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Gyarmati’s variational principle developed on the thermodynamic theory of irreversible pro-
cesses is employed to study the viscous dissipation effects with uniform suction and injection
on the infinite flat plate. The velocity and temperature fields inside the boundary layer are
approximated as simple polynomial functions, and the functional of the variational principle
is constructed. The Euler Lagrange equations are reduced to simple polynomial equations
in terms of velocity and thermal boundary layer thicknesses. The velocity, temperature pro-
files, skin friction and heat transfer with the viscous dissipation effects are analyzed and are
compared with known numerical solutions. The comparison of the present solution with the
existing solutions establishes the fact that the accuracy is remarkable.
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1. Introduction

The prime objective of this investigation is to study the effects of viscous dissipation on the
magneto hydrodynamic flow over a semi infinite flat plate with uniform suction and injection
by using some recent developments in the field of thermodynamics of irreversible processes and
to obtain numerical solution to the boundary layer flow and heat transfer with the help of a
variational technique based on the governing principle of dissipative processes. According to the
boundary layer theory, the irreversible processes of momentum and heat transfer in flows around
bodies occur mainly inside a very thin layer adjacent to the surface of the body. Hence, it is
quite appropriate to study these non equilibrium processes by a variational technique developed
in the field of irreversible thermodynamics.

The boundary layer flow of an incompressible electrically conducting fluid past a semi infinite
flat plate in the presence of a transverse magnetic field has been studied recently by many rese-
archers. The boundary layer solution for the magneto hydrodynamic flow over a semi infinite flat
plate in the presence of transverse magnetic field was studied by Watanabe (1978, 1986) and Wa-
tanabe and Pop (1994) by means of a difference-differential method. The analysis on stagnation
point flow and asymmetric flow was investigated by Sparrow et al. (1963), Ariel (1994), Raptis
(1991) and Chamkha (1998). Watanabe (1986) analyzed the magneto hydrodynamic boundary
layer flow over a wedge and did not considered the energy equation. Hossain (1992) treated the
viscous and Joule heating effects on magneto hydrodynamic free convection boundary layer flow
with variable temperature on the plate. Watanabe and Pop (1993) solved the problem of ma-
gneto hydrodynamic free convection flow over a wedge in the presence of a transverse magnetic
field. Soundalgekar and Takhar (1977) considered the boundary layer equations for the aligned
flow and temperature of an electrically conducting fluid past a semi infinite heated flat plate in
the presence of a transverse magnetic field.
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Yih (1998) presented an analysis for forced convection boundary layer flow over a wedge
with uniform suction/blowing whereas Watanabe (1990) investigated the behavior of the bo-
undary layer over a wedge with suction/injection in forced flow. Also Yih (1999) extended the
work of Watanabe and Pop (1994) to investigate the heat transfer characteristics in magneto
hydrodynamic forced convection flow adjacent to a non isothermal wedge in the presence of a
transverse magnetic field. An approximate numerical solution for thermal stratification on ma-
gneto hydrodynamic steady laminar boundary layer flow over a wedge with suction/injection
was investigated by Anjali Devi and Kandasamy (2003). Lin and Lin (1987) proposed a similari-
ty solution method that provides accurate solutions for laminar forced convection heat transfer
for either an isothermal surface or an uniform flux boundary to fluid of any Prandtl number.
Ingham (1979) proved that the terms representing viscous dissipative heat and stress work are
of equal importance in the case air and hence they should be both considered or neglected in
the energy equation.

By considering all the above facts, in this study the non similar boundary layer flow with
uniform suction and injection over a semi infinite flat plate in the presence of constant magnetic
flux density is analyzed. Gyarmati’s variational technique has been employed to solve the non
similar boundary layer equation. The computational results are given for the velocity profile,
temperature profile, the coefficient of skin friction (shear stress) and the Nusselt number (heat
transfer) for various values of the suction and injection parameter H and the magnetic para-
meter ξ. The present results are compared with known results and are found to be excellent.
The intention of this investigation is to establish that Gyarmati’s variational technique is one
of the most general and exact variational techniques in solving heat transfer problems. Chan-
drasekar (1998, 2003), Chandrasekar and Baskaran (2006, 2007) has already applied Gyarmati’s
variational technique for steady and unsteady heat transfer and boundary layer flow problems.

