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Abstract:  
 
                             In this paper free vibration analysis of orthotropic laminated composite plates using first order 

shear deformation theory. The existing first-order shear deformation theory contains five unknowns but present first 

order shear deformation theory contains only four unknowns and has many similarity with the classical plate theory 

such as equation of motion, boundary condition and stress resultant expressions. The equation of motion and 

boundary condition are derived from Hamilton’s Principle for the calculation of frequency analysis of orthotropic 

laminated composite plates. Analytical closed form solution of simply supported anti-symmetric cross-ply and 

angle-ply laminated composite are obtained and results are compared with the exact three dimensional solution. 

Comparison studies shows that the present theory can achieve the same accuracy as of the existing first order shear 

deformation theory which has more number of unknowns. 
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1. Introduction  

The increasing use of composite materials system in plates construction for which conventional method of analysis 

are inadequate. Among these systems laminated composites are widely used in the aerospace, automotive, marine 

and other structural applications because of advantageous features such as high ratio of stiffness and strength to 

weight and low maintenance cost. With the increase in application of engineering structures variety of laminated 

theories have been developed. The classical laminated plate theory (CLPT), is an extension of the Love–Kirchhoff 

hypothesis for isotropic plates and be applied if the laminate is thin and neglects the transverse shear deformation [1, 

2, 3, 4, 5, 6] and rotary inertia effects and they discussed reasonable results for thin laminates. In order to overcome 

the limitations of CLPT, the shear deformation theories accounted for the effect of transverse shear deformation and 

rotary inertia have been recommended. The first-order shear deformation theory (FSDT) [7, 8, 9, 10, 11] also known 

as Reissner [12] and Mindlin [13] theory and accounts for the transverse shear effects but need some shear 
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correction factors [14, 15, 16]. There are many studies of the bending of laminated composites plates have been 

carried out using FSDT [17, 18, 19]. The FSDT violates equilibrium conditions at the top and bottom surfaces of the 

plate, the shear correction factors are used to correct the unrealistic variation of the shear stress/strain through the 

thickness. The value of shear correction factor depends not only on the composite laminates and geometric para-

meters, but also on the loading and boundary conditions. For orthotropic materials a high ratio of in-plane or out-

plane modulus of elasticity to transverse shear modulus, such that even for cases in which the cross-sectional 

thickness „h‟ is very small compare with the smallest dimension, therefore the transverse shear deformation and 

rotary inertia effect are very significant. 

In this paper is to develop the free vibration analysis of orthotropic type laminated composite plates by using FSDT 

method. A new FSDT method is compared with conventional FSDT method for different unknowns and obtained 

strong similarities. The split of transverse displacement into the bending and shear parts leads to a reduction in the 

number of unknowns and governing equations.   

 

2. Theoretical formulation 

2.1 Basic assumptions 

Consider free vibration analysis of rectangular laminated plate of thickness h and edge dimension a and b. The plate 

is assumed to a Cartesian coordinate system x-y-z, where x, y plane is the middle plane of the plate and z axis is 

normal to the middle surface of the plate. For orthotropic laminated composite material the basic assumption are.  

1. The displacement is small in comparison with the plate thickness „h‟ and therefore, consider plain stress problems 

2. The transverse displacement „w‟ dividing three components extension w a bending wb and shear ws., these 

components are functions of coordinates x and y only.  

       , , , ,a b sw x y w x y w x y w x y     

3. In comparison with in-plain stress σx and σy the transverse normal stress σz is negligible. 

2.2 Kinematics 

The displacement of the simple FSDT is given by 
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         (1) 

Where u0, v0 and w0 are the unknown displacement functions of the corresponding point on the reference surface and 

ψx and ψy are the average rotation about y and x axes respectively of the normal to the mid-surface of the 

undeformed plate. The transverse displacement „w‟ making further assumptions that the extension is very low as 

compare to bending and shear parts {i.e.,  

     0 , , ,b sw x y w x y w x y   } and therefore ψx =  ̶ wb/ x and ψy =  ̶ wb/ y, the displacement  

field of the simple FSDT can be rewritten as: 
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The displacement of Eq. (2) contained only four unknowns. The idea of partitioning the transverse displacement into 

bending and shear components proposed by Huffington [20], Krishna Murty [21], Shimpi [22] and others. 

The strain associated with the displacement in Eq. (2) is given by  
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2.3 Equation of motion 

  

The Hamilton‟s principle is used to derive the equation of motion is given by 

 
0

0
T

E W K dt              (4) 

Where δE, δW and δK are the variation of strain energy, work done and kinetic energy, respectively. The variation 

of strain energy can be expressed by 
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Where N, M and Q are the stress resultants is define by 

 

 

(6) 

 

 

 

The variation of work done by external force is calculated by 

 
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b sW q w w dxdy              (7) 

 

Where q is the transverse external load. The variation 

of Kinetic energy is calculated by 

 

 

     

 (8) 

 

     

  

 

Where dot- superscript indicates the differentiation with respect to time variable „t‟, mass density is given by   and 

(I0, I1, I2) are the mass inertias is given by 
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Substituting the expressions δE, δW and δK from Eqs. (5), (7) and (8) into Eq. (4) and integrating by parts and 

collecting the coefficient of δu0, δv0, δwb and δws . The following equation of motion is given by 
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The natural boundary condition for Cartesian coordinate 

system are of the form: 

 

 

      

 (11) 
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Where lx and ly are the direction cosines of the unit normal to the mid plane boundary. 

