-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

®

CrossMark

provided by ZENODO

Available online at www.sciencedirect.com

ScienceDirect

SoftwareX

L

ELSEVIE

SoftwareX 5 (2016) 6-11

www.elsevier.com/locate/softx

ooi: OpenStack OCCI interface

Alvaro Loépez Garcia™, Enol Fernandez del Castillo, Pablo Orviz Fernandez

Institute of Physics of Cantabria, Spanish National Research Council — IFCA (CSIC—UC), Avda. los Castros s/n, 39005 Santander; Spain
Received 27 August 2015; received in revised form 27 November 2015; accepted 15 January 2016

Abstract

In this document we present an implementation of the Open Grid Forum’s Open Cloud Computing Interface (OCCI) for OpenStack, namely
ooi (Openstack occi interface, 2015) [1]. OCCI is an open standard for management tasks over cloud resources, focused on interoperability,
portability and integration. ooi aims to implement this open interface for the OpenStack cloud middleware, promoting interoperability with other
OCClI-enabled cloud management frameworks and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack installation, not
tied to a particular OpenStack release version.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

Keywords: Cloud; OCCI; Standards; Interface

Code metadata

Current code version

Permanent link to code/repository used for this code version
Legal Code License

Code versioning system used

Software code languages, tools, and services used
Compilation requirements, operating environments

If available Link to developer documentation/manual
Support email for questions

0.1
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00055
Apache License, Version 2.0

git

Python(>=2.7)

pbr, oslo.log, oslo.config, routes, OpenStack installation
https://ooi.readthedocs.org/

ooi @lists.launchpad.net

1. Motivation and significance

The Open Grid Forum (OGF) has proposed the Open Cloud
Computing Interface (OCCI) [2] as an open standard defining
a RESTful API for managing cloud resources, developed as a
joint effort between industry and academia.

The OCCI specification is being delivered as a set of
complementary documents divided into three categories: the
OCCI Core, the OCCI Renderings and the OCCI Extensions.
At the time of writing this document the current version of the

* Corresponding author.
E-mail addresses: aloga@ifca.unican.es (A. Lépez Garcia),
enolfc @ifca.unican.es (E. Fernandez del Castillo), orviz@ifca.unican.es
(P. Orviz Fernandez).

http://dx.doi.org/10.1016/j.s0ftx.2016.01.001

standard is OCCI 1.1, with OCCI 1.2 version being currently
under development.

OCCI Core This is a single document [3] defining the OCCI
Core abstract model. This model can be interacted
with the renderings and is expanded by the OCCI
extensions.

OCCI Renderings The OCCI Renderings describe how the
OCCI Core model should be rendered. The current
OCCI HTTP Rendering specification [4] defines
how to interact with the OCCI core model and its
extensions over a HTTP protocol based RESTful API.
Multiple and different renderings may interact with the
same instances of the OCCI Core protocol, thus not
being limited to use a concrete rendering.

2352-7110/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/144732776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2016.01.001&domain=pdf
http://www.elsevier.com/locate/softx
http://dx.doi.org/10.1016/j.softx.2016.01.001
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00055
https://ooi.readthedocs.org/
mailto:ooi@lists.launchpad.net
mailto:aloga@ifca.unican.es
mailto:enolfc@ifca.unican.es
mailto:orviz@ifca.unican.es
http://dx.doi.org/10.1016/j.softx.2016.01.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A. Lopez Garcia et al. / SoftwareX 5 (2016) 6-11 7

OCCI Extensions These specifications describe additions to
the OCCI core model. The OCCI Infrastructure
specification [5] contains the extension for the IaaS
domain, defining the needed resource types, attributes
and actions that can be taken on each resource type.

Several Mixin extensions have been developed so as to add
additional functionality. Namely, the most relevant ones are the
following:

Contextualization Extension Contextualization is the pro-
cess of installing, configuring and preparing software
upon boot time on a pre-defined virtual machine im-
age. This Mixin extension allows to pass some data to
the instance [6] that can be further fetched from inside
the virtual machine by a software such as cloud-init [7]
or Flamingo [8].

Key Pair Extension This Mixin extension allows users to
inject a SSH public key for the authenticated access
to the provisioned VM [6,9].

OCCI has been one of the first standards in the cloud
ecosystem, providing the foundations for basic management
tasks in Infrastructure as a Service (IaaS) providers and it can be
easily extended easily so as to provide additional functionality.
OCCI is a standard relevant for both cloud users and cloud
providers as a way to provide an interoperable infrastructure,
removing any kind of vendor lock-in.