2. The governing equations and boundary conditions

The system of steady, two dimensional, incompressible and laminar boundary layer flow over a
semi infinite flat plate with suction and injection is considered. The leading edge of the plate is
at x = 0, the plate is parallel to the x-axis and infinitely long downstream. It is assumed that
the flow is with a free stream velocity U∞ and the ambient temperature T∞ which are parallel to
the x-axis. The boundary layer equations for the present system are considered with the usual
boundary layer approximation with the assumption that all fluid properties are constants and
are as follows

ux + vy = 0 (mass)

uux + vuy = νuyy +
κB20
ρ
(U∞ − u) (momentum)

uTx + vTy = αTyy +
ν

Cp
(uy)

2
−
κB20
ρCp

u(U∞ − u) (energy)

(2.1)

subject to the boundary conditions

y → 0 ⇒ u = 0, v = v0, T = T0

y →∞ ⇒ u = U∞ = const , T = T∞
(2.2)

Here u, v, v0, U∞, T , T0 and T∞ are the velocity of the fluid in the x-direction, y-direction,
suction/injection velocity, free stream velocity, temperature of the fluid, temperature of the
plate and ambient temperature respectively. The symbols ν, κ, ρ, B0, α, Cp are respectively
the kinematic viscosity, electrical conductivity, density, externally imposed magnetic field in the
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y-direction, thermal diffusivity and specific heat at constant pressure of the fluid. It is assumed
that the temperature of the plate T0 is greater than the ambient temperature T∞.

3. Gyarmati’s variational principle

Gyarmati (1969, 1970) introduced a genuine variational principle called the Governing Principle
of Dissipative Processes (GPDP) which is given in its universal form

δ

∫

V

(σ − ψ − Φ) dV = 0 (3.1)

Principle (3.1) is valid for linear, quasi-linear and certain types of non-linear transport pro-
cesses at any instant of time under constraints that the balance equations

ρȧi +∇ · Ji = σi (i = 1, 2, 3, . . . , f) (3.2)

are satisfied. In Eq. (3.1), δ is the variational symbol, σ is the entropy production, ψ and Φ are
dissipation potentials and V is the total volume of the thermodynamic system. In Eq. (3.2), ρ is
the mass density and ȧ, Ji, σi are respectively substantial variation, flux and source density of
the i-th extensive transport quantity ai. The entropy production σ per unit volume and unit
time can always be written in the bilinear form

σ =
f
∑

i=1

Ji ·Xi ­ 0 (3.3)

where Ji and Xi are fluxes and forces respectively. According to Onsagar’s linear theory (Onsa-
gar, 1931), the fluxes are linear functions of forces, that is

Ji =
f
∑

k=1

LikXk (i = 1, 2, 3, . . . , f) (3.4)

or alternatively

Xi =
f
∑

k=1

RikJk (i = 1, 2, 3, . . . , f) (3.5)

The constants Lik andRik are conductivities and resistances respectively satisfying the reciprocal
relations (Onsagar, 1931)

Lik = Lki Rik = Rki (i, k = 1, 2, 3, . . . , f) (3.6)

The matrices of Lik and Rik are mutually reciprocals and they are symmetric, that is

f
∑

m=1

LimRmk =
f
∑

m=1

LmkRim = δik (i, k = 1, 2, 3, . . . , f) (3.7)

where δik is the Kronecker delta. The local dissipation potentials ψ and Φ are defined as (Onsagar,
1931)

ψ(X,X) =
1

2

f
∑

i,k=1

LikXi ·Xk ­ 0 Φ(J,J) =
1

2

f
∑

i,k=1

RikJi · Jk ­ 0 (3.8)
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In the case of transport processes, the forces Xi can be generated as gradients of certain Γ
variables and can be written as

