
On-chip jitter measurement for
true random number generators

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede
COSIC, KU Leuven

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
Email: firstname.lastname@esat.kuleuven.be

Abstract—Applications of true random number generators
(TRNGs) span from art to numerical computing and system
security. In cryptographic applications, TRNGs are used for
generating new keys, nonces and masks. For this reason, a
TRNG is an essential building block and often a point of failure
for embedded security systems. One type of primitives that are
widely used as source of randomness are ring oscillators. For
a ring-oscillator-based TRNG, the true randomness originates
from its timing jitter. Therefore, determining the jitter strength
is essential to estimate the quality of a TRNG. In this paper,
we propose a method to measure the jitter strength of a ring
oscillator implemented on an FPGA. The fast tapped delay
chain is utilized to perform the on-chip measurement with
a high resolution. The proposed method is implemented on
both a Xilinx FPGA and an Intel FPGA. Fast carry logic
components on different FPGAs are used to implement the fast
delay line. This carry logic component is designed to be fast and
has dedicated routing, which enables a precise measurement.
The differential structure of the delay chain is used to thwart
the influence of undesirable noise from the measurement. The
proposed methodology can be applied to other FPGA families
and ASIC designs.

I. INTRODUCTION

The security of cryptographic algorithms relies on the
uniformity and unpredictability of keys, challenges, nonces
and initialization vectors. In addition, many techniques for im-
proving resistance against side-channel attacks, require unpre-
dictable, uniformly distributed numbers for generating masks
and secret shares. When security primitives are implemented
on hardware platforms, the source of randomness has to be
implemented as well. Hardware modules called true random
number generators (TRNGs) exploit unpredictable physical
processes such as timing jitter or thermal noise, to produce
a random digital output.

Due to their critical role in security systems, TRNGs are the
subject of strict evaluation. Since the attack [1] on the Motoro-
la TRNG [2] in 2003, both industry and academia raised con-
cerns about the security evaluation of TRNG designs. Simply
passing the statistical tests is no longer considered sufficient to

This work was supported in part by the Research Council KU Leuven:
C16/15/058. In addition, this work is supported in part by the Flemish
Government through G.0130.13N and FWO G.0876.14N, the Hercules Foun-
dation AKUL/11/19, and through the Horizon 2020 research and innovation
programme under grant agreement No 644052 HECTOR and Cathedral ERC
Advanced Grant 695305. B. Yang is supported in part by the Scholarship from
China Scholarship Council (No.201206210295).

prove the security (the Motorola TRNG was able to pass the
DIEHARD [3] statistical tests for randomness), and a formal
evaluation of the security is required. The special publication
SP 800-90B [4] by the National Institute for Standards and
Technology (NIST) presents requirements for the design and
evaluation of TRNGs. One of the requirements is the theoret-
ical rationale of the randomness generation process. The AIS-
31 standard [5] of the German Federal Office for Information
Security (BSI) proposes even more strict evaluation criteria
based on the stochastic model of the entropy source. Both
evaluation standards require the TRNG designer to provide
the entropy claim – i.e. the estimation of the lower bound
on the entropy produced by the generator (NIST requires the
estimation of the min-entropy, and AIS-31 requires the estima-
tion of the Shannon entropy). In order to estimate this lower
bound, the designer needs to measure the parameters of the
underlying physical process used for randomness generation.
We refer to these as platform parameters.

Many TRNGs implemented on FPGA platforms rely on the
timing jitter in free-running ring oscillators (ROs) as a source
of randomness [6], [7], [8], [9], [10]. The strength of the
white noise accumulated in these ring oscillators is the critical
platform parameter in these designs. It has to be measured
at design time in order to estimate the entropy level of the
generated output. Incorrect measurement of this parameter
can lead to an overestimation of the generated entropy, which
results in a security claim that is higher than the actual security
provided by the system.

In this paper we propose a methodology for measuring
the timing jitter of free-running ring oscillators on FPGA
platforms. This methodology is designed to measure the
strength of the white noise while filtering out contributions
from other noise sources such as flicker noise and power
supply variations.