Currently some OCCI implementations already exist for
several cloud vendors or in the form of general frameworks that
can be extended with several backends. In order to get an OCCI-
enabled OpenStack [10] deployment, we only considered two
candidates: rOCCI and OCCI-OS. Other implementations exist,
but either they do not have recent activity in their codebase or
they are too general frameworks that needed a lot of integration
efforts (for instance for the authentication and authorization
parts).

rOCCI [11] is one of the most notable projects implement-
ing OCCI. It is a framework written in Ruby that aims
to improve interoperability in the cloud by delivering
an OCCI implementation that can be used by both at
the server and at the client side. The rOCCI-server
component makes possible to add an OCCI interface
to some existing cloud stacks and vendors via one of
the existing configurable backends, such as OpenNeb-
ula [12], Apache CloudStack [13], VMware [14] and
Amazon EC2 [15]. It stands as a standalone server
(rOCClI-server) that proxies the requests to the under-
lying cloud management framework. The rOCCl-cli
on the other hand is the client component of rOCCI,
making possible to interact with any OCCI-enabled
framework.

OCCI-OS [16] is an implementation of OCCI for Open-
Stack, leveraging the Python Service Sharing Facility
(pyssf) [17]. It consists on a new WSGI application
that uses the internal OpenStack APIs.

rOCClI-server could be adapted to be used over an
OpenStack installation, but the fact of being written in Ruby
is an obstacle for reusing the existing OpenStack modules
(e.g. authentication) already available.

On the other hand, OCCI-OS’ WSGI application speaks
directly to the OpenStack internal APIs. These APIs are not
versioned and can be subject to change at any point in the
development, leading to incompatibilities between the OCCI
modules and the different OpenStack versions. As a result,
the need of several OCCI-OS releases, each one aligned with
its corresponding OpenStack API version, is a must. Changes
in the internal OpenStack APIs happen even between minor
releases, making impractical to update the code for each new
version. Making OCCI-OS use the public APIs instead involves
a complete refactorization of its codebase, as it leverages all the
internal backends to accomplish the desired actions.

As an aim to overcome these architectural issues, we present
in this paper ooi [1], a Python-based application designed to be
easily integrated with the OpenStack core components.

2. Software description
2.1. Foreword on WSGI

The Python WSGI standard [18] proposes an interface be-
tween web servers and Python web applications so that it is pos-
sible for an application to handle HTTP requests using Python
code. Among other things, it defines the WSGI application,
server and middleware.

e The WSGI application object receives a representation of the
HTTP request, processes it and returns a response that will
be eventually sent back to the client.

e The WSGI server invokes the application for each request
that is targeted to it. Therefore, an application receives the
request from a server.

e The WSGI middleware receives a WSGI request, performs
some logic on it, and sends it to the next WSGI middleware
or application. Therefore, the WSGI middleware is seen as
an application by a WSGI server, and as a server by a WSGI
application.

It is then possible to chain several WSGI middlewares
together, each one adding some additional functionality before
actually passing the request to the final application. This
appears as an analogy with pipes on UNIX systems, thus
often using the term pipeline to refer to this chain of WSGI
middlewares and applications.

Following this structure, OpenStack native API is a WSGI
application that leverages several of such middlewares that
perform additional functionalities like authentication (against
the OpenStack Identity Component), and rate and size limiting,
just to cite some.

In this context, instead of implementing ooi as a WSGI
application, it has been developed as a WSGI middleware that
proxies the OCCI requests and translates it to an appropriate
OpenStack request. This is a key aspect of ooi’s architecture
design that, unlike other solutions (OCCI-OS [16]) does not

8 A. Lopez Garcia et al. / SoftwareX 5 (2016) 6-11

r

User WSGI server

OpenStack WSGI middleware Il

ooi middleware OpenStack API WSGI app

OCCI op

get_response(OCCI req)

process_request(OCCI req)

OCCI resp

OCCI resp

OCCI resp

process_response(OCCI resp)

v

process_request(OCCI req)

additional req needed

get_response()

>
OStack resp l

process_response(OStack resp)

~ ~ 71 OCCI resp

OCCI (oo0i) WSGI pipeline

~ ~ "1 OCCI resp

Fig. 1. ooi processing pipeline. This figure illustrates the sequence diagram for processing an OCCI request. The red shaded area represents the WSGI pipeline,
whose components are depicted with grayed boxes. Solid arrows represent operations or method calls, dashed arrows represent data types, OCCI op is a request
for an OCCI operation, OCCI req represents an OCCI request type, OStack resp is an OpenStack response, OCCI resp is an OCCI response, OpenStack WSGI
middleware are the preceding and unmodified OpenStack WSGI default middlewares that are present in the pipeline. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

appear as a standalone WSGI application that calls OpenStack
internal interfaces but rather makes use if its public API.

