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Introduction: 
The Pythagorean numbers play a significant role in the theory of higher arithmetic as they come in the 

majority of indeterminate problem. For the discovery of the law of the three squares (Pythagorean equation), 

really, one should be indebted to the Pythagorean who were the first Greeks with great intellectual perception. 

One may notice to his surprise that the Egyptians, the Chinese, the Babylonians and the Indians knew some 

knowledge of the property of right angled Pythagorean triangles or Pythagorean numbers .Since there is a 1−1 

correspondence between Pythagorean numbers and Pythagorean triangles, we shall use them interchangeably. 

The only geometrical theorem with which the ancient Chinese were acquainted is that the area of the square 

described on the hypotenuse of a right angled triangle is equal to the sum of the areas of the squares described 

on the sides. A Pythagorean triangle is a right triangle whose sides are integral lengths. 

Pythagorean Triples: Let(x,y,z) denote 3-tuple where x ,y and z are integer. (x,y,z) is a Pythagorean triple≡(1) 

x,y and z are positive. (2) x
2
+y

2
=z

2
 

Primitive Pythagorean Triple: Let(x,y,z)denote a 3-tuple where x,y,z and z are integers.(x,y,z) is a primitive 

Pythagorean triple Ξ (1)(x,y,z) is a Pythagorean triple. (2) GCD(x,y,z)=1. 

Theorem 1:  

           If(x,y,z) is a Pythagorean triple such that GCD(x,y)=1 then(x,y,z)is a primitive Pythagorean triple. 

Proof:  

        Without loss of generality,let us assume that, There exists a prime p such that p/x and p/z  Then p/(z
2
-x

2)
=y

2
 

p/y
2 
. Hence p/y, Where contradicts GCD(x,y)=1. (x,y,z) is a primitive Pythagorean triple. 

Theorem 2: 

           If(x,y,z) is a Pythagorean triple then there exists a primitive Pythagorean triple(a,b,c)and there exists an 

integer k≥1 such that(x,y,z)=(ka,kb,kc) 

Proof: 
Let k=GCD (x,y,z) and let a =x/k                 (1)                     

                                   b=y/k                                            (2) 

and              c=z/k                                   (3) 

Then GCD (a,b,c)=1. Next T.P.T (a,b,c) is a Pythagorean triple. Square (1) & (2) and add a
2
+b

2
=x

2
/k

2
 +y

2
/k

2
 

=  

=z
2
/k

2
 (  x

2
+y

2
=z

2
) 

a
2
+b

2
=c

2
 (from (3)) 

 (a, b, c) is a Pythagorean triple.   Thus (a,b,c) is a primitive Pythagorean triple. 

Theorem 3:  

            If(x,y,z) is a primitive Pythagorean triple then exactly one of x and y is even and z must be odd. 

Proof: 

 x and y cannot both be even . Since GCD(x,y)=1. Suppose that x and y are both odd. where x=2j+1} 

and y=2k+1  (4).  

Then, x
2
+y

2
=z

2
. sub (2.4) in above equation, we get, (2j+1)

2
+(2k+1)

2
=z

2
 

                                     (4j
2
+4j+1)+(4k

2
+4k+1)=z

2                                
(5) 

4(j
2
+j+k

2
+k)+2=z

2
 

Equation (5) implies z
2
 is even. z must be even. Assume that z=2m sub in (5) 

4(j
2
+j+k

2
+k)+2=4m

2
 

Now 4 divides the R.H.S of this equation, but 4 does not divide the L.H.S. Which is contradiction to our 

assumption? One of these values must be even, and since GCD (x, y)=1, the other value must be odd. Thus 

exactly one of x and y is even, z must be odd. 

Corollary 1: 

           Every Pythagorean triple consists of 2 odd integers and 1 even integers or else consists of 3 even integers. 

Proof:                 

 Let x and y are both odd. where x=2j+1 and y=2k+1                                (6) 

Then, x
2
+y

2
=z

2 
, Substitution of (6) in above equations implies  (2j+1)

2
+(2k+1)

2
=z

2
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(4j
2
+4j+1)+(4k

2
+4k+1)=z

2
 

4(j
2
+j+k

2
+k)+2=z

2
 

This last equation implies z
2
 is even. So z must be even. Every Pythagorean triple consists of 2 odd integers 

and 1 even integer. 

Convention: 

                If (x,y,z) denotes a Pythagorean triple ,then x will always denote an even integer. 

Theorem 5: 

If (x,y,z) is a primitive Pythagorean triple then there exists an integer k such that x=4k. 

