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ABSTRACT

In practice, it often happens that there are a number of classification methods. We
are not able to clearly determine which method is optimal. We propose a combined
method that allows us to consolidate information from multiple sources in a better
classifier. Stacked regression (SR) is a method for forming linear combinations of
different classifiers to give improved classification accuracy. The Moore-Penrose
(MP) pseudoinverse is a general way to find the solution to a system of linear equa-
tions.

This paper presents the use of a generalization of the MP pseudoinverse of a
matrix in SR. However, for data sets with a greater number of features our exact
method is computationally too slow to achieve good results: we propose a ge-
netic approach to solve the problem. Experimental results on various real data sets
demonstrate that the improvements are efficient and that this approach outperforms
the classical SR method, providing a significant reduction in the mean classification
error rate.
Key words: stacked regression, genetic algorithm, Moore-Penrose pseudoinverse.

1. Introduction

Suppose that a training sample has been collected by sampling from a population P
consisting of K subpopulations or classes G1, . . . ,GK . The ith observation is a pair
denoted by (xi,yi), where xi is a d-dimensional feature vector and yi is the label for
recording class membership. The corresponding pair for an unclassified observa-
tion is denoted by (x,y). In this case x is observed, but the class label y is unob-
served. The goal of classification is to construct a classification rule for predicting
the membership of an unclassified feature vector x ∈ P. An automated classifier can
be viewed as a method of estimating the posterior probability of membership of G j.
The classification rule assigns x to the group with the largest posterior probability
estimate. We denote the posterior probability of membership of Gk by

pk(x) = P(y = k|x). (1)
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In practice, it is not clear how one should choose a classifier. An even more
practical difficulty in choosing a classifier is that different classifiers have differ-
ent merits and, as a result, in a given situation one classifier may perform better
than another. Consider the following typical situation (Mojirsheibani (2002)). Sup-
pose that there are 3 classes, two of which are approximately multivariate normal
distributions, while the third class is non-normal. Then linear or quadratic classi-
fication function might work best for separating the first two classes (the normal
distributions), while the nearest neighbor rule is perhaps more appropriate in the
non-normal case. This example suggests that perhaps one should consider methods
that somehow combine the best features of different individual classifiers. Some
possible benefits of such combined methods are as follows:

1. Lowering the risk of choosing the wrong classifier.

2. Obtaining more stable prediction performance, since in combining different
methods certain biases inherited from particular models could be offset.

3. Producing a better prediction of the classification of new observations, since
the combined method gives decision-makers additional information from dif-
ferent sources.

The purpose of ensemble learning is to construct a learning rule which combines a
number of base methods, so that the final classifier gives better performance than
any individual classifier (Rokach (2010)). Three groups of combining methods
could be distinguished as follows (Duin and Tax (2000)):

• Parallel combining of classifiers computed for different feature sets. Parallel
classifiers are often of the same type.

• Stacked combining of different classifiers computed for the same feature space.
Stacked classifiers may be of a different nature, e.g. the combination of a neu-
ral network, a nearest neighbor classifier and a parametric decision rule.

• Combining weak classifiers. In this case, large sets of simple classifiers are
trained on modified versions of the original data set.

For all cases, the question arises how the classifiers should be combined. The most
intuitive approach is a simple majority vote (Kuncheva (2004)), whereby every clas-
sifier computes a class label and the label that receives the most votes is the output
of the ensemble. In addition, one may also train a classifier using, e.g. the BKS
method (Huang and Suen (1995)), Wernecke’s method (Wernecke (1992)) or the
fuzzy integral (Cho and Kim (1995)). Currently, the most interesting ensemble
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methods are bagging (Breiman (1996b)) and boosting (Schapire (1990)), random
forests (Breiman (2001)), and finally SR, introduced by Wolpert (1992). In SR, the
posterior probability estimates are combined by weighted sums, where the weights
are obtained by classical least squares regression. Stacking is still used in practice
(Sehgal et al. (2005), Doumpos and Zopounidis (2007), Marqués et al. (2012)).
Although SR is applied to real-world problems less frequently than other ensemble
methods, such as bagging or boosting, the exponential growth of data as well as
the diversity of these data continue to make SR an interesting alternative (Sesmero
et al. (2015)). There are also some new papers which propose extensions to SR
(Džeroski and Ženko (2004), Rooney et al. (2004a), Rooney et al. (2004b), Xu et
al. (2007), Ozay and Vural (2008), Ni et al. (2009)), Ledezma et al. (2010), Shun-
mugapriya and Kanmani (2013). An informative overview of SR methods can be
found in Sesmero et al. (2015).