Xi = ∇Γi (3.9)

Principle (3.1) with the help of Eqs. (3.3), (3.8) and (3.9) takes the form

δ

∫

V

(

f
∑

i=1

Ji · ∇Γi −
1

2

f
∑

i,k=1

Lik∇Γi · ∇Γk −
1

2

f
∑

i,k=1

RikJi · Jk

)

dV = 0 (3.10)

This variational principle has been already applied to various dissipative systems and has
been established as the most general and exact principle of macroscopic continuum physics. For
the description of viscous flow systems, Vincze (1971) used the GPDP to derive the equations
of thermodynamics. Many other variational principles have already been shown as partial forms
of Gyarmati’s principle.
The balance equations of the system play a central role in the formulation of Gyarmati’s

variational principle and, hence, governing Eqs. (2.1) are written in the balance form as

∇ ·V = 0 V = iu+ jv

ρ(V · ∇)V +∇ · P = (κB20)[U∞ − (i ·V)]

ρCp(V · ∇)T +∇ · Jq = µ(u
2
y)− (κB

2
0)(i ·V)(U∞ − i ·V)

(3.11)

These equations represent the mass, momentum and energy balances respectively. Here i and j

are the unit vectors in the directions of x and y axes, respectively. In Eq. (3.11)2 P denotes the
pressure tensor which can be decomposed as (Gyarmati, 1969)

P = pδ+
◦

P vs (3.12)

where p is the hydrostatic pressure, δ is the unit tensor and
◦

P vs is the symmetrical part of the
viscous pressure tensor whose trace is zero.
In the study of heat transfer and fluid flow problems, the energy picture of Gyarmati’s

principle is always advantageous over entropy picture. Therefore, the energy dissipation Tσ is
used instead of the entropy production σ. The energy dissipation for the present system is given
by (Gyarmati, 1969)

Tσ = −Jq
∂ lnT

∂y
− P12

∂u

∂y
(3.13)

where Jq is the heat flux and P12 is the only component of the momentum flux
◦

P vs, satisfy the
constitutive relations connecting the independent fluxes and forces as

Jq = −Lλ
∂ lnT

∂y
P12 = −Ls

∂u

∂y
(3.14)

Here Lλ = λT and Ls = µ, where λ and µ are the thermal conductivity and viscosity, respec-
tively. With the help of Eq. (3.14) the dissipation potentials in energy picture are found as
follows

Tψ =
1

2

[

Lλ
(∂ lnT

∂y

)2
+ Ls

(∂u

∂y

)2]

TΦ =
1

2
(RλJ

2
q +RsP

2
12) (3.15)

where Lλ = R
−1
λ and Ls = R

−1
s .
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Using Eqs. (3.13)-(3.15), Gyarmati’s variational principle (3.1) is formulated in the following
form

δ

l
∫

0

∞
∫

0

[

−Jq
∂ lnT

∂y
− P12

∂u

∂y
−
Lλ
2

(∂ lnT

∂y

)2
−
Ls
2

(∂u

∂y

)2
−
Rλ
2
J2q −

Rs
2
P 212

]

dy dx = 0 (3.16)

in which l is the representative length of the surface.

4. Solution procedure

The system of two dimensional magneto hydrodynamics laminar boundary layer flow over a semi
infinite flat plate with viscous dissipation effects in the presence of suction/injection is considered.
The velocity and temperature fields inside the respective boundary layers are suitably described
by the following functions

u

U∞
=
2y

d1
−
2y3

d31
+
y4

d41
for y < d1

u = U∞ for y ­ d1

T − T∞
T0 − T∞

= 1−
2y

d2
+
2y3

d32
−
y4

d42
for y < d2

T = T∞ for y ­ d2

(4.1)

which satisfy the following compatibility conditions

y = 0 ⇒ u = 0, v = v0, T = T0,
∂T

∂y
= 0 (smooth fit),

∂2T

∂y2
= 0

y = d1 ⇒ u = U∞ = const ,
∂u

∂y
= 0 (smooth fit),

∂2u

∂y2
= 0

y = d2 ⇒ T = T∞,
∂T

∂y
= 0 (smooth fit)