Proof: 

         By theorem 3 and convention, Let   x=2r, y=2, s+1 and z=2t+1 Then, x
2
=z

2
-y

2
 

(2r)
2
=(2t+1)

2
-(2s+1)

2
 

4r
2 
=4t

2
+4t+1-(4s

2
+4s+1) 

4r
2
=4(t

2
+t-s

2
-s) 

r
2
 =t(t+1)-s(s+1) 

r
2
 is the difference between two even integers. Hence r

2
 must be even.  r must be even. Assume r-2k Then    

x=2r =2.2k =4k   

Theorem 6: 

               If   then (2mn, m2-n
2
, m

2
+n

2
) is a Pythagorean triple. 

Proof: 

            Take x = 2mn, y = m
2
-n

2
 and z = m

2
+n

2
 

T.P.T: (2mn)
2
 +(m

2
-n

2
 )

2
 =( m

2
+n

2
)

2
   Let x

2
+y

2
=z

2 
, Substitute the value of x and y in above equation

 

(2mn)
2
+(m

2
-n

2
)

2
  =4 m

2
n

2
+m

4
-

 
2mn

2
+n

4
= m

4
+2m

2
 n

2
+n

4
= (m

2
+n

2
)

2 

(2mn, m
2
-n

2
, m

2
+n

2
) is a Pythagorean triple 

Corollary 2: 

              If 0<n<m and GCD (2mn, m
2
-n

2
) =1 then (2mn, m

2
-n

2
, m

2
+n

2
) is a primitive Pythagorean triple. 

Proof: 

              By the Theorem 6, (2mn, m
2
-n

2
, m

2
+n

2
) is a Pythagorean triple. By Theorem 1, If (2mn, m

2
-n

2
, m

2
+n

2
)    

is a Pythagorean triple such that GCD (2mn, m
2
-n

2
) = 1. Then (2mn, m

2
-n

2
, m

2
+n

2
) is a primitive Pythagorean 

triple. 

Theorem 7: 

If (x, y, z) is a primitive Pythagorean triple then there exists integers m and n such that x=2mn, y= m
2
-

n
2
, and z= m2+n

2
 

Proof: 

          By theorem 3 and convention, Let x=2k, y=2s+1 and z=2t+1 

x
2
=z

2
-y

2 

4k
2
=(z +y).(z-y) 

K
2
= .  =  

=    (t+s+1). (t-s)                                (7) 

Claim: (t+s+1)  and (t-s) have no common factor. For if there exists an integer r>1 such that 

(t+s+1) =  r.p and (t-s) = r.q 

Then r(p-q) = rp - rq = t+s+1-t+s = 2s+1= y 

         r (p+q) = rp+rq= t+s+1+t-s= 2t+1= z 

Which shows is a common factor of x and z, an impossibility. Since (t+s+1) and (t-s) have no common factor. 

Yet their product is a perfect square, each must be a perfect square. 

Let m =  and     n =   Then   m
2
+n

2
= (t+s+1  )+  (t-s) = 2t+1 = z 

   m
2
-n

2
=  t+s+1-t+s = 2s+1 = y 

                 2mn    = 2   = 2(t+s+1)  (t-s)1/2 = 2[k]1/2    (by 7) 

                             = 2k = x 

Thus                x = 2mn. y =    m
2
-n

2 
and z = m

2
+n

2 

Theorem 8:  
             If (x,y,z) is a Pythagorean triple, then there exists integers k,m and n such that(2mn,  m

2
-n

2
,m

2
+n

2
) is a 

primitive Pythagorean triple. Moreover,(x,y,z)=[k(2mn),k(m
2
-n

2)
,k(m

2
+n

2
)] 

Proof: 

  T.P.T: (2mn, m
2
-n

2
,m

2
+n

2
) is a primitive  Pythagorean triple. Let k = GCD(x,y,z) 

Let                    2mn =x/k                                                                      (8) 

                       m
2
-n

2
= y/k                                                                      (9) 

       and              m
2
+n

2
= z/k                                                                  (10) 

Then GCD (2mn, m
2
-n

2
,m

2
+n

2
) =1. Next T.P.T (2mn, m

2
-n

2
,m

2
+n

2
) is a primitive Pythagorean triple.  
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Squaring and adding x (8) and (9). 

4m
2
n

2
 + (m

2
-n

2
)

2
 =  +  =   =    =  (m

2
+n

2
)

2 

(2mn, m
2
-n

2
, m

2
+n

2
) is a Pythagorean triple. Thus (2mn, m

2
-n

2
, m

2
+n

2
) is a primitive Pythagorean triple. 

