
Seamless Task Offloading on Multi-Clouds and Edge
Resources: an Experiment

Andreas Tsagkaropoulos1, Giannis Verginadis1, Dimitris Apostolou1,2, Gregoris Mentzas1

1Information Management Unit (IMU), Institute of Communication and Computer Systems (ICCS), National Technical University
of Athens (NTUA), Athens, Greece

2Department of Informatics, University of Piraeus, Piraeus, Greece
atsagaropoulos@yahoo.gr, jvergi@mai.ntua.gr, dapost@unipi.gr, gmentzas@mail.ntua.gr

Abstract— Cloud computing has been growing at an

increasing rate over the last few years. Commercial and scientific
applications have come to rely on it as a development tool due to
its exceptional characteristics in processing power and storage.
The trend has been augmented with the emergence of the
Internet of Things and smart processing devices at the edge.
Contrary to the line of thought commonly adopted, we present in
this work an alternative platform that considers edge devices as
possible processing nodes, and provide a two-level task
scheduling deployment that can handle not only binary modules,
but also code-level fragmentations. We also go through a simple
implementation of the platform, using production-ready
solutions, while validating it on public and private clouds, and
physically-separated edge devices.

Keywords—Big Data Processing, Dynamic Resources
Management, Edge Computing.

I. INTRODUCTION
The area of Cloud Computing, the practice of using a

network of remote servers hosted on the Internet to store,
manage, and process data, rather than a local server or a
personal computer, has been growing increasingly over the last
few years. Most research & industrial efforts have focused on
the optimization of the deployment of centralized cloud
environments. The results of these efforts have been the
various implementations of Cloud Computing services by a
number of Cloud Computing vendors (Amazon [1], Google[2],
Microsoft [3] and others). All of these services emphasize the
use of a strong storage and processing core to deliver processed
data to the less capable devices of the users. However, the
increasing need for supporting interaction between IoT and
cloud computing systems has also led to the creation of the
edge computing model, which aims to provide processing and
storage capacity as an extension of available IoT devices,
without needing to move data/processing to a central cloud
data-center [4].

The ever increasing challenge for efficiently deploying and
managing the big data applications, necessitates the extension
of the “traditional” single provider cloud model by considering
the exploitation of resources established either by several
providers (i.e. multi-clouds) and/or resources situated at the
extreme edge of the network. The active incorporation of edge
devices into big-data processing topologies, along with the
exploitation of multi-cloud resources, effectively delivers a
joint and powerful processing platform, appropriate for coping
with the increased needs of big data. The off/onloading of
processing tasks over edge devices (e.g. mobile phones,
routers, cameras, UAVs etc.) may either intelligently filter out

the incoming (to cloud resources) high velocity / high volume
data stream or efficiently process it by using closer to the edge
cloud infrastructures without any restrictions on who may
provide them (i.e. single/multiple providers, private/public
resources). In our previous work [5], we discussed an
envisioned dynamic, distributed, self-adaptive and proactively
configurable architecture for processing Big Data streams. In
particular, we aimed to combine real-time Big Data, mobile
processing and cloud computing research in a unique way that
entails multi-cloud resources use and extension of the fog
computing paradigm to the extreme edge of the network. In
this paper and based on the already introduced vision [5], we
address the need for refactoring big data intensive applications
so that their tasks can be distributed and processed over a joint
processing platform composed of cloud nodes and edge
devices, thus materializing an important aspect of our initial
vision.

This paper is organized as follows: Chapter 1 contains a
general introduction to the subject addressed; Chapter 2
presents available technologies for multi-clouds and edge
processing that could be used as a joint processing platform
while it sketches the approach for implementing it. Chapter 3
describes the details of the deployment and a small experiment
conducted based on the concept. Chapter 4 highlights some of
the challenges addressed in our concept that have not been
solved by research until now, and Chapter 5 concludes,
mentioning general directions for future research.

II. MULTI-CLOUDS AND EDGE AS A JOINT PROCESSING
PLATFORM

In order to extend the traditional central cloud model with
the active incorporation of the edge devices, we consider that
Virtual Machines, emulations of computer systems, can be
situated both within the premises of a cloud computing
provider and on edge devices, for example, mobile phones,
effectively delivering a joint processing platform. Data
intensiveness is the characteristic of numerous research and
commercial applications [6] that would be greatly benefited
from such an extension of the traditional cloud approach.
Applications such as social networks, scientific simulations,
genome data analysis and fintech solutions are typically
executed on powerful but costly distributed infrastructural
resources.