(4.2)

The unknown quantities d1, d2 are the extent of the hypothetical hydro dynamical and thermal
boundary layer thicknesses respectively. These unknown quantities are to be determined from
the present thermodynamic analysis. The smooth fit conditions ∂u/∂y = 0 and ∂T/∂y = 0
correspond to P12 = 0 and Jq = 0 at their respective edges of the boundary layer. Using
boundary conditions (4.2), the transverse velocity component v is obtained from mass balance
equation (3.11)1 as

v = U∞
(4y5

5d51
−
3y4

2d41
+
y2

d21

)

d′1 + v0 (4.3)

Velocity and temperature functions (4.1) and boundary conditions (4.2) are used in governing
Eqs. (3.11), and on direct integration with respect to y with the help of their corresponding
smooth fit conditions uy = 0 and Ty = 0, the momentum flux P12 and energy flux Jq are
obtained. The expression for P12 remains the same for any Prandtl number Pr. But the energy
flux Jq assumes different expressions for Pr ¬ 1 and Pr ­ 1, respectively. When Pr ¬ 1, the
expression for Jq in the range d1 ¬ y ¬ d2 is obtained first and the expression for Jq in the
range 0 ¬ y ¬ d1 is determined subsequently by matching the expressions of the two regions
at the interface. The expressions for momentum and the energy fluxes P12 and Jq are obtained
respectively as follows:
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— for 0 ¬ y ¬ d1

−
P12
Ls
=
U2
∞
d′1
ν

(

−
4y9

45d91
+
2y8

5d81
−
3y7

7d71
−
11y6

15d61
+
7y5

5d51
−
2y3

3d31
+
101

1800

)

+
v0U∞
ν

(y4

d41
−
2y3

d31
+
2y

d1
−
7

10

)

+
κB20U∞
ρν

( y5

5d41
−

y4

2d31
+
y2

d1
− y +

7d1
30

)

+
U∞
d1

(4.4)

— for 0 ¬ y ¬ d1, Pr ¬ 1

−
Jq
Lλ
=
PrU∞(T0 − T∞)

ν

[( 4y9

9d41d
5
2

−
y8

d31d
5
2

−
3y8

4d41d
4
2

+
12y7

7d31d
4
2

+
4y6

3d1d
5
2

+
y6

3d41d
2
2

−
12y5

5d1d42
−
4y5

5d31d
2
2

+
4y3

3d1d22
+

d51
45d52

−
9d41
140d42

+
2d21
15d22

−
3

10

)

d′2 +
(

−
16y9

45d51d
4
2

+
3y8

5d51d
3
2

+
3y8

4d41d
4
2

−
9y7

7d41d
3
2

−
2y6

3d21d
4
2

−
4y6

15d51d2
+
3y5

5d41d2
+
6y5

5d21d
3
2

−
2y3

3d21d2

+
49d41
180d42

−
18d31
35d32

+
d1
3d2

)

d′1 +
v0
U∞

(

−
y4

d42
+
2y3

d32
−
2y

d2
+
d41
d42
−
2d31
d32
+
2d1
d2

)]

+
PrU2

∞

Cp

(

−
16y7

7d81
+
8y6

d71
−
36y5

5d61
−
4y4

d51
+
8y3

d41
−
4y

d21
+
52

35d1

)

+
PrκB20U

2
∞

νρCp

(

−
y9

9d81
+

y8

2d71
−
4y7

7d61
−
2y6

3d51
+
9y5

5d41
−

y4

2d31
−
4y3

3d21
+
y2

d1
−
37d1
315

)

(4.5)

— for d1 ¬ y ¬ d2, Pr ¬ 1

−
Jq
Lλ
=
PrU∞(T0 − T∞)d

′

2

ν

(4y5

5d52
−
3y4

2d42
+
y2

d22
−
3

10

)

(4.6)

— for 0 ¬ y ¬ d2, Pr ­ 1

−
Jq
Lλ
=
PrU∞(T0 − T∞)