ooi’s workflow is shown in Fig. 1. The red shaded area rep-
resents the OCCI WSGI pipeline, whose components are de-
picted as gray boxes. As it is shown in the Figure, each of the
WSGI middleware process the request and perform some opera-
tion with it (for example, authentication), then they call the next
application or middleware in the pipeline, until the request gets
downs to the final OpenStack API WSGI application. Then, the
application will return a response, that will be processed back
in reverse order by each of the WSGI middlewares until it gets
up to the WSGI server.

Therefore, whenever a OCCI request arrives to the ooi
middleware, this request is processed and translated into a
new equivalent OpenStack request, based on its public API.
If further information is needed so as to build the request, it
is done transparently to the user. Whenever this transformation
finishes, ooi passes down the corresponding OpenStack request
to the OpenStack API WSGI application — the last step in
the pipeline — and an OpenStack response is obtained. This
response is processed again by the OCCI middleware, so that
it is rendered back as a proper and valid OCCI response, and it
continues its path upstream to the WSGI server.

' Comm. | :'Comm. is related to, ! Comm. is |
' s HTTP | ' CMF interface reqs i | internal |
. . q ' Service provider\
. q q domain
v 5 i
- oca] .
Cloud ;
‘ Management [+<—>| Resources
Propietary / Framework
API

Fig. 2. Proposed OCCI’s place in a provider’s architecture according to the
standard. Boxes in yellow explain the type of communication being made,
green depicts the Cloud Management Framework components, red the OCCI
interface. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

2.2. Interacting with OpenStack

The OCCI standard defines the API as a boundary interface
that acts as a frontend to the internal management APIs, as
shown in Fig. 2.

To interact with OpenStack, ooi leverages its public API
interfaces [19] rather than using the private API (Fig. 3). This
architecture decision is motivated by the fact that OpenStack

A. Lopez Garcia et al. / SoftwareX 5 (2016) 6-11 9

] OpenStack]
] public API)
CT Comm T T Gpendtack Tl oo ,
' iSHTTP ' ' private APl ! winternal RPC,
. E /: E E Service provider
. : ! D domain
~ | oca : :
E_» , OpenStack v &
/ T esources
OpenStack
API

Fig. 3. OCCI place in a provider’s infrastructure, following ooi’s architecture.
Instead of using the private APIs, OCCI requests are translated to native
OpenStack requests. Boxes in yellow explain the type of communication being
made, green depicts the OpenStack components, red the OCCI interface. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

public API is versioned, whereas its private interfaces are not;
hence there is no contract to maintain its signature between
OpenStack releases.

This fact causes that any application using the private, inter-
nal interfaces may need to be adapted throughout OpenStack
releases. On the other hand, changes in the public REST API
are versioned (each change increases the minor version of the
API), and the same version is supported across several releases.
A given version of OpenStack public API is not subject to func-
tionality or backwards incompatible changes, since that kind of
changes will increase the version number.

The development work that involves supporting new major
releases of OpenStack public API is alleviated by ooi’s mod-
ular architecture, making possible to plug additional modules
without modifying substantial parts of the code. Moreover, sev-
eral OCCI endpoints, supporting different OpenStack API ver-
sions, can co-exist in a single oo1i installation allowing isolated
environments to be used for different purposes. Thus e.g testing
experimental API features can live together with the production
endpoint without risks.

Currently, the supported OpenStack version is v2.1 [20].
However, it is possible to deploy ooi on top of the previous
v2.0 API, since v2.1 is backwards compatible with the addition
of strong API validation.

2.3. ooi functionality

ooi implements the OCCI 1.1 standard as described in
Section 1. It implements the OCCI Core specification [3],
the OCCI infrastructure extension [5] as well as the OCCI
HTTP rendering [4]. Additionally, two extra extensions were
implemented: the contextualization and SSH credentials.

During the development stages of ooi we have focused
not only on following the standard, but also on remaining
compatible with any other existing OCCI implementations. A
comparison of the different OCCI implementations and the
operations that can be performed in each of them is summarized
in Table 1.