We focus on technologies and on their potential integration
as means to alleviate boundaries between available cloud
provider offerings but also among resources at the extreme
edge of the network.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144730154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

One of the most widely used technologies providing cluster
resource management is Mesos [7]. Mesos is a distributed
systems kernel providing applications with API’s for resource
management and scheduling for clusters stretching across
entire datacenter and cloud environments. This functionality is
based on the Master-Slave model, or – using the terminology
of Mesos – Master-Agent. Thus, an Agent instance is executed
on every processing node, and communicates with the Master
node(s) which are responsible for making resource offers to
frameworks. A Mesos framework is analogous to an
application over a Linux kernel; It leverages the functionality
of the kernel to deliver higher-level applications to the user.
Similarly, frameworks in Mesos use the resource offers

produced by the master nodes, to execute applications. In
order to leverage the resources management provided by
Mesos, and bring task scheduling to the edge, we investigated
the Aurora [8] Mesos framework. Aurora runs applications
across a shared pool of machines and keeps them running. Its
architectural elements are Worker nodes which run over
Mesos Agents and carry out the actual processing, Coordinator
Nodes which run over Mesos Master nodes and coordinate
processing, and Client Nodes, which are not dependent on
Mesos modules and submit jobs for execution. The result of
the execution can be monitored through a comprehensive web
interface.

There have been multiple approaches for task offloading
from mobile devices to the cloud. Jade [9] offloads classes
from an Android device for execution in other Android
devices or the cloud. It considers the state of the application as
well as the device to make informed decisions on offloading,
thus optimizing energy usage.

Another approach is the Java Parallel Processing
Framework, (JPPF) [10]. JPPF is a software solution enabling
the use of grid computing in applications, demanding
minimum code modification. It is used in our platform,

because it can allocate tasks not only on any Java-capable
machine, but also on Android edge nodes. Its architecture –
similarly to Aurora – also follows the Client-Server and
Master-Slave models (JPPF slaves are called ‘nodes’) [11]. A
JPPF topology includes at least one driver, one node and one
client. Each module can be run independently from the others,
but all of them can also run on the same machine. The Client
is responsible for submitting jobs for execution, which
comprise of one or more tasks. The tasks of a job are
scheduled for execution by the JPPF driver, to one or more
JPPF nodes that execute them and return the results to the
driver which delivers them back to the client. We present
below an architecture that can be used to deploy cloud

applications consisting of processing elements that can be
executed in parallel. First, the main application structure is
deployed, and then smaller processing tasks are created for
every method contained in the source code that will be
offloaded, and are grouped in a relevant job. These processing
tasks can then be distributed not only on cloud nodes but also
on edge devices. This can have a very positive impact on the
type of data processed by the cloud nodes, as edge devices –
being nearer to the source of information – can perform
advanced filtering on the information to be processed.
Besides, edge devices can manipulate or enhance raw data,
before sending it for main processing tasks to cloud nodes.

Our approach presents a methodology for the distribution of
tasks involving largely independent data streams, which do not
need strict synchronization. This is realized by either
rephrasing the standard processing flow when access to the
source code of the application is available, or correctly tagging
the binary modules of the application. Given an arbitrary
topology of processing nodes, the application should be
fragmented based on its needs and its structure for
semantically-correct execution on remote nodes.

Fig 1. Experiment Architecture

III. IMPLEMENTATION
To implement the fragmentation mechanism facilitating the

distribution of processing tasks based on the Aurora
framework, we need a number of bare metal or Virtual
Machines with Linux-based OS’s installed, capable of
installing deb [12] or rpm [13] packages, as at the time of
writing Mesos is unavailable on Windows [14]. Before the
installation of Mesos on Ubuntu, a design decision concerning
the number of Master nodes available to the topology must be
taken. While one Zookeeper Server node [15] may be enough
for testing purposes (and our small-level experiment), three or
five nodes could be needed when hundreds of thousands of
requests need to be serviced [16].

The installation of Mesos on Ubuntu is carried out
following the instructions provided by the Aurora team [17].
A number of deb packages are downloaded depending on the
role of each node in the processing topology, and then
installed. Then the relative configuration files in the nodes and
the Master are edited to reflect the current topology
implementation.

