the interstitial fluid. When glucose in the interstitial fluid drops to dangerous levels, glucose displaces the fluorescent molecules and creates a glow. This glow is seen on a tattoo placed on the arm [1]. Sensor microchips are also being developed to continuously monitor key body parameters including pulse, temperature and blood glucose. A chip would be implanted under the skin and transmit a signal that could be monitored continuously.

USE OF NANO TECHNOLOGY IN THE TREATMENT OF DIABETES:

Diabetic patients control their blood-sugar levels via insulin introduced directly into the blood stream using injections. This unpleasant method is required since stomach acid destroys protein-based substances such as Insulin, making oral insulin consumption useless. The new System is based on inhaling the insulin (instead of injecting it) and on a controlled release of insulin into the bloodstream (instead of manually controlling the amount of insulin injected) [6]. The treatment of diabetes includes the proper delivery of insulin in the blood stream which can be achieved by nanotechnology in the following ways:

Development of oral insulin:

Production of pharmaceutically active proteins, such as insulin, in large quantities has become feasible[7,8].

The oral route is considered to be the most convenient and comfortable means for administration of insulin for less invasive and painless diabetes management, leading to a higher patient compliance [9]. Nevertheless, the intestinal epithelium is a major barrier to the absorption of hydrophilic drugs, as they cannot diffuse across epithelial cells through lipidbilayercell membranes to the bloodstream [10]. Therefore, attention has been given to improving the paracellular transport of hydrophilic drugs [11, 12]. A variety of intestinal permeation enhancers including chitosan (CS) have been used for the assistance of the absorption of hydrophilic macromolecules [13]. Therefore, a carrier system is needed to protect protein drugs from the harsh environment in the stomach and small intestine, if giv en orally [14]. Additionally, CS nanoparticals (NPs) enhanced the intestinal absorption of protein molecules to a greater extent than aqueous solutions of CS in vivo [15]. The insulin loaded NPs coated with muco adhesive CS may prolong their residence in the small intestine, infiltrate into the mucus layer and subsequently mediate transiently opening the tight junctions between epithelial cells while becoming unstable and broken apart due to their pHsensitivity and/or degradability. The insulin released from the broken-apart NPs could then permeate through the paracellular pathway to the bloodstream, its ultimate destination.

Microsphere for oral insulin production:

The most promising strategy to achieve oral insulin is the use of a microsphere system which is inherently a combination strategy. Microspheres act both as protease inhibitors by protecting the encapsulated insulin from enzymatic degradation within its matrix and as permeation enhancers by effectively crossing the epithelial layer after oral administration [16].

Artificial pancreas

Development of artificial pancreas could be the permanent solution for diabetic patients .The original idea was first described in 1974. The concept of its work is simple: A sensor electrode repeatedly measures the level of blood glucose; this information feeds into a small computer that energizes an infusion pump, and the needed units of insulin enter the bloodstream from a small reservoir [17]. Another way to restore body glucose is the use of a tiny silicon box that contains pancreatic beta cells taken from animals. The box is surrounded by a material with a very specific nanopore size (about 20 nanometers in diameter). These pores are big enough to allow for glucose and insulin to pass through them, but small enough to impede the passage of much larger immune system molecules. These boxes can be implanted under the skin of diabetes patients. This could temporarily restore the body's delicate glucose control feedback loop without the need of powerful immunosuppressant that can leave the patient at a serious risk of infection [18]. Scientists are also trying to create a nanorobot which would have insulin departed in inner chambers, and glucose level sensors on the surface. When blood glucose levels increase, the sensors on the surface would record it and insulin would be released. Yet, this kind of nanoartificial pancreas is still only a theory [19].

NANO PUMP:

The nanopump is a powerful device and has many possible applications in the medical field. The first application of the pump, introduced by Debiotech, is Insulin delivery. The pump injects Insulin to the patient's body in a constant rate, balancing the amount of sugars in patients' blood. The pump can also administer small drug doses over a long period of time [20].