It is worth notice that OCCI does not mandate that all
operations are actually supported by the respective backend (in

Table 1

OCCI feature comparison of the several implementations. The lack of features
in rOCCI is due to the backend, not rOCCI itself, since it refers to the
OpenNebula backend as there is no OpenStack backend available. N: not
implemented or available, Y: implemented, P: partially implemented, N/A: not
applicable (backend does not support it).

Query Interface

rOCCI OCCI-OS ooi
retrieve model Y Y Y
filter N N N
Infrastructure extension: compute
query Y Y Y
query and filter N N N
create Y Y Y
delete Y Y Y
actions: start Y Y Y
actions: stop Y Y Y
actions: restart Y Y Y
actions: suspend Y Y Y
Infrastructure extension: network
query Y N Y
query and filter N N N
create P N Y
delete Y N Y
attach to compute Y Y Y
attach to compute Y Y Y
detach from compute Y Y Y
actions: up N N/A N/A
actions: down N N/A N/A
Infrastructure extension: storage
query Y Y Y
query and filter N N N
create Y Y Y
delete Y Y Y
attach to compute Y Y Y
detach from compute Y Y Y
actions: online Y N/A N/A
actions: offline Y N/A N/A
actions: backup Y N/A N/A
actions: snapshot N N N
actions: resize N N/A N/A
Contextualization extension
contextualize compute Y Y Y
SSH Key extension
as an argument Y Y Y
existing key N N Y

this case OpenStack), therefore operations marked as N/A or
marked as not implemented in Table 1 render the correct result
as specified in the OCCI standard (that is, the HTTP 501 Not
Implemented error code).

2.4. Performance comparison

Even though it is not the original purpose of this new imple-
mentation, we found interesting to compare ooi performance
against the existing OpenStack implementation — OCCI-OS

10 A. Lépez Garcia et al. / SoftwareX 5 (2016) 6-11

) Time spent in satisfying the request

10°
[OCCI-0S

3 ooi

[OpenStack Compute API

10

log time (s)

10

10°

delete

create

list (80 VMs)
operation

query show

Fig. 4. Performance comparison between both OpenStack implementations, using a logarithmic scale in the Y-axis. The listing of the running instances has been
made against an infrastructure running 80 instances. Standard error is represented in the error bars. Note that the query operation for OpenStack is not applicable,

as it is OCCI specific and there is no equivalent in OpenStack.

— 50 as to ensure that our implementation does not impede the
overall performance of the system.

For an accurate comparison to be made, we have deployed
both ooi and OCCI-OS over the same OpenStack Compute
controller and performed some basic operations using ooi,
OCCI-OS and the native OpenStack API. The underlying server
consists of an 8 core (Intel® Xeon® CPU E5-2640 2.00 GHz)
virtual machine, with 16 GB of RAM. In order to eliminate
any potential overhead introduced by a client tool (such as
authentication or data verification), the operations have been
made directly to the API using the corresponding HTTP method
(i.e. GET, POST and DELETE in this case).

As it can be seen in Fig. 4, the results for the most common
operations are similar, with the exception of listing a large
number of VMs (for this comparison we have deployed 80
VMs). It is worth notice that there is no query operation or any
equivalent in the native OpenStack Compute API, therefore it
is not possible to show the results for such operation.

3. Conclusions

Standards in the Cloud cannot evolve without a rich
ecosystem of available implementations. As we have stated
in Section 1, the rOCCI framework has provided great
OCCI support for several Open Source cloud management
frameworks, but it lacks an OpenStack backend.

In this context OCCI-OS is an existing implementation for
OpenStack, but it leverages its internal and private interfaces.
As we have stressed in this document, it requires to be updated

each time a new OpenStack version is released. This could lead
to troublesome situations, as resource providers rely heavily on
the availability of an updated and compatible OCCI interface
before performing any OpenStack deployment upgrade.

Unlike OCCI-OS, ooi makes use of the public, ver-
sioned REST API (as explained in Section 2) to allow
smooth, modification-free transitions across OpenStack re-
leases. Resource providers can upgrade their infrastructure
to the next release, with no ooi relevant compatibility
concerns.

OCCI is the reference standard for some federated cloud
infrastructures, such as the EGI Federated Cloud [21]. In such
federated infrastructures, having a stable implementation of the
OCCI interface for all of the Cloud Management Frameworks
used — such as OpenStack — is a must. The implementation
of yet another module providing OCCI support for OpenStack
has the risk of non being adopted, as cloud providers may
be reluctant to deploy another new component. However, we
expect that ooi is adopted by cloud federations as it tries
to address some of the shortcomings that resource providers
have faced in the operation of deployment of OCCI enabled
OpenStack clouds with the current available tools.