ν

[( 4y9

9d41d
5
2

−
y8

d31d
5
2

−
3y8

4d41d
4
2

+
12y7

7d31d
4
2

+
4y6

3d1d52
+

y6

3d41d
2
2

−
4y5

5d31d
2
2

−
12y5

5d1d42
+
4y3

3d1d22
−

d42
36d41

+
3d32
35d31

−
4d2
15d1

)

d′2 +
(

−
16y9

45d51d
4
2

+
3y8

5d51d
3
2

+
3y8

4d41d
4
2

−
9y7

7d41d
3
2

−
2y6

3d21d
4
2

−
4y6

15d51d2
+
6y5

5d21d
3
2

+
3y5

5d41d2
−
2y3

3d21d2
+

d52
45d51

−
9d42
140d41

+
2d22
15d21

)

d′1 +
v0
U∞

(

−
y4

d42
+
2y3

d32
−
2y

d2
+ 1

)]

−
PrU2

∞

Cp

(16y7

7d81
−
8y6

d71

+
36y5

5d61
+
4y4

d51
−
8y3

d41
+
4y

d21
−
16d72
7d81
+
8d62
d71
−
36d52
5d61
−
4d42
d51
+
8d32
d41
−
4d2
d21

)

+
PrκB20U

2
∞

νρCp

(

−
y9

9d81
+

y8

2d71
−
4y7

7d61
−
2y6

3d51
+
9y5

5d41
−

y4

2d31
−
4y3

3d21
+
y2

d1
+

d92
9d81

−
d82
2d71
+
4d72
7d61
+
2d62
3d51
−
9d52
5d41
+

d42
2d31
+
4d32
3d21
−
d22
d1

)

(4.7)

The prime indicates differentiation with respect to x. Using the expressions of P12 and Jq
together with velocity and temperature functions (4.1), variational principle (3.16) is formulated
independently for Pr ¬ 1 and Pr ­ 1, respectively. After performing the integration with respect
to y, one can obtain the variational principle in the following forms
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δ

l
∫

0

L1[d1, d2, d
′

1, d
′

2] dx = 0 Pr ¬ 1

δ

l
∫

0

L2[d1, d2, d
′

1, d
′

2] dx = 0 Pr ­ 1

(4.8)

where L1, L2 are the Lagrangian densities of the principle. The variation is carried out with
respect to the independent parameters d1 and d2. These variational principles, (4.8), are fo-
und identical when d1 = d2. The Euler-Lagrange equations corresponding to these variational
parameters are

∂L1,2
∂d1
−

d

dx

(∂L1,2
∂d′1

)

= 0
∂L1,2
∂d2
−

d

dx

(∂L1,2
∂d′2

)

= 0 (Pr ¬ 1,Pr ­ 1) (4.9)

where L1,2 represents the Lagrangian densities L1 and L2 respectively. Equations (4.9) are second
order ordinary differential equations in terms of d1 and d2. The procedure for solving (4.9) can
be considerably simplified by introducing the non dimensional boundary layer thicknesses d∗1
and d∗2 and are given by

d1 = d
∗

1

√

νx

U∞
d2 = d

∗

2

√

νx

U∞
(4.10)

Variational principles (4.8) are subject to transformations (4.10). The resulting Euler-
Lagrange equations are obtained as simple polynomial equations

∂L1,2
∂d∗1

= 0
∂L1,2
∂d∗2

= 0 (Pr ¬ 1,Pr ­ 1) (4.11)

The coefficients of Eqs. (4.11) depend on the independent parameters Pr, H, ξ and Ec, where
Pr = ν/α (Prandtl number),H = v0

√

x/(νU∞) (suction/injection parameter), ξ = κB
2
0x/(ρU∞)

(magnetic parameter) and Ec = U2
∞
/[Cp(T0 − T∞)] (Eckert number).