Let     x = k (2k), y = k (2s+1) and z = k (2t+1) 

T.P.T: (x, y, z) = [k(2mn),k(m
2
-n

2
,m

2
+n

2
)] 

X
2
 = z

2
-y

2 

4k
4
 = (z + y).(z-y) 

  

 
k4 = k (t+s+1).  k(t-s) 

Claim:  k(t+s+1) and k(t-s) have no common factor. For if there exists an integer r >1 such that 

k (t+s+1) = r.p and k(t-s) = r.q 

Then   r.(p-q) = r.p - r.q = k (t + s + 1) – k (t-s) = tk + ks + k – kt + ks = k(2s+1) = y 

                  r.(p+q) = r.p + r.q = kt + ks + k + kt – ks = k (2t+1) =  z 

Which shows r is a common factor of y and z an impossibility. Since k(t+s+1) and k(t-s) have no common factor 

Yet their product is a perfect square ,each must be a perfect square. 

 Let m  =  (t+s+1) and n   =   (t-s) Then k[m
2
+n

2
] = kt + ks + k + kt - ks= k(2t+1) = z 

          k[m
2
-n

2
] = kt + ks + k – kt + sks = k (2s+1) = y 

          k[2mn]    = 2[k(t+s+1)k (t-s)]1/2 = 2[k
4
]1/2 = 2k

2 
 = x 

(x,y,z) = [ k (2mn), k (m
2
-n

2
), k (m

2
+n

2
)] 

Sums of Squares: 
          A Pythagorean triple (x,y,z) is a triple of positive integers satisfying  x

2
+y

2
=z

2
.  If g = gcd(x,y,z) then 

(x/g,y/g,z/g) is also a Pythagorean triple. It follows that if g>1,(x,y,z) can be obtained from  the “smaller” 

Pythagorean triple (x/g,y/g,z/g) by multiplying  each entry by g. It is natural then to focus on Pythagorean 

triples(x,y,z) with gcd(x,y,z)=1 these are called primitive Pythagorean triples. 

Theorem 9: 

               Let (x,y,z) be a primitive Pythagorean triple. Then gcd(x,y) = gcd (x,z) = gcd (y,z) = 1. 

Proof: 

           T.P.T: gcd (x,y) =1, suppose gcd (x,y) >1 Then there is a prime p with p/x and p/y. Then z
2
= x

2
+y

2
 ≡ 

0(mod p), As p/z
2  

then  p/z  

           p/gcd (x,y,z), Which is a contradicting (x,y,z) being a primitive Pythagorean triple. Thus gcd (x,y) =1 

T.P.T: gcd (x,z) =1, Suppose that gcd (x,z)>1, Then there is a prime p with p/x and p/z. Then y
2
=z

2
-x

2
≡0(mod p) 

              As p/y
2
 then p/y, p/gcd(x,y,z), which is a contradicting(x,y,z) being a primitive Pythagorean triple.  

Thus gcd (x,z) =1. 

T.P.T: gcd(y,z) =1, Suppose that gcd (y,z) >1, Then there is a prime p with p/y and p/z. Then x
2
= z

2
-y

2
 ≡ 0(mod 

p),  As p/x
2
 then p/x  

        p/gcd(x,y,z), which is a contradicting (x,y,z) being a primitive Pythagorean triple. Thus gcd(y,z)=1. 

Theorem 10: 

Let (x,y,z) be a primitive  Pythagorean triples with x odd.  Then there are r,sN with  r > s,gcd (r,s) =1 

and r + s odd, such that x=r 
2
-s

2
,y =2rs and z = r

2
+s

2
. Conversely, if r,sN with r>s, gcd(r,s) =1 and r + s odd, 

then (r2-s
2
,2rs,r

2
+s

2
) is a primitive Pythagorean triple. 

Part I:   Given: Let (x,y,z) be a primitive a Pythagorean triples with x odd. 

T.P.T:  There are r,s N with r > s ,gcd (r,s) =1 and r + s odd such that x = r
2
 – s

2
 , y = 2rs,  and z = r

2
+s

2 

Proof:  

          If x is odd, then y is even and z is odd.  Let  a = ,  b =       and   c =   

Then a,b,cN, Also ,ab =  =   = c
2 

Let  g  = gcd (a,b). Then g/(a+b) and g/(b-a),   (ie) g/z and g/x. As gcd (x,z), Then g =1  (ie) gcd(a,b) =1 

Let p be a prime factor of a. Then p b,sovp (b) = 0. Hence, vp(a) = vp (a) + vp (b) = vp(ab) = vp(c
2
) 

vp(a) = 2vp (c) is even. Then a is a square. Similarly b is a square. write a = s
2
 and b = r

2
    where r,sN. Then 

gcd (r,s)/a and gcd(r,s)/b  as a and b are coprime, gcd(r,s) =1. Now,x = b-a = r
2
-s

2 

r >s, Also, z = a +b = r
2
+ s

2 

As     c
2
= ab,  = 

r2s2
c = rs and y = 2rs. Finally as x is odd. Then 1 ≡ x = r

2
+s

2
≡ r + s. (ie)  r + s is odd. 
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Part II: Given: Ifr,sN with r >s,gcd(r,s) =1 and r + s odd.  