Acknowledgments

The authors want to acknowledge the support of the
EGI-Engage (grant number 654142) and INDIGO-Datacloud
(grant number 653549) projects, funded by the European
Commission’s Horizon 2020 Framework Programme.

A. Lopez Garcia et al. / SoftwareX 5 (2016) 6-11 11

References

[1] Openstack occi interface (0oi), 2015. URL https://launchpad.net/ooi.
[2] Open Grid Forum (OGF), OCCI Working Group, 2015.
URL https://www.ogf.org.

[3] Nyrén R, Metsch T, Edmonds A, Papaspyrou A. Open cloud computing
interface—core, Tech. rep., Open Grid Forum, 2010.

[4] Metsch T, Edmonds A. Open cloud computing interface-RESTful HTTP
rendering, Tech. rep., Open Grid Forum, 2011.

[5] Metsch T, Edmonds A. Open cloud computing interface-infrastructure,
Tech. rep., Open Grid Forum, 2010.

[6] Fernandez E. Occi contextualization extension, 2015. URL
https://wiki.egi.eu/wiki/Fedcloud-tf: WorkGroups:Contextualisation#
Contextualization.

[7] cloud-init, 2015. URL https://launchpad.net/cloud-init.

[8] Flamingo, 2015. URL https://github.com/tmrts/flamingo.

[9] E.-W. project, Occi key pair extension, 2015. URL https://forge.fiware.
org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_
RESTful_API_Specification#Key_Pair_Extension.

[10] OpenStack Foundation, OpenStack, 2015. URL http://openstack.org.

[11] Parak B, Sustr Z, Feldhaus F, Kasprzak P, Stba M. The rOCCI Project
Providing Cloud Interoperability with OCCI 1.1; 2014. p. 1-15.

[12] Moreno-Vozmediano R, Montero RS, Llorente IM. Taas cloud architec-
ture: From virtualized datacenters to federated cloud infrastructures. Com-
puter 2012;45(12):65-72. http://dx.doi.org/10.1109/MC.2012.76.

[13] Apache CloudStack, 2015. URL https://cloudstack.apache.org.

[14] VMWare, 2015. URL http://www.vmware.com.

[15] Amazon Elastic Compute Cloud (EC2), 2015. URL https://aws.amazon.
com/ec?/.

[16] Occi—OpenStack, 2015. URL https://wiki.openstack.org/wiki/Occi.

[17] Metsch T, Smith C. Service Sharing Facility, 2015.

URL http://pyssf.sourceforge.net.

[18] Eby P. Python web server gateway interface v1.0.1 (PEP 3333), sep 2010.
URL https://www.python.org/dev/peps/pep-3333/.

[19] OpenStack project, OpenStack APIs, 2015.

URL http://developer.openstack.org/.

[20] OpenStack project, OpenStack Compute API v2.1, 2015.

URL http://developer.openstack.org/api-ref-compute-v2.1.html.

[21] Ferniandez-del Castillo E, Scardaci D, Lépez Garcia A. The EGI
Federated Cloud e-Infrastructure. Procedia Comput Sci 2015;68:196-205.
http://dx.doi.org/10.1016/j.procs.2015.09.235.

URL http://linkinghub.elsevier.com/retrieve/pii/S187705091503080X.

https://launchpad.net/ooi
https://www.ogf.org
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation#Contextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation#Contextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation#Contextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation#Contextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation#Contextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation#Contextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation#Contextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation#Contextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation#Contextualization
https://launchpad.net/cloud-init
https://github.com/tmrts/flamingo
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM_OCCI_Open_RESTful_API_Specification#Key_Pair_Extension
http://openstack.org
http://dx.doi.org/10.1109/MC.2012.76
https://cloudstack.apache.org
http://www.vmware.com
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://wiki.openstack.org/wiki/Occi
http://pyssf.sourceforge.net
https://www.python.org/dev/peps/pep-3333/
http://developer.openstack.org/
http://developer.openstack.org/api-ref-compute-v2.1.html
http://dx.doi.org/10.1016/j.procs.2015.09.235
http://linkinghub.elsevier.com/retrieve/pii/S187705091503080X

	ooi: OpenStack OCCI interface
	Motivation and significance
	Software description
	Foreword on WSGI
	Interacting with OpenStack
	ooi functionality
	Performance comparison

	Conclusions
	Acknowledgments
	References