Once the topology has been set up, the Client can start
submitting processing jobs to the Scheduler for execution. The
Scheduler deploys the incoming jobs to the Executor(s)
satisfying the deployment constraints and the resource
requirements described in the specification file. For example,
if a node has a tag that designates it as ‘low-network’, the
scheduler will avoid sending network tasks on that node and
instead will send other types of tasks. Once a task is
successfully initiated, it will continue to run indefinitely, until
stopped from the Client or completing its processing [18].
While tasks are running, Aurora provides a web-browser
accessible interface that allows monitoring the processing
state, the resources it consumes, the standard output (stdout),
and standard error (stderr) streams per Worker. Additional
information concerning the internal state of the Masters and
Agents is also provided by Mesos, using the relevant JSON
endpoints.

To enable the offloading of processing to edge resources,
and permit application developers to fine-tune the
performance of the system at source code level, we used JPPF.
The tasks submitted for execution on JPPF can be either a
binary application of the OS, a script, or even a Java method /
runnable [19]. This depicts the versatility of the framework to
handle a wide range of programming components, which
identifies it as a prominent candidate for Cloud Applications.

Thus, the JPPF node and driver modules should be
downloaded in the processing nodes using Desktop operating
systems or their derivatives (e.g Raspbian), and on Android
devices (OS version 4.4 or higher). The details of the
deployment (e.g. the location of the driver, the connection
mode etc.) for cloud processing nodes are controlled by
configuration files pertaining to each of the JPPF modules.

A. Experiment Walkthrough
Τhe first step for deploying the implementation described

above is to install the official packages mentioned in the
installation instructions [17] or to re-compile them. We carried

out the experiment on Ubuntu 14.04 and Ubuntu 16.04
machines running on a private and a public cloud, as well as
on a number of Android devices.

We used 1 VM on the public Cloud Okeanos (used by the
Greek Research and academic community)[20] and 2 VM’s on
our private cloud, running Openstack (Figure 1). Two
Android Marshmallow devices used the JPPF Android node
application, setting the number of processing threads equal to
the CPU cores, from the application menu, and a Raspberry Pi
2 was also used.

Once Mesos and Aurora have been installed on each node,
some changes must be performed on the initial configuration
files so as to establish communications between Mesos nodes.

First, we changed the address of the Master (Mesos) node
on all machines that will host Agent nodes by editing the
domain name inside /etc/mesos/zk to match that of the Master.
Then we created a file named ‘attributes’ inside the
/etc/mesos-slave folder, containing a jppf-role:node or jppf-
role:driver tag. This not only permits us to tag nodes so that
only the appropriate tasks reach them, but also upgrades
Mesos Agents to system services. Finally, the processing
modules are started in the manner described in the Aurora
installation guide.

B. Aurora Application Deployment
All platforms using Aurora, manage the execution of

applications using configuration files, which describe the jobs
and the tasks that will be executed in the topology. The Aurora
Process object which will start a JPPF-node is the following:

start_driver = Process(
name = 'start_driver',
cmdline = 'cd /home/ubuntu/JPPF-5.2.3-

driver/ && /home/ubuntu/JPPF-5.2.3-
driver/startDriver.sh')

As the Process will be initiated on Linux JPPF nodes,

special attention should be paid so that the execution path
matches the deployment path of the JPPF modules.

The Aurora Task concerning starting the driver is the
following:

start_driver_task = SequentialTask(
 processes = [start_driver],
 resources = Resources(cpu = 0.1, ram =

100*MB, disk=1*MB))

Finally the Aurora Job object containing the task is the

following:

jobs = [
 Service(
 cluster = 'example',
 environment = 'devel',
 role = 'www-data',
 name = 'start_driver',
 task = start_driver_task,
 constraints = {
 'jppf-role': 'driver'
 },

)
]

C. Creation and Deployment of JPPF tasks
To demonstrate the capability of our platform to fragment

an application and schedule Java tasks for execution, a simple
Java class with three time-consuming methods was created.
Our workloads include a naive recursive Fibonacci number
calculator [21], a sleeping process, and a math routine
processing random numbers. The program, was tested on a
local setup, and then was restructured to enable cloud
execution, with the conversion of simple method calls to one
job with the method calls as its tasks.