T.P.T: (r
2
-s

2
,r

2
+s

2
,2rs) is a primitive Pythagorean triple. 

Proof: 

           Let   x = r
2
- s

2
,  y = 2rs, and z  = r

2
+s

2
, Certainly  y,z  N and also xN as r > s > 0. 

              Also, x
2
+y

2
 = (r

2
-s

2
)

2
+(2rs)

2
 = r

4
- 2r

2
 s 

2
 + s

4
+4s r

2
= r4+

2r2s2
+s

4
 = r

2
+s

2
=z

2
. 

Hence(x,y,z) is a Pythagorean triple. Certainly   y is even. x = r
2
-s

2
 ≡ r - s ≡ r + s (mod 2), x is odd. 

T.S.T:  (x,y,z) is a primitive Pythagorean triple. Examine g = gcd(x,z)., As x is odd ,g is odd. Also g/(x
2
+z

2
) and 

g/(z
2
-x

2
) (ie) g/2s

2
 and g/2r

2 

As r and s are coprime. Then gcd (2r
2
,2s

2
) = 2, g/2 

As g is odd g =1. Hence (x,y,z) is primitive Pythagorean triple. 

Sums of Squares: 

        For kN, let Sk={a1
2
+….+a

 
k
2  

:a1,….,akz} be the set of sums of k squares. Note that zero is allowed. 

For example 1=1
2
+0

2
S2.The sets S2 and S4 are closed under multiplication. 

Theorem 11: 

If m,nS2 then mnS2 & If m,nS4 then mnS4 

Proof: 

Let m,nS2, Then m=a
2
+b

2
 and n=r

2
+s

2
 where a,b,r,sZ, By the two-square  formula,           

(a
2
+b

2
)(r

2
+s

2
) = (ar-bs)

2
 + (as+br)

2
, it is immediate that mnS2. 

Let m,nS4, Then m=a
2
+b

2
+c

2
+d

2 
and    n=r

2
+s

2
+t

2
+u

2
   where a,b,c,d,r,s,t,uZ 

By the four-square formula, ( a
2
+b

2
+c

2
+d

2
 (r

2
+s

2
+t

2
+u

2
)  = (ar-bs-ct-du)

2
 + (as+br+cu-dt)

2 
+ (at-bu+cr+ds)

2 
+ 

(au+bt-cs+dr)
2
, 

it is immediate that mnS4. 

Remark: The two-square theorem comes from complex no: (a
2
+b

2
)(c

2
+d

2
)=a+ib

2
c+id

2
=(a+ib)(c+id)

2 

                                                                                                                 =(ac-bd)+(ad+bc)
2
 = (ac-bd)+(ad+bc)

2 

Restrict the possible factorizations of a sum of two squares. If p is prime, and n is an integer, then vp(n) 

denotes the exponent of the largest power of p dividing n:p vp(n)n but   n 

Theorem 12: 

Let p be a prime with p≡3(mod 4) and let nN. If nS2 then vp(n) is even. 

Proof: 

Let n=a
2
+b

2
 with a,bZ, Suppose p/n, T.S.T: p/a and p/b. Suppose p/a. Then there is cZ with 

ac≡1(mod p). Then 0 ≡ c 
2
n = c

2
(a

2
+b

2
 ) = (ac)

2
+(bc)

2 
 ≡ 1+(bc)

2
(mod p)  [-1/p]=1 

But   [-1/p]=1 when p≡3(mod 4), which is a contradiction.  p/a 

Similarly p/b, Thus  p
2
/(a

2
+b

2
) = n and n/p

2
 = (a/p)

2
 + (b/p)

2
S2 .Let nS2and k = vp(n), If k > 0,then k  2 and 

n/p
2
S2. Note that vp(n/p

2
) = k – 2, Similarly, if k-2>0(ie) if k>2), Then k-22((ie)k4) and n/p4S2, Iterating 

this argument, find that if k = 2r+1 is odd. Then n/p
2r
S2  and v(n/p 

2r
) = 1, which is a contradiction. k is even. 

Hence vp(n) is even. 

Remark: If nN, write n=
 
rm 

2  
where  m

2
 is the largest square dividing n and r is square free,(ie) either r=1 (or) 

r is a product of distinct primes. 