CONCLUSION:

In the foreseeable future, the most important clinical application of nanotechnology will probably be in pharmaceutical development. Hopefully, the new kind of treatment may help in making the everyday lives of millions of diabetes patients more tolerable.

REFERENCES:

1.Neil Gordon , Uri Sagman . Nanomedicine Taxonomy; Canadian NanoBusiness Alliance,2003;1-28.

2.Kahn B, Flier J .Obesity and insulin resistance. J Clin Invest,2000;106: 473-481.

3.Dickson L, Rhodes C. Pancreatic beta-cell growth and survival in the onset of type 2 diabetes:a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab,2004; 287:E192-E198

(2004).

4.Donath M, Halban P. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47, 581-589 (2004).

5.Microphysiometer using multiwall carbon nanotubes enable constant realtime monitoring of microliters of insulin [electronic resource] [accessed 2008 Apr 18]. Available from: URL: http://nextbigfuture.com/2008/04/microphysiometerusing-multiwall carbon.html

6. Insulin Nanodrug under Development; [electronic resource] [accessed 2007 Oct 02]. Available from: URL:http://thefutureofthings.com/news/1014/insulin-nanodrug-underdevelopment.

7.Liang H F, Hong M H, Ho R M, Chung C K, Lin Y H, Chen C H and Sung H W. Novel method using a temperature-sensitive polymer (methylcellulose) to

thermally gel aqueous alginate as a pH-sensitive hydrogel Biomacromolecules 5, 1917–25(2004).

8.Smyth S and Heron A. Diabetes and obesity: the twin epidemics Nat. Med. 12, 75–80 (2006).

9.Krauland A H, Guggi D and Bernkop-Schn"urch A Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats J. Control. Release,2004: 95, 547–55.

10.Borchard G, Lueßen H L, de Boer A G, Verhoef J C, Lehr C M and Junginger H E. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III:Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro J. Control.Release,1996; 39: 131–8.

11.Kotz'e A F, Lueßen H L, de Leeuw B J, de Boer (A)B G, Verhoef J C and Junginger H E .Comparison of the effect of different chitosan salts and N trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2) J. Control. Release,1998; 51:35–46.

12.Lamprecht A, Koenig P, Ubrich N, Maincent P and Neumann D. Low molecular weight heparin nanoparticles: mucoadhesion and behaviour in Caco-2 cells Nanotechnology 17,3673–80(2006).

13.Ward P D, Tippin T K and Thakker D R . Enhancing paracellular permeability by modulating epithelial tight junctions Pharm. Sci. Technol. Today 3, 346–58(2000).

14.Ramadas M, Paul W, Dileep K J, Anitha Y and Sharma C P. Lipoinsulin encapsulated alginate-

chitosan capsules: Intestinal delivery in diabetic rats J. Microencapsul,2000; 17: 405–11.

15.Agnihotri S A, Mallikarjuna N N and Aminabhavi T M. Recent advances on chitosan-basedmicro-and nanoparticles in drug delivery J. Control. Release,2004 100:5–28.

16.Gerardo P. Carino, Edith Mathiowitz. Oral insulin delivery; Advanced Drug Delivery Reviews 35,249–257(1999).

17.Hanazaki K, Nose Y, Brunicardi FCh. Artificial endocrine pancreas. J Am Coll Surg [electronic resource] [accessed 2006 Jan 20]. Available from: URL:http://www.sciencedirect.com/science?_ob=Art icle.

18.Freitas RA. Current status of Nanomedicine and Medical Nanorobotics [electronic resource][accessed 2006 Jan 20].

Availablefrom:URL:http://www.nanomedicine.com/ Papers/NMRevMar05.pdf

19.Freitas RA. The Future of Nanofabrication and Molecular Scale Devices in Nanomedicine.

[electronic resource] [accessed 2006 Jan 20]. Availablefrom:URL:http://www.rfreitas.com/Nano/F utureNanofabNMed.htm.

20.Insulin Nanopump for Accurate Drug Delivery. [electronic resource] [accessed 2008 Aug 15]. Availablefrom:http://thefutureofthings.com/news/128 6/insulin-nanopump-for-accuratedrug-delivery.html.