In JPPF, a new job (provided the required libraries are
included) can be added in two lines of code:

JPPFJob job = new JPPFJob();
job.setName(“jobname”);

Similarly, a task can be added with the following code:

Task<?> task = job.add("name_of_method",new

Java_Class_of_method(),method_parameter);
sleep_task.setId("My method 1");

The above snippet highlights the significant capability of

JPPF to run unaltered source code, simply by using the name
of the method to be run. The only pre-requisite to achieve
distributed processing in this manner, is the writing of the job
and task objects, and the management of the results. A very
simple extensible application which can be used as a basis for
more complex programs can be found at [22].

In order for tasks to be executed on Android nodes, it is
necessary to include a dex file in the code containing all
classes that have at least one task to be executed in the manner
shown above, as Android nodes process their data offline [23].
Assuming that the required libraries are packaged in a file
named ‘library.jar’, and that the Android SDK has been
installed and a version of its build-tools (we used 23.0.0) is in
the system path, executing the following command: dx --dex -
-output library-dex.jar library.jar it should provide us with the
file necessary to include (library-dex.jar).

 Then, For Linux/Windows processing nodes, the
configuration file in the config/jppf-node.properties directory
of the JPPF node should be adjusted with a text editor to turn
off auto-discovery of the JPPF driver, and assign the IP
address of the driver node. Android nodes on the other hand
need to define the IP address of the JPPF driver in the relevant
entry of the settings menu of the application.

Now, the execution of the Aurora job can be started in a
terminal:

aurora job create example/www-

data/devel/start_node jppf_simple.aurora

The result of following the presented course of action is

that we should be able to see in the Aurora Scheduler
dashboard and the Aurora Thermos dashboard the execution
state of our driver and node jobs, along with the standard

output and standard error streams. Now, the JPPF Application
can be compiled and started. In Android, a mint JPPF Node
application will show the number of tasks the device has
processed and whether it is processing any tasks now.

Finally, depending on the code we have written to handle
the processing of the results, we can get insights on how the
tasks were processed..

IV. RELATED WORK
The area of Application Refactoring for cloud deployment

has been active, and a reasonable number of results have been
published on the subject.

Vasconcelos et al. [24] presented a novel approach to
support organizations in automatically adapting their existing
software applications to the cloud. The approach is based on
the loosely-coupled implementation of non-intrusive code
transformations, called cloud detours, which enable the
seamless replacement of local services used by an application
with counterpart services in the cloud. A similar approach was
followed by Kwon and Tilevich [25]. Our approach can
immediately complement this strategy as it permits the
migration of the complete application to the cloud (removing
the need to maintain a client and a server for the application),
while also granting the flexibility to execute certain methods
of the source code at select nodes.

Akherfi et al. [26], reviewed Mobile Cloud Computing
(MCC) offloading frameworks. Among the solutions
reviewed, there was not one which could demonstrate on-
demand source-code level task scheduling in multi-cloud
deployments. The solutions reviewed, either operated on a
higher abstraction level, or continuously used server resources
to deliver the service. Although the platform proposed cannot
offload mobile device tasks to the cloud (at the moment), it
can consider edge resources in addition to multiple cloud
environments for task allocation. Thus, it improves service
integration in the cloud ecosystem, and shifts the emphasis
from the mobile device to the enabling architecture.

 Hilton et al. [27] developed Cloudifyer, a touchdevelop
IDE plugin which refactors touchdevelop scripts in place. The
emphasis of their approach was on enabling multi-user support
through the usage of cloud types. Our approach encourages
the deployment of an application as-is on the cloud (with
Aurora) while also providing the means to optimize tasks
placement and execution – if access to source code is available
– with JPPF.

V. CONCLUSIONS
We presented an approach for implementing a cloud

computing architecture benefiting from the processing power
of edge devices. Our Mechanism has the advantages of the
aggregation of resources by the Aurora platform, as well as the
fine-grained adaptability offered by JPPF. Applications can
either utilize the Aurora framework for quick execution, or
can fine-tune their execution with method-level code
refactoring.

 Processing-heavy components (e.g. graphics processing,
data mining, scientific modelling) can profit from direct

scheduling using the facilities provided by Aurora, while
lighter components (light network communication, file access,
raw data acquisition) can be scheduled for execution by edge
nodes with the use of JPPF. This is not restrictive, but can be
used as a guide for application deployment.