In the remainder of this paper, Section II provides back-
ground on TRNG evaluation requirements. In Section III,
we describe our carry-chain based methodology for jitter
measurement on FPGA platforms. The proposed methodology
was applied on two implementation platforms, namely Xilinx
Spartan-6 [11] and Intel Cyclone-IV FPGAs [12], and the
experimental results are presented in Section IV. Section V
provides comparison to related work. We give conclusions in
Section VI.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144716423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. BACKGROUND

A. TRNG evaluation

Designing a TRNG is different from conventional digital
circuit design because a mathematical model of the TRNG is
required to evaluate the security of the generated output. This
mathematical model is used to estimate the lower bound on
the entropy for given values of the design parameters and the
platform parameters. Design parameters are all variables that
are controlled by the designer, e.g. the sampling frequency, the
length of the ring oscillator or the number of ring oscillators
in the design. Platform parameters are the variables that affect
the entropy of the TRNG but that are not controlled by the
designer, for example, noise strength or delays of the logic
elements. These parameters depend only on the implementa-
tion platform, so they have to be measured at design time. The
description of the measurement methodology is an obligatory
part of the TRNG certification procedure.

B. Jitter in Ring Oscillators

Free-running ring oscillators are implemented by connecting
any number of delay elements (including an odd number of
inverting elements) into a loop configuration. The delay of
each logic element in a ring oscillator consists of an average
component and a variable component. Several types of noise
could affect the variable component:
• Global noise from the supply voltage variations. This

noise affects all components on the platform.
• Environment noise such as slow changes of the operating

conditions (e.g. temperature changes).
• Correlated noise such as flicker noise and telegraph noise.
• White noise which is also called Gaussian noise.
Mathematical models of TRNG designs usually rely only

on the Gaussian noise because other noise sources are either
difficult to model and analyze or can be manipulated by an
attacker. These noise sources are usually treated as determin-
istic.

The period of the ring oscillator is given by:

Ti = T0 + TGlobal + TE + TCorr + TGauss , (1)

where TGauss is a random variable with standard deviation
σG, T0 is the average period and TGlobal, TE and TCorr are
the contributions of the global noise, environment noise and
the correlated noise sources, respectively.

For a RO that is running for time tm, the following relation
holds:

tm = n · T0 + tD + tG , (2)

where n is the number of full oscillations made during the
(0, tm) time interval, tD is the deterministic noise accumulated
during this interval and tG is the accumulated Gaussian noise.
Let σ2

m denote the variance of tG. Then the following holds:

σ2
m = σ2(tG) =

σ2(TGauss)

T0
· tm . (3)

Ring

Oscillator

D

Q

Q D

Q

Q

Ripple counter

PRE PRE

D

Q

Q

PRE
PRE

Acnt[0] Acnt[1] Acnt[n]

Fig. 1. Ring oscillator period measurement setup.

The parameter σ2
m/tm characterizes the rate of the Gaus-

sian jitter accumulation. This quantity is the most important
platform parameter for RO-based TRNGs because it is the
only parameter that characterizes the randomness generation
process.

III. METHODOLOGY

A procedure for accurate and precise characterization of the
white noise should satisfy the following requirements:
• All measurements should be performed on-chip – only

the digital data should be sent to the output for post-
processing.

• Digitization should be performed using a small quantiza-
tion step to reduce the quantization noise.

• All measurements should be differential in order to re-
duce the influence of the global noise sources.

• The jitter accumulation time should be as short as possi-
ble in order to minimize the effect of the low frequency
noise sources.

In this paper, we propose a jitter measurement methodology.
This method is based on time-to-digital conversion, which is
implemented using the carry chain primitives. Carry chain
primitives are available on most commercial FPGAs and they
are designed to constitute high-speed adders and multipliers.
They can also be configured to operate as high-resolution time-
to-digital converters.

The procedure of the proposed measurement methodology
consists of three steps:

1) T0 measurement.
2) Delay line characterization.
3) Differential TDC measurement.
In continuation of this section we describe these three steps

in more detail.

A. T0 measurement

For measuring the average period T0 of a ring oscillator,
the architecture shown in Figure 1 is proposed. The output
signal of the ring oscillator under evaluation connects to an
n-bit ripple counter to count the number of 0→ 1 transitions.
The ripple counter consists of n positive-edge-triggered D flip-
flops.

To perform an experiment, all flip-flops in the ripple counter
are preset to 1 before enabling the ring oscillator. Then, the
ring oscillator is enabled for Nacc system clock cycles. The

osc Aclk[0]

Delay chain

#

c

d
1->0,1

d
1->0,2

d
1->0,3

d
1->0,n

d
0->1,1

d
0->1,2

d
0->1,3

d
0->1,n

1->0,1

c
0->1,1

c
1->0,2

c
0->1,2

c
1->0,3

c
0->1,3

c
1->0,n c

0->1,n

Clk
a

1
a

2
a

3
a

n

Fig. 2. Monte Carlo method for delay measurement.

system frequency is denoted as fsystem. After Nacc cycles,
the ripple counter result Acnt is stored.