In the present analysis, suction and injection are represented by H < 0 and H > 0 respective-
ly. Equation (4.11)1 is a simple polynomial equation in terms of boundary layer thickness whose
coefficients depend on the parameters H and ξ. This equation is solved for any combination of
H and ξ, and the corresponding hydro dynamical boundary layer thickness d∗1 is obtained as the
only positive root.

Equation (4.11)2 is solved for any values of Pr, H, ξ, and Ec and it is found that for any
value of Pr there corresponds only one real root d∗2. After obtaining the values of d

∗

1 and d
∗

2

for given values of Pr, H, ξ and Ec, the values of velocity, temperature profiles, skin friction
(shear stress) and heat transfer (Nusselt number) are calculated with the help of the following
expressions

η = y

√

U∞
νx

τw =

√

νx

U3
∞

(

−
P12
Ls

)

y=0
(4.12)

and

Nul =

√

νx

U∞
(T0 − T∞)2

( Jq
Lλ

)

y=0
(4.13)
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5. Analysis of the results

The main and important characteristics of the problem analyzed are skin friction and heat
transfer values. The thermal energy equation has been solved for two cases d∗1 ¬ d∗2 (Pr ¬ 1)
and d∗1 ­ d

∗

2 (Pr ­ 1). These two independent analyses yield solutions matching at Pr = 1. It is
found that both the analyses lead to satisfactory results in the respective ranges of Pr.

Table 1 exhibits the skin friction values for various values of suction/injection parameter H
ranging from −0.50 to 0.50 when ξ = 0. It is observed that the hydrodynamical boundary layer
thickness d∗1 increases with H while the skin friction values decrease with H.

Table 1. Skin friction for various values of H when ξ = 0

H d∗1 τw

−0.50 3.2028266677 0.7520812815

−0.45 3.3763533516 0.7059029983

−0.40 3.5631288866 0.6606177694

−0.35 3.7638383130 0.6162827997

−0.30 3.9790701394 0.5729500181

−0.25 4.2092882548 0.5306637731

−0.20 4.4548080980 0.4894586742

−0.15 4.7157800455 0.4493578218

−0.10 4.9921823020 0.4103716428

−0.05 5.2838243570 0.3724974836

0.00 5.5903605565 0.3357200069

0.05 5.9113119209 0.3000123222

0.10 6.2460933581 0.2653376883

0.15 6.5940430695 0.2316515653

0.20 6.9544512195 0.1989037868

0.25 7.3265856367 0.1670406519

0.30 7.7097131998 0.1360067937

0.35 8.1031163960 0.1057467373

0.40 8.5061051918 0.0762061206

0.45 8.9180247739 0.0473325882

0.50 9.3382599143 0.0190763965

Soundalgekar and Takhar (1977) gave the non-dimensional skin friction values for ξ = 5 and
ξ = 6 as 2.01 and 2.255, respectively. Similarly, Ingham (1979) computed these values as 2.235
and 2.449 for the non-dimensional skin friction for ξ = 5 and ξ = 6 respectively, where as the
present computed values are 2.2815 and 2.4951 for the cases ξ = 5 and ξ = 6, respectively.

Tables 2 and 3 display the heat transfer values for various values of Ec, ξ for the given values
of Pr = 0.733 and Pr = 1, when H = 0 respectively. From these two tables, the obtained heat
transfer values from the present thermodynamic analysis are compared with Watanabe and Pop
(1994) for the cases Ec = 0, Ec = 0.5 and Ec = 1.0. The comparison of the present heat transfer
values with those of Watanabe and Pop (1994) is excellent with a very high order of accuracy.
From these two tables, it is noted that the heat transfer values are increasing with the magnetic
parameter ξ and decreasing with Ec.