Sigletos et al. (2005) pointed out that stacking using probabilities performs
comparably or significantly better than voting. This result has inspired us to con-
sider some extension of SR. The classical stacked regression method uses the MP
inverse of a matrix to solve a set of normal equations, whereas we try to find a
specific generalization of the MP inverse. We construct a parametric family of gen-
eralized MP inverses and use it in the SR model. Then we choose models with the
lowest cross-validation (leave-one-out) error rate and combine them by a mean rule
(Kuncheva (2004)).

However, for most datasets there are too many models to compute the cross-
validation (CV) error for all of them. The problem is too complex to find an ex-
act solution (or if done, it takes too long to calculate the solution exactly). The
most feasible approach, then, is to use a meta-heuristic method (Michalewicz, Fo-
gel (2004)). A genetic algorithm (GA) is meta-heuristic, which means it estimates
a solution. Therefore, we propose GA to solve our problem. GA has a number of
advantages. It can quickly scan a vast solution set. Bad proposals do not negatively
affect the end solution, as they are simply discarded. It can solve every optimization
problem which can be described with the chromosome encoding. It solves problems
with multiple solutions. Since the genetic algorithm execution technique is not de-
pendent on the error surface, we can solve multi-dimensional, non-differential, non-
continuous, and even non-parametric problems. It is a method which is very easy to
understand and it demands practically no mathematical knowledge.

In this paper, we first present the main ideas of SR (Section 2). In the same
section we describe generalized inverses of matrices. At the end of this section we
explain our concept for extended SR and we precisely describe the genetic approach
to our extension. In the paper the performances of the methods are compared and
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the bootstrap error of classification is considered. A total of 15 real data sets are
used. The methods and data sets used are described in Section 3. Section 4 contains
the results of our experiments on the described real data sets. The results of the re-
search are explained, the differences between the classifiers being shown accurately.
The same section contains a statistical comparison of the described methods. Final
conclusions are given in Section 5.

2. Methods

2.1. Stacked regression

Wolpert (1992) presented an interesting idea for the combining of classifiers, known
as stacked generalization. He was not searching for the best classifier in the set of
all c classifiers, but for a linear combination of them. Since each single one has
some advantages, combining them is reasonable. Wolpert’s proposal was translated
into the language of statistics by Breiman (1996a). He called it SR. Then, Leblanc
and Tibshirani (1996) took advantage of it to construct a combined classifier in dis-
criminant analysis. Stacking was shown by them theoretically to be a bias-reducing
technique. A combined classifier is a linear combination of estimated posterior
probabilities. An estimate of pk(x) obtained by the jth classifier is denoted by

p̂ j
k(x); k = 1,2, . . . ,K; j = 1,2, . . . ,c. (2)

We have c classifiers and K classes, so we have K · c estimates, which are arranged
in the vector:

p̂(x) = (p̂1
1(x), . . . , p̂1

K(x), . . . , p̂c
1(x), . . . , p̂c

K(x))
′. (3)

These estimates are arranged in the stack as rows of the matrix P. Let uk be a vector
having a 1 in the ith position if the observation belongs to class k and 0 otherwise,
so

ui,k =

{
1, if yi = k,

0, if yi 6= k.
(4)