This experiment is repeated Nexp times. At the beginning of
every experiment, the ripple counter is preset, and the value of
it is stored as Acnti. In order to cancel out the influence of low
frequency noise over the ring oscillator period, the average of
all stored Acnti is computed. In the last step, T0, the average
period of the ring oscillator, can be computed as:

T0 =
Nacc ·Nexp

fsystem ·
∑Nexp

i=1 Acnti
. (4)

B. Delay line characterization

In our proposed jitter measurement method, two delay
line based time-to-digital converters are used. For a precise
measurement, the steps of elements in the delay line need to
be small and accurate. Therefore, the delay line should be
characterized first.

We propose a Monte Carlo experiments based method to
evaluate the delay line. As shown in Figure 2, a signal
osc generated by a ring oscillator propagates through an n
elements delay chain under evaluation. The average period of
the signal osc is T0. The length of the delay line should be able
to cover more than one and a half full periods of the signal
osc. An independent system clock Clk is used to sample this
delay line Nexp times. The captured states (bit vectors) of the
delay line are denoted as:

mi = (ai,0, ai,1 . . . ai,n), ai,j ∈ {0, 1}, (5)

where ai,0 is the most recent bit and ai,n is the earliest bit
in the ith sampled sequence.

The bit vector mi consists of consecutive ′1′s and ′0′s,
representing the signal osc. If the delays of all n elements

are the same, the probabilities of having a transition are equal
at every position. However, due to the nonlinearity of the delay
line, the probability of having a transition is higher for a delay
element with larger delay.

We denote the delay of a 1 → 0 and 0 → 1 transitions
for the jth element with d1→0,j and d0→1,j , respectively. The
goal of characterizing the delay line is to estimate the value
of d1→0,j and d0→1,j .
c1→0,j and c0→1,j are defined as:

c1→0,j = #(mi), for (ai,j , ai,j+1) = (0, 1),

c0→1,j = #(mi), for (ai,j , ai,j+1) = (1, 0).
(6)

c1→0,j is the number of samples that have the subvector
(0, 1) at position (j, j + 1).

The proportion of any two elements from a union set of
c0→1,j and c1→0,j is equal to the proportion of the corre-
sponding delays of a union set of d0→1,j and d1→0,j .

We define the following functions for the summation of
consecutive c0→1,j and c1→0,j :

S1→0(i, j) =

j∑
x=i

c1→0,x

S0→1(i, j) =

j∑
x=i

c0→1,x.

(7)

We denote e1→0,j and e0→1,j as the edge positions of the
jth latest 1→ 0 and 0→ 1 transitions in the snapshot, respec-
tively. Therefore, (ai,e1→0,1 , . . . , ai,e0→1,1 , . . . , ai,e1→0,2−1)
represents the first full period of osc captured in this snapshot.

In the next step, the function W (mi) is defined and used
to represent the period of the first captured full period of the
signal osc:

W (mi) = S0→1(e1→0,1, e0→1,1 − 1)

+ S1→0(e0→1,1, e1→0,2 − 1). (8)

And, Wcnt is the average W (mi) value of Nexp experi-
ments:

Wcnt =

∑Nexp

i=1 W (mi)

Nexp
. (9)

The delays d1→0,j and d0→1,j of every element of the delay
line can be estimated by:

d1→0,j =
c1→0,j

Wcnt
· T0

d0→1,j =
c0→1,j

Wcnt
· T0.

(10)

Ring

oscillator 1

Ring

oscillator 2

Tapped delay line 1

Tapped delay line 2

osc1

osc2

Ripple

counter 1

Ripple

counter 2

Aclk0[0]

Aclk1[0]
Snapshot 1

Snapshot 2

Acnt 1

Acnt 2

Snapshot 1:

Snapshot 2:

1000000000......11110000000001111111100000

Acnt 1:

Acnt 2:

5

5

t_diff

Snapshot 1:

Snapshot 2:

1111111100......00000011111110000001111111

1000000000......11110000000001111111100000

Acnt 1:

Acnt 2:

5

6

t_diff

1111111100......00000011111100000001111111

RST

Enable

oscillator

Enable Tapped

delay line

0

Snapshot 1/2

Data New

0

Acnt 1/2

Counter New

t m

Fig. 3. Setup of the differential jitter measurement.