Theorem 13: 

Let p be a prime with p≡1(mod 4). Then pS2 

Proof: 

If p ≡ 1(mod 4), Then (-1/p) = 1, there is uZ with u
2
≡ -1(mod p). Let A = {(m1,m2)/m1,m2Z,0  

m1,m2 < }. Then A has  (1+s)
2
elements, where is the integer part of   (i.,e) s   < s + 1 

 HenceA>p. Form m=(m1,m2)R
2, 

Define (m)=um1+m2, Then  is a linear map from R
2
 to R. If 

mZ
2
,then (m)Z. As A>p, the  (m) for m  A cannot all be distinct modulo p. Hence there are distinct 

m,nA with (m) ≡ (n) (mod p). Let  = m-n. Then ()=(m)-(n)≡0(mod p). Let =(a,b), Then a=m1-n1 

where 0m1,n1< ,  a< ,  Similarly   b< , Then a
2
+b

2
 <2p. 

As m≠n then ≠(0,0),  a
2
+b

2
>0, But 0 ≡ () = ua + b(mod p),   Hence  b≡-ua(mod p),  a

2
+b

2
 ≡ a

2
 

+ (-ua)
2
  ≡ a

2
(1+u

2
)  ≡ 0(mod p).  a

2
+b

2
 is a multiple of p and 0<a

2
+b

2
<2p, Then a

2
+b

2
 =p, pS2 

Theorem 14: 

Let nN then n S2 iff vp(n) is even whenever p is a prime congruent to 3 modulo 4. 

Proof: 

    Given:  nS2 , To Prove that: vp(n) is even whenever p is a prime congruent to 3 modulo 4. If nS2, p is 

prime p≡3(mod 4). Then vp(n) is even. Given: vp(n) is even whenever p is a primer congruent to 3modulo 4.  
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T.P.T: nS2 ,If vp(n) is even ,then p=rm
2
 where each prime factor p of r is either2(or) congruent to 1 modulo 4. 

By theorem 2.2.3,all such p lie in S2. Hence rS2. Hence  r = a2+b
2  

where a,bZ,  n = rm
2 
 = (am)

2
+(bm)

2
S2 

Theorem 15: 

Let p be a prime .Then pS4. 

Proof: 

If p ≡ 1(mod 4),then there are a,bZ with p = a
2
+b

2
+0

2
+0

2
 so that pS4 Also, 2=1

2
+1

2
+0

2
+0

2
S4 and    

3=1
2
+1

2
+1

2
+0

2
S4, Assume that p>3 and that p≡3(mod 4). As  a consequence [-1/p]=-1, Let W be the smallest 

positive integer with [W/p]=-1 Then[W-1/p]=1 and [-W/p]=[-1/p][W/p]=1, Hence there are u,vZ with w-1≡ 

u
2
(mod p) and –w ≡ v

2
(mod  p). Then 1+ u

2
 + v

2
 ≡ 1 +(w-1) –w  ≡ 0(mod p).  

Let  B={(m1,m2,m3,m4)/m1,……..,m4Z,0m1,………,m4< } Then B has (1+S)
 4

elements ,where S is 

the integer part of √p  (i.e) S   < S+1. Hence A>p
2, 

For m = (m1,nm2,m3,m4). Define (m) = 

(um1+vm2+m3-vm1+um2+m4). Then  is a linear map from 
  
R 

4    
to 

 
R

2
. If m Z

4
 then (m)Z

2, 
Write (a,b) ≡ 

(a',b')(mod p).  If a ≡ a′ (mod p) and b ≡ b′(mod p). If a list(a1,b1),….,(aN,bN) of vectors in z
2
 with N > p

2
, Then 

there must be some i and j with(ai,bi) ≡ (aj,bj)(mod p). This happens for the vectors  (m) with mB. As B > 

p
2
. There are distinct m,nB with (m) ≡ (n)(mod p). Let  = m-n, Then () = (m)-(n)≡ 0(mod p). 

Let =(a, b, c, d) then a = m1-n1, where 0m1,n1<    a<  , Similarly  b,c ,d <  then a
2
 + b

2
 

+ c
2
+ d

2
 < 4p, As m ≠ n then  ≠ (0,0,0,0). a

2
+b

2
+c

2
+d

2
 > 0. Now (0,0) ≡ ()= (ua+ vb + c,- va+ub + d)(mod 

p). Hence   c  ≡ - ua + vb(mod p) and d ≡ va-ub(mod p). Then a
2
+b

2
+c

2
+d

2
 ≡ a

2
+b

2
+ (- ua +vb)

2
 + (va-ub)

2 

                               = a
2
+b

2
+u 

2
a2+v  

2
b

2
+2uvab+v

2  
a

2
+

    
u 

2 
b

2
-2uvab = (1+u 

2
+v

2
)(a

2
+b

2
) ≡ 0(mod p) 

As is a multiple of p and 0< a
2
+b

2
+c

2
+d

2
 <4p then a

2
+b

2
+c

2
+d

2
 {p,2p,3p}. when a

2
+b

2
+c

2
+d

2
 =p   then 

certainly pS4. To consider the bother some cases where a
2
+b

2
+c

2
+d

2
 =2p(or)3p. Suppose that a

2
+b

2
+c

2
+d

2
 =2p. 