In Table 4, the heat transfer values are compared with various values of Pr (Pr ¬ 1 and
Pr ­ 1) when Ec = H = ξ = 0. It is also observed that the heat transfer increases with the
values of Prandtl number. Since the higher Prandtl number has very low thermal conductivity,
the increase in the heat transfer rate is rapid. This means that the variation of the local Nusselt
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Table 2. Local Nusselt number for various values of Ec, when Pr = 0.733 and H = 0

Present results Watanabe and Pop (1994)

ξ Ec = 0.0 Ec = 0.5 Ec = 1.0 Ec = 0.0 Ec = 0.5 Ec = 1.0

0.0 0.2997214322 0.2104916973 0.1594322283 0.29755 0.21075 0.12395

0.5 0.3509466982 0.2715673472 0.1917651052 0.35699 0.28285 0.20871

1.0 0.3786430015 0.3051396337 0.2113702944 0.38336 0.30532 0.22857

1.5 0.3961867294 0.3197513425 0.2381053043 0.39959 0.31986 0.24122

2.0 0.4084325641 0.3200609301 0.2499078214 0.41091 0.33011 0.25022

Table 3. Local Nusselt number for various values of Ec, when Pr = 1 and H = 0

Present results Watanabe and Pop (1994)

ξ Ec = 0.0 Ec = 0.5 Ec = 1.0 Ec = 0.0 Ec = 0.5 Ec = 1.0

0.0 0.3342775444 0.2432735955 0.1590535671 0.33206 0.24904 0.16603

0.5 0.3911204994 0.2845735809 0.1972096839 0.40280 0.30212 0.20144

1.0 0.4232045708 0.2971271948 0.2105439783 0.43446 0.32519 0.21727

1.5 0.4444082310 0.3006179108 0.2264237472 0.45413 0.34005 0.22710

2.0 0.4596797063 0.3498462661 0.2296600733 0.46798 0.35052 0.23401

Table 4. Local Nusselt number for various values of Pr when Ec = H = ξ = 0

Pr
Present results Lin and Lin (1987) Yih (1999)

Nul Nul Nul

0.0001 0.005637108 0.005588 0.005590

0.001 0.017773426 0.017316 0.017316

0.01 0.054742313 0.051590 0.051589

0.1 0.147754551 0.140032 0.140034

1 0.334277544 0.332058 0.332057

10 0.738452128 0.728148 0.728141

100 1.599967934 1.57186 1.571831

1000 3.451398141 3.38710 3.387083

10000 7.437892045 7.29742 7.297402

number is more sensitive to the lager Prandtl number than the smaller one. From this table, it
is evidently clear that the present results are in good agreement with Lin and Lin (1987) and
Yih (1999).

For heat transfer, Soundalgekar and Takhar (1977) presented the values as 0.4180 and 0.4241
for ξ = 5 and ξ = 6 when Ec = 0.01 and Pr = 0.733, respectively. Similarly, Ingham (1979) gave
0.4381 and 0.4430 for ξ = 5 and ξ = 6 when Ec = 0.01 and Pr = 0.733 respectively, where as
the present result gives 0.4385 and 0.4433, respectively.

Tables 5 and 6 present the temperature distributions, θ = (T−T∞)/(T0−T∞) for ξ = 5 and 6
when Ec = 0.01, H = 0 and Pr = 0.733, respectively. Thus, the variational solution obtained
with the help of Governing Principle of Dissipative Processes is quite in agreement with the
exact numerical results of Soundalgekar and Takhar (1977) and Ingham (1979) even though
Soundalgekar and Takhar (1977) omitted the terms from the full boundary layer equations.

Figure 1 represents the skin friction values as a function of ξ for different values of H. From
this figure, it is observed that the values of skin friction increases with the magnetic parameter ξ
irrespective of the suction and injection parameter H. One can also note that, when the suction
and injection speed H increases, the values of skin friction decreases.
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Table 5. Temperature distribution for ξ = 5 when Ec = 0.01, H = 0, Pr = 0.733

η
Present results Ingham (1979) Soundalgekar and Takhar (1977)

θ θ θ

0.00 1.000000000 1.0000 1.0000

0.28 0.876740762 0.8771 0.8823

0.56 0.753881748 0.7554 0.7655

0.84 0.633920705 0.6382 0.6520

1.12 0.519536384 0.5284 0.5442

1.40 0.413224176 0.4285 0.4444

1.68 0.316933549 0.3400 0.3543

1.96 0.231127979 0.2640 0.2754

2.24 0.181110807 0.2003 0.2082

2.52 0.104934854 0.1486 0.1527

Table 6. Temperature distribution for ξ = 6 when Ec = 0.01, H = 0, Pr = 0.733

η
Present results Ingham (1979) Soundalgekar and Takhar (1977)