C. Differential TDC measurement

Figure 3 depicts the architecture proposed for jitter mea-
surement. This architecture consists of two time-to-digital con-
vertors (TDCs), two ring oscillators and two ripple counters.
Signals osc1 and osc2 are the outputs of the corresponding free
running oscillators. Then osc1 and osc2 propagate through two
n-stages tapped delay lines. The rising transitions in osc1 and
osc2 are counted by two ripple counters.

To estimate the jitter strength, we first measure the timing
phase difference of the corresponding edges in Snapshot 1 and
2 after an accumulation time tm. This measurement is repeated
Nexp times. The number of 1 → 0 transitions in Snapshot
1 and 2 are denoted as lS1 and lS2 respectively. We denote
g1→0,i as the position of the ith latest 1 → 0 transition in
the bit vector. Vectors mS1 and mS2 are captured sequences
in Snapshot1 and Snapshot2. The timing of the ith 1 → 0
transition in sequence m can be computed by:

T (m, ith) =

n∑
i=g1→0,ith

di + T0 ·Acnt. (11)

The phase difference of the corresponding edges for jth

LUT

NAND

Enable

Carry4

Carry4

Carry4

Ring oscillator 1

Tapped delay line 1

LUT

NAND

Enable

Carry4

Carry4

Carry4

Ring oscillator 2

Tapped delay line 2

Clk

S

n

a

p

s

h

o

t

1

S

n

a

p

s

h

o

t

2

Ripple counter 1

D

Q

PRE INV
LUT

D

Q

PRE INV
LUT

D

Q

PRE INV
LUT

PRE

Acnt 1

D

Q

 PRE

D

Q

 PRE

D

Q

 PRE

PRE

INV
LUT

INV
LUT

INV
LUT

Acnt 2

Ripple counter 2

osc1 osc2

Fig. 4. Implementation of the jitter measurement on Xilinx platform.

experiment is computed by:

tdiff,j =
T (mS1, lS1)− T (mS2, lS2), for Acnt1 = Acnt2

T (mS1, lS1)− T (mS2, lS2 − 1), for Acnt1 = Acnt2 + 1

T (mS1, lS1 − 1)− T (mS2, lS2), for Acnt1 = Acnt2− 1

(12)

Then, the average value of tdiff,j is:

t̄diff =

∑Nexp

j=1 tdiff,j

Nexp
. (13)

The expected value of t̄diff is around 0. However, it may be
different due to the effect of manufacture process variations.

In the last step, jitter accumulated during time tm can be
computed by:

σm(tm) =

√∑Nexp

i=1 (tdiff,i − t̄diff)2

k − 1
(14)

The parameter σ2
m/tm characterizes the rate of the Gaussian

jitter accumulation.

IV. EXPERIMENTS

The proposed method for jitter measurement is applied to
two case studies on two different FPGA platforms.

A. Xilinx FPGA

Figure 4 shows the implementation of the proposed jitter
measurement on a Xilinx Spartan-6 FPGA. Ring oscillators
are implemented using a single look-up table (LUT). CARRY4
primitives are used to implement tapped delay lines. In total,
64 CARRY4 primitives are cascaded together to form a 256-
stages delay line.

The frequency of the system clock Clk is set to 100MHz.
We select parameters Nacc = 213 and Nexp = 100000 for the
T0 measurement. The collected

∑Nexp

x=1 Acntx are 6482648529
for ring oscillator 1 and 6500063667 for ring oscillator 2.

50 100 150 200 250

index

60

40

20

0

20

40

60

d
e
la

y
 (

p
s
)

1 0

0 1

Fig. 5. Delays of each carry bit after characterization.

0 20 40 60 80

t
m

 (ns)

0

1000

2000

tm2
 (

p
s

2
)

Variance

Variance Lower bound

Fig. 6. Variance result of tdiff .

Therefore, the computed T0 of ring oscillator 1 and 2 are
1.2637ns and 1.2603ns respectively.

While characterizing the delay line, bubbles appear in
the captured snapshots. In [13], this problem is handled by
counting the number of ′1′s and ′0′s. The origin of the bubble
might be the Carry Look Ahead Logic structure and the
process variation during fabrication. In total, we found 8 types
of bubbles. All of them can be easily corrected by reordering.
After reordering, the 1 → 0 and 0 → 1 delays of all 256
stages are characterized and shown in Figure 5. The average
delay of those stages is 16.8ps.