The SR model has the form:

uk = Pβββ k +εεεk, (5)

where βββ k is a K · c×1 vector of unknown SR coefficients and εεεk a vector of errors
with zero mean. A least-squares estimate of β̂ββ k can be obtained by solving the
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following equation:

P′Pβββ k = P′uk (6)

with respect to βββ k.
The estimates of posterior probability obtained from the classifiers sum to one,

so

K

∑
k=1

p̂ j
k = 1; j = 1,2, . . . ,c. (7)

Hence, the columns of matrix P are subject to c linear constraints, P is not full
column rank and P′P is a singular matrix. We can use the MP generalized inverse
of the matrix P′P (Breiman (1996)), denoted by (P′P)+, and

β̂ββ k = (P′P)+P′uk. (8)

Given the estimates β̂ββ 1, . . . ,β̂ββ K , we classify x using the dot product:

û0,k = p̂′(x)β̂ββ k. (9)

We select the class with the largest values of û0,k. These scalar products are called
discriminant indices.

2.2. Algorithm

In SR, the MP generalized inverse A+ is used to compute the coefficients β̂ββ k (see
Equation (8)). The main idea of this paper is to use another generalized inverse.
The MP pseudoinverse is a general way to find the solution to a system of linear
equations (eg. Ben-Israel and Greville (2003), Kyrchei (2015)).

We consider a general (real) matrix AAA of order m×n and rank which may be less
than min(m,n). If M,NM,NM,N are positive definite matrices, and there exist factorizations
N̂NN
′
N̂NN =NNN, M̂MM

′
M̂MM =MMM, then

AAA+
MNMNMN = N̂NN

−1
(M̂MMAAAN̂NN

−1
)+M̂MM, (10)

satisfies the condition

‖AAA+
MNMNMNyyy‖n ≤ ‖xxx‖n (11)

∀xxx ∈ {xxx : ‖AxAxAx−yyy‖m ≤ ‖AzAzAz−yyy‖m∀zzz ∈ Rn},
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where ‖xxx‖n =
√

xxx′NxNxNx and ‖yyy‖m =
√

yyy′MyMyMy are norms in Rn and Rm, respectively.
AAA+

MNMNMN is referred to as the minimum NNN-norm MMM-least-squares g-inverse of AAA. When
MMM and NNN are identity matrices, we use the notation AAA+ and call it the MP inverse
(pseudoinverse). The matrix AAA+

MNMNMN is also called the weighted Moore-Penrose inverse
of AAA. The weighted MP inverse of a matrix has many important applications eg. in
statistics, prediction theory and curve fitting. For a wider survey and more details
we refer readers to Rao and Mitra (1971).

If MMM is positive semi-definite, then ‖yyy‖m is a seminorm and the right side of
Equation (10) does not need to be a g-inverse. We denote it by AAA∗MNMNMN and AAA∗MMM if
N = IN = IN = I.

In our method we use A∗M with a special form of matrix M instead of A+.
Precisely, we use Equation (10) with the assumptions

N̂ = N = I, M̂ = M =


a1 0 . . . 0
0 a2 . . . 0
. . . . . . . . . . . .

0 0 . . . am

 (12)

where ai = 0 or 1 for i = 1, . . . ,m (m = K · c). This leads to the seminorm

‖x‖=
√

x′Mx =
√

x2
i1 + x2

i2 + · · ·+ x2
ik , 1≤ k ≤ m (13)

for x = (x1,x2, . . . ,xm) ∈ Rm. Then Equation (10) has the form

A∗M = (MA)+M. (14)

Thus, we can calculate SR coefficients β̂ββ k by the formula

β̂ββ k = (P′P)∗MP′uk = (MP′P)+MP′uk. (15)

In the algorithm the matrix N corresponds to the norm ‖ · ‖n in Equation (11).
In the case of SR the norm operates on the space of probabilities, so it seems that
the simplest choice is to take the Euclidean norm, i.e. N = I.