θ θ θ

0.00 1.000000000 1.0000 1.0000

0.28 0.875276392 0.8752 0.8805

0.56 0.751013068 0.7518 0.7620

0.84 0.629907409 0.6334 0.6472

1.12 0.514711507 0.5229 0.5385

1.40 0.407935204 0.4227 0.4302

1.68 0.311228464 0.3344 0.3481

1.96 0.222568501 0.2588 0.2695

2.24 0.124904812 0.1957 0.2029

Fig. 1. Skin friction values as a function of ξ for different values of H

Figures 2a-2c represent the velocity profile inside the boundary layer for different values of
H when ξ = 0.1, ξ = 0.2 and ξ = 0.3, respectively. From these figures, it can be easily observed
that the non-dimensional velocity increases from 0 to 1 and the increase is rapid in the case of
suction.

Figure 3 presents the velocity profile for ξ = 5 and 6 when H = 0. From this figure it
is clearly proved that the present result is well comparable with the results of Ingham (1979)
and Soundalgekar and Takhar (1977) and the comparison is excellent. Also it is found that an
increase in the magnetic parameter ξ increases the velocity profile.
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Fig. 2. Velocity profile for different values of H : (a) ξ = 0.1, (b) ξ = 0.2, (c) ξ = 0, 3

Fig. 3. Velocity profile for ξ = 5 and ξ = 6 when H = 0

The temperature profiles for different values of Pr, Ec and H when ξ = 0.2 are exhibited
in Figs. 4 and 5. From these figures it can be interpreted that there is a rapid increase in the
temperature in the case of injection and also due to the heat created by the effect of viscous
dissipation.

Figures 6 and 7 explain the variation of the local Nusselt number for various values of ξ, Pr,
Ec and H. In the present investigation, the value of the Eckert number is considered as very
small for all incompressible fluid flows.

From these figures, it is observed that the rate of heat transfer decreases due to heat generated
by the viscous dissipation effect, and it is also observed that the heat transfer increases with Pr
in the case of suction and decreases with Pr in the case of injection. Contrarily, the heat transfer
decreases with ξ in the case of suction and increases with ξ in the case of injection.
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Fig. 4. Temperature profile for ξ = 0.2, Pr = 0.733, Ec = 0, 0.5 and 1.0: (a) H = 0, (b) H = −0.5,
(c) H = 0.5

Fig. 5. Temperature profile for ξ = 0.2, Pr = 1, Ec = 0, 0.5 and 1.0: (a) H = 0, (b) H = −0.5,
(c) H = 0.5
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Fig. 6. Variation of the local Nusselt number as a function of ξ for Pr = 0.733, Ec = 0, 0.5 and 1.0:
(a) H = −0.5, (b) H = 0.5

Fig. 7. Variation of the local Nusselt number as a function of ξ for Pr = 1, Ec = 0, 0.5 and 1.0:
(a) H = −0.5, (b) H = 0.5

6. Conclusion

This work deals with the effects of transverse magnetic field, viscous dissipation, skin friction
and surface heat transfer over a semi infinite flat plate. The governing partial differential equ-
ations, (4.11), are reduced as coupled polynomial equations in non dimensional boundary layer
thicknesses d∗1, d

∗

2, and the coefficients of these equations depent on the independent parameters
ξ, Pr, Ec and H. These equations offer a practicing engineer a rapid way of obtaining shear
stress and heat transfer for any combinations of ξ, Pr, Ec and H. The great advantage involved
in the present technique is that the results are obtained with a high order of accuracy and the
amount of calculation is certainly less when compared with more conventional methods. Hen-
ce the practicing engineers and scientists can employ this unique approximate technique as a
powerful tool for solving boundary layer flow and heat transfer problems.
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