 A limitation of the experiment conducted above is the
manual creation of new tasks by the code developer. A more
realistic approach is that tasks are being introduced, e.g.
through polling of a relevant database. This could be
implemented by the developer annotating the code, so that
tasks can be created automatically, saved in a database and be
recalled when needed.

We believe that future work in an annotations system, will
permit a number of optimizations in the execution policies of
Mesos and JPPF. Thus, tasks will be matched with processing
nodes based on their processing difficulty, and the efficiency
of the platform will be increased.

ACKNOWLEDGMENT
 This work is partly funded by the European Commission
project H2020 PrestoCloud - Proactive Cloud Resources
Management at the Edge for Efficient Real-Time Big Data
Processing (732339).

REFERENCES
[1] Amazon Web Services. Available online at:

https://aws.amazon.com/ec2/
[2] Google Cloud. Available online at https://cloud.google.com/
[3] https://azure.microsoft.com/en-us/
[4] Villari, Massimo, et al. "Osmotic Computing: A New Paradigm for

Edge/Cloud Integration." IEEE Cloud Computing 3.6 (2016): 76-83.
[5] Verginadis, G., Iyad Alshabani, Gregoris Mentzas, Nenad Stojanovic:

PrEstoCloud: Proactive Cloud Resources Management at the Edge for
Efficient Real-Time Big Data Processing. CLOSER 2017: 583-589.

[6] Chen, CL Philip, and Chun-Yang Zhang. "Data-intensive applications,
challenges, techniques and technologies: A survey on Big Data."
Information Sciences 275 (2014): 314-347.

[7] Mesos distributed kernel. Available online at: https://mesos.apache.org/
[8] Aurora Mesos framework. Available online at: https://aurora.apache.org/

[9] Qian, Hao, and Daniel Andresen. "Jade: Reducing energy consumption
of android app." the International Journal of Networked and Distributed
Computing (IJNDC), Atlantis press 3.3 (2015): 150-158.

[10] Java Parallel Processing framework. Available online at: http://jppf.org
[11] JPPF Overview. Available online at:

http://jppf.org/doc/5.2/index.php?title=JPPF_Overview
[12] Debian Package extension. Available online at:

https://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics.en.html
[13] RPM package manager. Available online at: http://rpm.org/
[14] Mesos on Windows. Available online at:

https://issues.apache.org/jira/browse/MESOS-3094
[15] Apache Zookeeper. Available online at: https://zookeeper.apache.org/
[16] Apache Zookeeper Performance. Available online at:

https://zookeeper.apache.org/doc/trunk/zookeeperOver.html#Performanc
e

[17] Apache Aurora Installation. Available online at:
https://aurora.apache.org/documentation/latest/operations/installation/

[18] Aurora task lifecycle. Available online at:
https://aurora.apache.org/documentation/latest/reference/task-lifecycle/

[19] JPPF Task objects. Available online at
http://jppf.org/doc/5.2/index.php?title=Task_objects

[20] Okeanos Public Cloud. Available online at:
https://okeanos.grnet.gr/home/

[21] An (inefficient) Fibonacci number calculation implementation.
Available online at:
http://introcs.cs.princeton.edu/java/23recursion/Fibonacci.java.html

[22] JPPF Tutorial. Available online at:
http://jppf.org/doc/5.2/index.php?title=A_first_taste_of_JPPF

[23] JPPF Android node. Available online at:
http://jppf.org/doc/5.2/index.php?title=Android_Node#Introduction

[24] Vasconcelos, Michel, Nabor C. Mendonça, and Paulo Henrique M.
Maia. "Cloud detours: a non-intrusive approach for automatic software
adaptation to the cloud." European Conference on Service-Oriented and
Cloud Computing. Springer International Publishing, 2015.

[25] Kwon, Young-Woo, and Eli Tilevich. "Cloud refactoring: automated
transitioning to cloud-based services." Automated Software Engineering
21.3 (2014): 345-372.

[26] Akherfi, Khadija, Micheal Gerndt, and Hamid Harroud. "Mobile cloud
computing for computation offloading: Issues and challenges." Applied
Computing and Informatics (2016).

[27] Hilton, Michael, et al. "Refactoring local to cloud data types for mobile
apps." Proceedings of the 1st International Conference on Mobile
Software Engineering and Systems. ACM, 2014.