In each measurement, the oscillators were enabled for tm ns
before the snapshots were taken. Snapshots and the counter
values were transferred to the PC for post-processing. Based
on the 100000 measurements for each, the computed variance
of tdiff for tm = 20 ns, 40 ns, 60 ns and 80 ns, are shown
in Figure 6. The lower bound noise strength is obtained at
tm = 80 ns. The computed standard deviation σ(tdiff) =
41.9413 ps. Then, the computed noise strength is:

σ2
m

tm
= 21.98 fs . (15)

Enable

LUT

CARRY

LUT

CARRY

LUT

CARRY

LUT

CARRY

D Q

D Q

D Q

D Q

LUT

CARRY

LUT

CARRY

LUT

CARRY

LUT

CARRY

Q D

Q D

Q D

Q D

CLK

3-stage RO 1

Tapped delay line 1 Tapped delay line 2

Ripple counter 1

Acnt 1

S
n
a
p
s
h
o
t

1

S
n
a
p
s
h
o
t

2

Enable

3-stage RO 2

Ripple counter 2

Acnt 2

Fig. 7. Implementation of the jitter measurement on Cyclone IV.

B. Intel FPGA

The jitter measurement circuit for the Intel (Cyclone IV)
FPGA is implemented in an analogous way as on the Xilinx
FPGA. The architure is shown in Figure 7. Stages of the ring
oscillator are instantiated in the LUTs of neighbouring LEs
(Cyclone IV Logic Element) by using low-level primitives.
Fast (tapped) delay lines are implemented using small 3-
input LUTs, which are specially dedicated for fast carry
generation [12]. The delay lines are placed in LEs right below
the ring oscillator by using placement constraints. Ripple
counters are then placed below these delay lines in order to
minimize interconnection delays. Bubbles in the delay line
appear only near the signal edges, meaning that they originate
from uneven propagation delays in the FPGA structure and
timing violations on delay line capturing registers.

The average periods of ring oscillator 1 and 2 are
2394.2712 ps and 2529.605 ps. In each measurement, the
oscillators were enabled for tm = 40 ns before the snapshots
were taken. The snapshots and the counter values were trans-
ferred to the PC for post-processing. Based on the 100000
measurements, the computed standard deviation of tdiff is
σ(tdiff) = 5.9739ps. The computed noise strength is:

σ2
m

tm
= 0.89 fs . (16)

V. DISCUSSION

While the oscillator period T0 can be estimated accurate-
ly using very simple counter-based methods, estimating the
strength of the jitter is a more challenging task. Jitter in ring
oscillators is often studied from the reliability perspective,
where the goal is to provide the upper boundaries of jitter
strength. However, for TRNG applications, the goal is to
derive the lower bound on jitter strength in order to provide
a conservative estimate of the output entropy. For this reason,
different measurement procedures that isolate the contribution
of the white noise need to be developed. In this section
we compare the proposed jitter measurement methodology
with other, more commonly used methods, and discuss the
consequences of choosing a wrong jitter estimation.

The most straightforward solution for jitter measurement is
to connect the oscillator output to the output pin and to analyze
the signal using an oscilloscope. This approach was taken
in [14]. The problem with this strategy is that the oscillator
signal is corrupted on the pads, pins and measurement probe.
In addition, commonly used oscilloscopes have a bandwidth
of up to 4 GHz, which is not sufficient to analyze the
Gaussian jitter which is in the order of picoseconds. The
results presented in [14] show that oscillators with a period
ranging from 2 ns to 10 ns, all have a comparable Gaussian
jitter. This result is not in line with the theory on the white
noise which is a strong indicator that the measurement setup
introduces some systematic error.

The simplest on-chip method for jitter evaluation consists
of counting the toggles of the ring oscillator output over
a fixed amount of time and computing the jitter based on
the variance of the obtained results. This methodology is
used in [15] and [16]. We will refer to this technique as
the counter methodology. The errors of this methodology are
caused by the quantization noise and the low frequency noise.
If the measurement time is too short, the quantization noise
of the counter is dominant and it is impossible to measure
the Gaussian jitter precisely. For longer measurement times
the quantization noise is reduced but the contribution of the
low-frequency noise becomes dominant. In either case, the
Gaussian noise is significantly overestimated.