We only take ones and zeros in the diagonal of the matrix MMM because it has been
proven (Górecki, Łuczak (2013)) that the value of AAA∗MMM depends only on whether the
coefficients ai are zeros or not. Each zero in the diagonal trims a part (but not all)
of the information about one pair consisting of a class and a classifier.

The number of models (diagonals) which have to be tested by the CV process
at the learning phase is equal to 2K·c, where c and K depends neither on the number
of elements of the learning data set nor on the number of features of the data.
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In our algorithm we choose the best combinations of ones and zeros in the di-
agonal of matrix M using the genetic algorithm, and form the SR model with the
lowest CV error rate. If there is more than one best model the mean classifier is
performed for them; the classification index of our method is the mean of indices
for the best models (in the sense of CV) that joins all the information from them.
We will call this method generalized stacked regression (GSR).

2.3. Genetic algorithm

The sequence of steps in a basic GA is shown in Fig. 1. The population consists of
individuals (genotypes) which are diagonal of matrix MMM. Each individual is a binary
vector (genes) that corresponds to numbers (ones or zeros) in the diagonal of MMM. All
populations in the algorithm have a constant number n of individuals.

Figure 1: Genetic algorithm

Initial population: This is generated randomly. We construct n individuals
where each position in the vector (diagonal) may be 0 or 1 with probability of 0.5.
Fitness evaluation: The fitness function value is computed by the leave-one-out CV
method. The CV error rate is the fitness value of any individual. The smaller the
value, the better fitness an individual has. Selection: We use tournament selection.
Two individuals are chosen from the population at random. The one with higher
fitness is selected for mutation and crossover. This is repeated n times to make a
new population. Mutation: We use standard one-point mutation. For each indi-
vidual each position in the vector has the same probability of mutation pm. The
mutation is negation of the number (0 or 1) in the position (Fig. 2). It is repeated
an appropriate number of times to make a new population of size n. Crossover:
We use a standard one-point crossover operation. Each individual can be chosen
to crossover with constant probability pc. For every pair of chosen individuals, the
point of crossing is fixed at random. Then the positions to the right of the point
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are exchanged with one another (Fig. 2). The operation is repeated an appropriate
number of times to make a new population of size n.

Figure 2: Reproduction

Stop condition: We do not use a fixed number of generations in GA. For so many
different data sets, the algorithm needs different numbers of steps to reach a satis-
factory result. The process is repeated until a stop condition has been reached. The
stop condition depends on the behaviour of the mean fitness value in the populations
over k steps of the algorithm. If during k steps the mean does not become smaller
than the smallest value of the mean up to the current generation, the algorithm is
terminated. We shall call the number k the stop condition number.

3. Computational experiments

Data sets

We performed experiments on 15 real data sets. The description of the data sets
used is presented in Table 1.

The data set beetles comes from Seber (1984), chemistry and irradiation come
from Morrison (1976), and football is from Gleim (1984). The other data sets orig-
inate from the UCI Machine Learning Repository (Frank and Asuncion (2010)).

Experimental setup

The classification errors were estimated by the leave-one-out and bootstrap meth-
ods. Leave-one-out was used to find the best diagonals (those with the smallest
error rates) of matrix M. The method was used to compute the value of the fitness
function in the GA. The number of individuals per population was fixed at a con-
stant value of n = 20. We chose probabilities of mutation pm = 0.01 and crossover
pc = 0.8. As a selection method we use tournament selection. Different stop con-
dition numbers were tried, k = 0, . . . ,10. For the final result of our method we
assumed the best case k = 10. For each data set we repeated the algorithm 10 times.
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Table 1: The description of the data sets used.

Name
Number of Number of Number of

features classes instances

beetles 2 3 64
breast tissue 9 6 106
chemistry 3 4 45
flags 28 6 194
football 6 3 90
glass 9 6 214
heart_c 13 5 297
heart_h 10 5 261
heart_s 10 5 105
iris 4 3 150
irradiation 3 4 45
libras 90 15 360
sonar 60 2 208
wine 13 3 178
zoo 16 7 100

In the next step, the mean classifier was performed for models with each of these di-
agonals. We calculated the bootstrap classification error rate (1000 repetitions). We
finally fixed the mean of these bootstrap error rates as the error rate of our method.