Now we consider different boundary condition in the explicit form: 

i. Clamped edge 

u0 = v0 = wb = ws = bw
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 = 0   at x = 0, a       (12a) 
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ii. Simply supported edge ( cross-ply laminate) 

Nx = v0 = wb = ws =Mx = 0 at x = 0, a        (12b) 

u0 = Ny = wb = ws =My = 0 at y = 0, b 

iii. Simply supported edge ( angle-ply laminate) 

u0 = Nxy = wb = ws = Mx = 0  at x = 0, a       (12c) 

Nxy = v0 = wb = ws = My = 0 at y = 0, b 
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iv. Free edge 
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1 0 22

xyx b
MM w

I u I
x y x

 
  

  
= Qx = Mx = 0 at x = 0, a    (12d) 

Nxy = Ny = 
1 0 22

xy y b
M M w

I v I
x y y

  
  

  
= Qy = My = 0 at y = 0, b 

2.4 Constitutive equations of orthotropic laminated plate 

Consider a rectangular plate of thickness h composed of „n‟ orthotropic laminated layers with the coordinate system 

x, y and z. as shown in the Fig. 1. Under the assumption that each layer have a plane of symmetry parallel to the x-y 

plane, the constitutive equations for a layer can be written as 
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Where Qij are the engineering constant in the material axes of the layer given as  

1 12 2 2
11 12 22

12 21 12 21 12 21

66 12 44 23 55 13

, ,
1 1 1

, ,

E E E
Q Q Q

Q G Q G Q G



     
  

  

  

      (14) 

The laminate is made of several orthotropic layers with their material axes arbitrarily oriented with respect to the 

laminate coordinates. Each layer transformed to the laminate coordinates x, y and z. The stress-strain relation of the 

kth layer are given as: 
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Where Q
‟
ij are the constants of different transformed materials as: 
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Where θ is the angle between global x-axis and local x-axis of each lamina. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         Fig.1. Coordinate system and layer numbers for a laminated plate 
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Put the value of Eq. (3) into Eq. (15) and also the subsequent results of Eq. (6), the stress 

resultants are obtained in terms of displacements (u0, v0, wb, ws) is given by 
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Where k is defined as shear correction factor and (Aij, Bij, Dij) are the coefficient of stiffness of 

plate and is defined by 
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3. Analytical solutions for antisymmetric cross-ply and angle- ply laminates 
Consider a rectangular plate with all edges simply supported of length a and width b under 

transverse load q and based on Navier solution as  
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For antisymmetric cross-ply 
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For antisymmetric angle-ply 
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Where 1i   , (Au0mn, Bvomn, Cbmn, Csmn) are coefficient and ω is the natural frequency of free 

vibration. The transverse load q(x, y) is expressed in terms of double Fourier sin series as 
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The Fourier coefficient Qmn can be determined from the relationship 
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   for uniform load        (26) 

 

By using Eq. (10) and the stress resultants Eqs. (17), (18), and (19) the analytical solution can be 

obtained for FSDT from governing differential equation for laminated plates is given by 
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Where  
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For classical plate theory (CPT) the transverse shear displacement is zero (i.e. ws = 0), therefore 

the analytical solution is 
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4. Numerical results 
In this paper some results are discuss to verify the accuracy of the present theory with extending 

theory. The obtained results are compared with the exact solution with those predicted by other 

plate models. In this examples, a shear correction factor 5/6 has been used both present theory 

and FSDT. The lamina property for antisymmetric cross-ply and angle-ply is used: 

E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25 is developed by (Reddy [23])  
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4.1 Vibration analysis 
Table.1 

Fundamental frequency of antisymmetric cross-ply (0/90)n square laminates under sinusoidal loads 

(Reddy [23]) 
a/h Theory n 

1                             3 

2 CPT 

FSDT 

Present 

6..2636              6.5617 

6.2092               6.5473 

6.2090               6.5574 

10 CPT 

FSDT 

Present 

6.9636               8.4617 

6.9373               8.4543 

6.6465               8.4234 

20 CPT 

FSDT 

Present 

7.6646               9.8327 

7.7071               9.9444 

7.7071               9.9452 

40 CPT 

FSDT 

Present 

8.5638               11.2627 

8.3343               11.5266 

8.8356               11.5267 

 

Table.2 

Fundamental frequency of antisymmetric angle-ply (45/-45)n square laminates under sinusoidal loads 

(Reddy [23]) 

 
a/h Theory n 

1                             4 

2 CPT 

FSDT 

Present 

4.5547               5.6452 

4.5593               5.5654 

4.9172               5.4664 

10 CPT 

FSDT 

Present 

7.1086               8.9463 

8.8972               11.4226 

8.9326               11.4934 

20 CPT 

FSDT 

Present 

7.1178               8.9652 

11.2975             16.2570 

11.2515             16.3393 

40 CPT 

FSDT 

Present 

8.2431               9.2324 

14.6015             20.2335 

14.5618              20.7612 

 

 

5. Conclusions 
A first order shear deformation theory was presented for bending analysis of laminated 

composite plates. The equation of motion discuss from Hamilton‟s principle which analytically 

solved for simply supported antisymmetric cross-ply and angle-ply laminated plates. In 

conventional FSTD the number of unknown is five is reduced by one of the present FSDT. The 

result of present FSDT and the conventional FSDT are almost same for the two cases. Therefore, 
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it can be conclude that the present FSDT is not only accurate but also simple in analyzing the 

bending of laminated composite plates.    
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