To illustrate the importance of differential measurements,
a single delay line based measurement method was used for
comparison. We refer to this method as Single Delay Line
methodology. Jitter is computed using only the data from
Snapshot1. The jitter is computed from the variance of
the timing of the last rising edge T (mS1, lS1). This method
reduces the quantization noise and low frequency noise but it
doesn’t filter out the global noise from the power supply.

Table I summarizes the jitter results measured using three
different methodologies on a Xilinx Spartan-6 FPGA. The
proposed Differential Delay Line methodology filters out the
quantization noise, low frequency noises and the global noise
and thus results in the lowest jitter estimate. The single delay
line method, doesn’t filter out the global noise and thus
overestimates the jitter variance by a factor of 5. The counter

TABLE I
JITTER MEASUREMENT RESULTS USING THREE DIFFERENT

METHODOLOGIES.

Method Counter Single
Delay Line

Differential
Delay Line

σ2
G/T0 11 ps 154 fs 22 fs
σG 118 ps 13.9 ps 5.26 ps

methodology grossly overestimates the jitter strength.
Another related work is the coherent sampling method for

jitter measurement presented in [17]. We don’t see any prob-
lems with this methodology and the reported results are similar
to those obtained by the Differential Delay Line method.

VI. CONCLUSIONS

Accurate jitter characterization is an essential step in de-
signing ring-oscillator-based TRNGs for FPGAs. The mea-
surement setup and the methodology for jitter characterization
on FPGA platforms have been described. The proposed setup
utilizes fast carry chain elements that are available on most
FPGAs. Differential measurements are used to reduce the
influence of the global noise sources. The methodology has
been applied to measure jitter on Xilinx Spartan-6 and Intel
Cyclone IV FPGAs.

REFERENCES

[1] M. Dichtl, “How to predict the output of a hardware random number
generator,” in CHES, 2003, pp. 181–188.

[2] T. E. Tkacik, “A hardware random number generator,” in CHES, 2002,
pp. 450–453.

[3] G. Marsaglia, “DIEHARD battery of tests of randomness.”
[4] E. Barker and J. Kelsey, “Recommendation for the entropy sources used

for random bitgeneration,” ser. NIST DRAFT Special Publication 800-
90B, 2016.

[5] W. Killmann and W. Schindler, “A proposal for: Functionality classes
for random number generators,” ser. BDI, Bonn, 2011.

[6] B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true
random number generator with built-in tolerance to active attacks,” IEEE
Transactions on Computers, vol. 56, no. 1, pp. 109–119, Jan 2007.

[7] D. Schellekens, B. Preneel, and I. Verbauwhede, “FPGA vendor agnostic
true random number generator,” in FPL, 2006, pp. 1–6.

[8] K. Wold and C. H. Tan, “Analysis and enhancement of random number
generator in FPGA based on oscillator rings,” in ReConFig, 2008, pp.
385–390.

[9] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert, “A very high speed
true random number generator with entropy assessment,” in CHES, 2013,
pp. 179–196.

[10] V. Rožić, B. Yang, W. Dehaene, and I. Verbauwhede, “Highly efficient
entropy extraction for true random number generators on FPGAs,” in
DAC, 2015, pp. 116:1–116:6.

[11] Xilinx, “Spartan-6 FPGA Configurable Logic Block,” February 2010.
[12] Intel, “Cyclone IV Device Handbook,” March 2016.
[13] C. Favi and E. Charbon, “A 17ps time-to-digital converter implemented

in 65nm fpga technology,” in FPGA, 2009, pp. 113–120.
[14] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A

survey of AIS-20/31 compliant TRNG cores suitable for FPGA devices,”
in FPL, 2016, pp. 1–10.

[15] B. Valtchanov, A. Aubert, F. Bernard, and V. Fischer, “Modeling and
observing the jitter in ring oscillators implemented in FPGAs,” in
DDECS, 2008, pp. 158–163.

[16] Y. Ma, J. Lin, T. Chen, C. Xu, Z. Liu, and J. Jing, “Entropy Evaluation
for Oscillator-Based True Random Number Generators,” in CHES, 2014,
pp. 544–561.

[17] D. Lubicz and N. Bochard, “Towards an oscillator based TRNG with a
certified entropy rate,” IEEE Transactions on Computers, vol. 64, no. 4,
pp. 1191–1200, 2015.