The success of stacked generalization depends on the methods that are com-
bined. Obviously, if all the methods provide the same class assignments, then a
combined model will not provide any improvement in classification accuracy. The
classification performance of the methods is of rather limited interest in this context,
i.e. one is not interested in combining highly accurate methods, but in combining
methods that are able to consider different aspects of the problem and the data used.
Of course, it is rather difficult to find which methods meet this requirement. How-
ever, it is expected that consideration of different types of methods (e.g. methods
which are not simple variations of one another) should be beneficial in stacking
(Wolpert (1992)). We performed computations for three basic classifiers:

1. Nearest neighbors classifier with 5 neighbors (5NN). Objects are assigned
based on a majority vote among the classes of the 5 nearest training points.
The 5NN variant of the nearest neighbor classifier was chosen on the one
hand to avoid an excess of zero posterior probabilities, and on the other hand
because too large a number of neighbors leads to an excessive number of ties,
whose resolution can be problematic (Górecki, (2005)). Too many neigh-
bors may also be problematic for small data sets and for data sets with small
classes.
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2. Naive Bayes classifier (NB). We assume that the value of a particular fea-
ture is independent of the value of any other feature, given the class variable.
This reduces the problem to d one-dimensional density estimation problems,
within each of the K groups. We adopted a typical assumption that the contin-
uous values associated with each class are distributed according to a Gaussian
distribution. NB classifier works quite well in many complex real-world situ-
ations. In addition, Zhang (2004) investigated the optimality of NB under the
Gaussian distribution, and presented the explicit sufficient condition under
which NB is optimal, even though the independence assumption is violated.

3. Binary decision tree classifier (TREE). The algorithm computes a binary de-
cision tree on a multi-class data set. Thresholds are set such that the Gini
impurity is minimized in each step. Early pruning is used in order to avoid
overtraining (Breiman et al. (2005)).

We focus on methods with a fast implementation (at the same time popular and rel-
atively efficient), because GA itself is very time-consuming. The methods should
be also significantly diversified in order for the ensemble method to yield better re-
sults (Kuncheva and Whitaker (2003)). Noteworthy is also Table 2 in Sesmero et
al. (2015), where one can find information about base classifiers used in SR. The
methods we selected are commonly used and meet the criteria of fast implementa-
tion and efficiency. More details about the methods we use can be found in Webb
(2002).

In the computational process we used the program PRTools 4.2.1 (http://www.
prtools.org). This is a Matlab (version R2011a) based toolbox for pattern recog-
nition (van der Heijden et al. (2004)). In each procedure we used the default param-
eters.

Results

Graphs of example runs of our algorithm are shown in Fig. 3. We can observe
rather standard behaviour of GA. We use tournament selection, which is not an
elitist selection, so we can observe that the minimum of the fitness function does
not decrease monotonically. The mean tends to a minimum and the algorithm is
terminated if the stop condition is reached, i.e. if the mean does not decrease for a
number of generations.

The results of the research are presented below in tabular form. Bootstrap error
rates are presented in Table 2. From left to right the columns show the errors made
by individual methods, SR, and our GSR. 5NN performed clearly the best on 2 of
the data sets, NB on 3 and GSR on 10.
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Figure 3: Runs of GA for example data sets. Fitness function value (mean (· · · ) and
minimum (—) of CV error rate) depending on the generation number. From left:
flags, heart_c, libras data set.

Table 2: Bootstrap error rates (in %). Clearly the best results are marked with the
symbol •.