Then a
2
+b

2
+c

2
+d

2
 ≡2(mod 4) two of a, b, c, d are odd and other two even. Without loss of generality 

a and b are odd and c and d are even. then  are all integers.  A simple 

computation gives +      

                                                           .  

Finally, suppose that  a
2
+b

2
+c

2
+d

2
 =3p. Then a2+b2+c2+d2 is a multiple of 3 but not 9. As a

2
 ≡ 0 (or) 1(mod 3) 

then either exactly one (or) all four of a, b, c and d are multiples of 3. But the latter case is impossible. (For then 

a
2
+b

2
+c

2
+d

2
 would be a multiple of 9).  without loss of generality 3/a and b, c, d ≡  1 (mod 3). By replacing b 

by - b etc. If necessary, let us assume that B ≡ c ≡ d ≡ 1(mod 3). Then  (b + c + d ),  (a + b – c),  (a + c - d),  

(a + d - b), Are all integers and a simple computation gives 

 +  +  

                                                                                   

Units in Integral Group Rings: 

Units in Z[D4]:  

            In this section, we discuss V=V(Z[D4]), the group of units of augmentation 1 in Z[D4]. Let D4 be 

generated by x, y with  X
2
 = y

4
 = c and  xyx = y

3 . 
Let uZ[D4] with u = (a + by + cy

2
 + dy3

3
)+(e + fy + gy2

2
+ 

hy
3
) x, u=+x. Since {c, y2} – Z (D4), the center of D4. There is a ring homomorphism. : Z [D4]Z [D4] / Z 

[Z(D4)]  Z [C2 x C2]. Given by (u) = (a + c) + (b + d) Y + (e + g) X + ( f +h) XY.  Where X,Y are the images 

of x, y in the factor group D4/Z(D4)=C2xC2. Since Z[C2xC2] has only trivial units, then have four possible cases 

for units with augmentation 1,namely one of a + c, b + d, e + g, f + h is 1 and the remaining 3 sums are 0.  

Denote the subsets of these units in V by Vi with 1 i  4 respectively. Note that y
2  

v
i
=Vi for all I and 

also V2=yV1=V1y; V3=xV1=V1x; V4=yxV1=V1y. Thus these sets are in Bijective correspondence.  Up to 

multiplication with a trivial unit. Assume that elements of V lie in V1, (ie)   &         

 . For uV, it follows  directly from above equation that uV1 iff u=1+(1-y
2
), =-

c+by+ex+fyx.  Now let u=+xV1. is a unit in Z[C4] fixed by the action of x. Since Z[C4] has only 

trivial units,  = 1 (or)  y
2
. By (3.4), = (1+2) - (2) y

2 
. Where  = b 

2
+c

2
-e

2
-f

2
-c. Since  is 

an integer, we must have that =0, (ie)   = det((u)=1)  and e 
2
+f 

2
-b

2
=c(c-1) = - ac(3.5) 

Remark: (y)=    and (x) =  Thus for  uV1V2 , det ((u))=1 and V1V2  is a normal subgroup 

of V of index 2.  
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Similarly, det ((u) for u in V3 (or) V4  is -1. Since,   - ac  0, (3.5) shows that all units in V1 lie on a 

surface, X
2
+Y

2
-Z

2
 = -ac. which is a hyperboloid of one sheet if ac≠0 and a  cone if ac=0. Let Hk denote the set 

of integer points on the hyperboloid X
2
+Y 

2
=Z

2
+k. Let Hn denote the units with c=n on Hn(n-1). A point (e, f, b) in 

Hc is identified with the unit u=1+(1-y
2
) with =-c+ by + ex + fyx as in above equation. Given any value of c, 

Hc is non empty. Since  c(1-c)=2mn for integers m, n then  b = m + n,    & f = n. Then we may identify V1 

with cZ c, (ie) V1 is identified with the set of two copies of each hyperboloid Hn(n-1). One copy of Hn(n-1) 

corresponds to the units with c=n and the other to the units with c=1-n. The following remark gives the 

multiplication for  units in V1. 

Remark: Let u = (e, f, b)Hc and v = (e′, f′, b′)  Hc′ then  uv = (e′′, f′′, b′′)Hc′′  where c′′=c+c′+2bb′-2cc′-2ee′-

2ff′=(b + b′)
2
+(c - c′) 

2
 - (e + e′)

2
- (f + f′)

2; 
b′′=(1-2c′)b+(1-2c)b′+2fe′-2ef′; e′′=(1-2c′)e+(1-2c)e′+2b′f-2bf′;              

f′′=(1-2c′)f+(1-2c)f′+2be′ – 2eb′; 

The multiplication formula may be interpreted as 

 
Thus u, vv1 commute if they represent parallel vectors in Z

3
. 