Data set 5NN NB TREE SR GSR

beetles 6.08 6.84 5.34 4.95 • 4.34
breast tissue 48.72 38.49 43.29 41.17 • 37.47
chemistry 65.38 70.15 66.93 66.92 • 64.67
flags 66.39 35.77 43.50 40.64 • 33.47
football 40.49 • 32.60 40.51 38.99 32.65
glass 34.40 39.67 37.34 34.98 • 33.65
heart_c 57.36 41.52 52.13 51.41 • 41.48
heart_h 50.19 37.09 53.98 54.00 • 35.39
heart_s 64.86 63.76 66.53 66.55 • 63.20
iris • 4.41 5.98 9.77 7.38 5.88
irradiation 70.62 72.06 71.76 71.79 • 70.21
libras • 27.92 40.97 56.68 35.09 35.81
sonar • 23.34 25.71 32.29 32.29 23.39
wine 30.67 • 3.35 11.72 5.14 3.69
zoo 10.34 8.36 10.90 9.82 • 5.54
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In Table 3 we present relative differences of bootstrap error rates between SR
and other methods (a positive value means that SR is better in that case). We may
use the mean ratio of error rates across data sets as a measure of relative performance
(Bauer and Kohavi (1998)).

Table 3: Average relative bootstrap error rates (in%) on all data sets.

5NN−SR
SR

NB−SR
SR

TREE−SR
SR

GSR−SR
SR

MEAN 34.51 -7.02 17.65 -16.08

A direct comparison of SR with our revised version strongly favors the revised
method. A graphical comparison of GSR and SR is presented in Fig. 4. We see
that the new method, GSR, is clearly superior to SR on most of the examined data
sets (with a 16.08% average relative error reduction for all data sets). The error rate
of our method is slightly greater than for standard stacked regression in only one
case (libras). One of the models is the standard SR (for M = I), so if it is the best
model then it should be chosen. It sometimes fails because of the procedure for
finding parameters. If we tried another, more sophisticated, method of finding the
best model instead of CV, we would have better results.
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Figure 4: Comparison of test errors.

To distinguish between the methods, we performed a statistical comparison.
We tested the hypothesis that there are no differences between the classifiers. We
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used Iman and Davenport’s (1980) rank test, which is a less conservative variant
of Friedman’s ANOVA test. We compare the mean ranks of classifiers. The p-
value from this test is equal to 5.29E-6. We can therefore proceed with the post hoc
tests to detect which classifiers are significantly different from each other. Garcia
and Herrera (2008) showed that the dynamic procedure of Bergmann and Hommel
(1988) is the most powerful post hoc test. The results of multiple comparisons are
given in Table 4 and Table 5. We finally obtained, at the significance level α = 0.05,
two homogeneous groups of classifiers: GSR and the rest of classifiers. Hence, GSR
is significantly better than the other examined classifiers.

Table 4: p-values in the Bergmann–Hommel post hoc test.

i Hypothesis p-value

1 TREE vs. GSR 1.65×10−5

2 SR vs. GSR 0.004
3 5NN vs. GSR 0.011
4 NB vs. GSR 0.032
5 NB vs. TREE 0.196
6 5NN vs. TREE 0.220
7 TREE vs. SR 0.332
8 NB vs. SR 1.000
9 5NN vs. SR 1.000

10 5NN vs. NB 1.000

Table 5: Results of the Bergmann–Hommel post hoc test.

Procedure Ranks mean

GSR 4.60 a
NB 3.07 b
5NN 2.87 b
SR 2.63 b
TREE 1.83 b

4. Conclusions

Our research has shown that the use of a generalization of the MP pseudoinverse
of a matrix in the SR model of object classification gives good results. In the gen-
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eral case our method seems to outperform SR and often even the best individual
classifier. Owing to the parametric approach and the genetic optimization method,
the proposed method enables one to choose an appropriate model for any data set
and any individual classifiers. On the other hand, our method seems to prevent
overfitting. Due to the high nonlinearity, the method does not easily lead to a rigor-
ous theoretical analysis. However, the experiments that we have conducted provide
evidence of the power and usefulness of our method.
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