Theorem 16:   

                Let u=(e, f, b)Hc and let un=(en,fn,bn)Hcn. For n a positive integer,(en,fn,bn)=n(e ,f ,b,)  for some 

integer n  with 1=1, 2 =2(1-2c),etc. Furthermore the sequence1,2,….. is strictly increasing. For n a 

positive integer, cn=nc for some integer n where 1=1,2=4a, etc. If ac≠0, then the sequence,,……… is 

strictly increasing. If e=0,then en=0 for all n.if a=0,c=1 then cn=0 if n is even, and cn=1 if n is odd. 

Proof: 

             First show that (en, fn, bn)=n(e, f, b) and en=nc for integers n,n. The proof is by induction on n.         

If n=2, then 2=2(a-c) =2(1-2c). Now suppose that for n=k-1, (ek-1,fk-1,bk-1)=k-1(e,f,b). Then (ek,fk,bk)=((1-2ck-

1)+(1-2c)k-1)(e,f,b), Similarly, since c2=4ac. Again using induction on n, suppose that ck-1=k-1c. Then ck=c+k-

1(1-2c)c+2k-1ac, so that, k=1+k-1(1-2c)+2ak-1. Now suppose that ac≠0, so that a-c>1. Note that we have 

shown that n=1-2n-1c+(1-2c)n-1; n=1+n-1(1-2c)+2an-1 Next to claim that for n2,n&n have the same sign 

and n>n-1, n>n-1 ,  Note that 1=1, =1, 2=2(a-c), 2   =4a and proceed by induction. Suppose that 

k-1andk-1hae the same sign. Since -2c,a-c and 2a all have the same sign. Then the summands  2ck-1,(a-c)k-

1,(a-c)k-1,2ak-1  in(3.6),(3,7) have same sign. If these are positive. Then clearly k,k are positive and greater 

than k-1,k-1 . If the summands are all negative. Then since 2ck-1>1 and2ak-1>1. Still have thatk ,k 

are greater than k-1,k-1 respectively. Now let ac=0. If c=0, then the multiplication formula immediately 

yields that   n=n. cn=0 for all n. If c=1, then again by Remark   3.1.2 and a simple induction argument, the 

sequence ofnis 1,-2,3,-4,….. and the sequence of integers  cn is 1,0,1,0,1,…… 

Theorem 17: 

 The set V2=yV1 has no units of order 2, but has non –trivial units of order 4. A unit uV2, u=y
3
 + (1-

y
2
) with =a + by + ex + fyx is of order 4. iff a=0 and (e, f) is an integer point on the circleX2+Y2=b(b-

1). 

 The sets V3 &V4 have no units of order 4,but have non-trivial units of order 2.For u=
y2x

+(1-y
2
) in V3, 

as above, then u has order 2 iff a=0,and (b,f) is a point on the hyperpola X
2
-Y

2
=e

2
-e.For u= y3x+(1-y

2
) 

in V4.  as above, then u has order 2 iff a=0, and(b,e) is a point onX
2
-Y

2
=f

2
-f 

Proof: 

Let u=+xV2. Suppose first that u
2
=1. By the theorem ”Let D be the image of Z[G] under  so that 

the unit group of Z[G] is isomorphic to the group of  matrices in D with determinant a unit in Z[H], (ie) 

ű(Z[G])={ }. If u=+xu(Z[G]) with  then u-1=W-1(-X)” 

 = , =- Thus b=d, contradicting b + d=1. Now let u
2
=y

2
=u-

2
, 

2
=

2 
So that either b=d, a contradiction. 

(or) a=c=0. Straight forward computation shows that if a=c=0,u
2
=y

2
 iffe

2
+f

2
=b 

2
-b. Now let u=+xV3  

        Suppose first that u
2
=y

2
. For uV3,det((u))=-1, / u-1=-  + x. Then u

2
=u

-2
, either b=d=0 (or) 

a=c=0. If a=e=0, again as above, E
2
+f

2
=b (b-1). But the left side of this equation is odd and the right side is 

even. Which is a contradiction. A Similar contradiction arises if b=d=0. Now suppose that u=u-1. Then =  

or equivalently a=0. Now let u
2
=y

2
=u-2, 2= 2 so that either b=d, a contradiction, (or) a=c=0. Straight 

forward computation shows that if a=c=0, u
2
=y

2
 iff e

2
+f

2
=b

2
-b. Now let u=+xV3. Suppose first that u

3
=y

2
. 

For uV3, Let((u))=-1, / u-1=- +x, Then u
2
=u

-2
, either b=d=0 (or) a=c=0. If a=c=0, again as above, 

e
2
+f

2
=b(b-1). But the left side of this equation is odd and the right side is even. Which is a contradiction. A 
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similar contradiction arises if b=d=0. Now suppose that u=u
-1

. Then =  or equivalently a=0 and   = +1 or 

equivalently b
2
=f

2
+e 

2
-e. The argument for V4 is similar. 

Remark: A subgroup of V(Z[D4]) isomorphic to the Klein 4-group k must be generated by y
2
 and a unit of 

order 2 in V3 (or)V4. For suppose u,v generate a copy of k with uV3 and vV4.Then uvV2 which has no units 

of order 2.Thus u,v both lie in V3 (or)V4 , and uv=y
2
. 

Integer Points on a Hyperoloid: 

Now describe a method for finding integer points on Hk for various k based on “growing the tree of 

primitive Pythagorean triples from (3,4,5)”. A point p=(a,b,c)H0 satisfies   x
2
+y

2
=z

2
. If a,b,c are positive, then 

(a,b,c) is called a Pythagorean triple. Every Pythagorean tripled is a multiple of a primitive Pythagorean triple, 

(ie) one in which gcd(p)=gcd(a,b,c)=1. In order to construct all primitive Pythagorean triples , it suffices to find 

all primitive Pythagorean triples (a,b,c) with a,c odd and b even, since all others are obtained by switching a,b. 

The “tree” of such triples with a,b,c positive grown from the “seed” (3,4,5) is well known ;review its 

construction. Let Ii,i=1,2,3 and I1.2 be the matrices representing reflections in the planes X=0,Y=0,Z=0 and X=Y 

respectively. Let, U,A,D be the transformations with matrices 
 

Remark: Construct the integer points on Hk,k≠0, in a similar  manner. Let  be a group of linear 

transformations on Z3 which maps Hk to itself. Define an equivalence relation 〜  on Hk by p〜  QiffQ=T(p) 

for some T . Denote the equivalence class of p by . Now define groups of transformations on Hk as 

follows 

 Let R be generated by I1.2,Ii,i=1,2,3.RD4XC2. 

 Let R be generated byI3and Ii.2 R′C2XC2. 

 Let S be generated by the U,A,D or equivalently by A,I1,I2 

 Let S be generated by S and R′. 

Let (x,y,z)Hk with k not a square and x=2m+1 odd. Then o≠t=z-y, Letting    s=z+y we have ts=x2-k. We 

identify points with x odd in Hk with the set of pairs Pk={m,t}/mZ,t divides(2m+1)2-k} via. 

 
Now identify points (x, y, z)Hk with x=2m even,k not a square, in a similar way with the set of pairs 

2k={(m, t)/m Z ,t divides (2m)2-k} via 

 
The linear transformations U,A,D on Hk define maps (which we also  denote U,A,D) on Pk and 2k, y 

           U(m,t)=(m+t,t) 

and     A(m,t)=(m+s,s)                                         for (m,t)Pk(or)2k 

           D(m,t)=(s-m-1,s)                                       for(m,t)pk 

           D(m,t)=(s-m,s)                                          for(m,t)2k 

Remark: If (m, t) Pk (or) 2k corresponds to (x, y, z)Hk, then (m,s)  corresponds to (x,-y,z), (m,-t) corresponds 

to(x,-y,-z). 

Remark: If k is a square, say k=K
2
, then any point (K,y,y) lies  on Hk so that the bijective  correspondence 

between Hk and Pk2k fails. 

Remark: Let p=(x, y, z) Hk. 

 If  k≡0 mod 4,then either x, y, z are all even (and thus gcd(p)2).(or)z is odd, and x, y have  different 

parity, then 

 If k≡1 mod 4, then either x, y, z are all odd, (or) z is even and x,y have different parity. 

 If k≡2 mod 4, then z must be even and x, y both odd. 

 If k≡3 mod 4, then z must be odd and x, y other even. 

Theorem 18: 

If Pk≠, then for any mZ, there exists t such that(m,t)Pk. & If 2k≠, then for  any mZ, there exists t 

such that (m,t)2k. 

Proof: 

              Let Pk=,mZ,x=2m+1. If k is even. Then st=x
2
-k is odd  Let t=1, S = x

2
 – k, To obtain values of y, z. 

If k is odd, Then k≡1 mod 4,  4 divides z
2
 = y

2 
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Choose t = 2and s even. The proof of (ii) is similar and use the fact that here cannot have k≡2mod4.  

Conclusion: 

                This paper deals with Pythagorean Triples and primitive Pythagorean triples. Some theorems based on 

these are also discussed. Also it deals with characterization of primitive Pythagorean triples and lagrange„s 

square theorem. And then describes a simple method for finding units of group rings of the form Z[G]=Z[H] 

=Z[C2]  for H an Abelian group and apply this to the case G=D4 ,the dihedral group of order 8. 
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