

Osservatorio Astronomico di Cagliari

F. Maccagni; R. Morganti; T. Oosterloo; R. Oonk; B. Emonts; F. Santoro; E. Mahony

ALMA OBSERVATIONS OF AGN FUELLING THE CASE OF PKS B1718-649

This event has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562 [RadioNet]

Introduction

- The evolution of a galaxy is influenced by the accretion of gas onto its central SMBH, i.e. an AGN.
- Interest: gas surrounding the AGN
 - physical conditions determine
 - kind of AGN
 - efficiency of the accretion
 - energetic output
 - Cold gas: most massive component
- Radio AGN: radio jets expand through the galaxy
 - **know the age of the AGN.**
 - study the interplay ISM radio AGN, throughout different stages of its evolution

[Centaurus A: https://www.eso.org/public/images/eso0903a/]

Neutral Hydrogen in radio AGN

- Early-type galaxies are the typical host of a radio-AGN
- ▶ ~ 40% of early-type galaxies have neutral hydrogen HI [ATLAS^{3D} · Serra et. al 2012]
 - ▶ HI absorption traces interplay between the radio source and the ISM
- Narrow lines at systemic velocity
 - rotating disks
- Shallow blue shifted wings
 - outflows pushed by the radio jet
- Redshifted lines
 - inflowing gas
- HI and molecular cold gas components (e.g. CO, H2, etc) show similar kinematics

[Centaurus A: Struve et al. 2010]

HI absorption traces gas close to radio AGN

HI absorption traces gas close to radio AGN

Detect cold gas against the radio continuum emission

- 30% detection rate
- Variety of lines with different shapes, widths and optical depths
 - Trace the interaction between the radio activity and the interstellar medium, i.e. Feedback from AGN
 - Circumnuclear disks, fast outflows, inflows.

- HI absorption profiles identify sources where interaction between the radio activity and the surrounding ISM is on-going, e.g. inflows, outflows
- Problem: The integrated HI absorption lines do not reveal the overall distribution of all the cold gas close to the radio AGN, as well as its physical conditions.
 - Solution: Multi-wavelength high resolution observations of different phases of the gas in the circumnuclear regions of radio AGN
 - Candidate: PKSB 1718-649, a young radio source
 - ideal candidate to study the triggering and feeding of the AGN

PKS B1718-649: a baby radio galaxy

General properties

- Closest young radio AGN: z=0.0144 (62 Mpc)
- Compact radio source: R = 2 pc
- Young AGN: 10²⁻⁵ years
 - First phase of radio AGN
 - $S_{1.4GHz}$ (ATCA) = $S_{1.4GHz}$ (VLBI)
- Radio power: 1.8 x 10²⁴ W/Hz
- Accretion: jet-mode, (L/L_{Edd}~0.003)
- Optical properties: LINER
- S0 galaxy + massive HI disk
 - Multi-wavelength study
 - Neutral Hydrogen [Maccagni et al., 2014]
 - H₂ (2.12 μm) [Maccagni et al., 2016]
 - CO (2-1) [Maccagni et al., submitted]

Compact Array HI observations

- In Emission, we don't detect gas close to the radio source deviating from rotation
- Model the kinematics of the HI disk

- Timescale of rotation of the HI disk:
 - mergers/bars <u>do not</u>:
 - bring cold gas close to this AGN
 - fuel of this radio source

[Maccagni et al., 2014]

An HI Absorption doublet

2 Absorption lines:

line of

sight

- narrow line blue-shifted
- broad line red-shifted
 - w.r.t systemic velocity (4274 km/s)
 - population of cold clouds of gas potentially fuelling the AGN (?)

Focusing on the centre of the galaxy

Investigate the centre of the galaxy
 Distribution and kinematics of the cold molecular gas

- Spatial resolution: 0.5" / 150 pc
- FOV: 8x8 kpc

SINFONI: warm H₂ (2.12 µm)

- IFU observations of the H₂ S(1) 1-0 line
 Spatial resolution: 0.52" / 154 pc
- 2 rotating disks:
 - <u>outer disk</u> (r>650 pc)
 - follows rotation of the stars
 - inner disk (r<600 pc)</p>
 - ▶ **⊥** to the outer disk

Warm H₂ in PKS B1718-649

- 2 Structures
 - Outer disk
 - follows the kinematics of the HI disk
 - Inner disk
 - ▶ ⊥ to outer disk

- Inner 75 pc
 - brightest H₂ line
 - component at redshifted velocities
 - gas not rotating within the disk

[Maccagni et al., 2016]

Higher spatial and spectral resolution

- ► ALMA can observe cold H₂ traced by CO
- ► Cycle 3 observations: CO (2-1) [P.I. Maccagni]
- Spatial resolution: 0.2" / 82 pc
- ▶ FOV : 15x15 kpc
- $\Delta v = 10 \text{ km/s}$

CO (2-1) seen by ALMA

- Clumpy medium
 - Molecular clouds follow the dust lane
 - Centre: complex distribution

Beam: 0.5"x0.5" (120 pc)

Velocity field of the CO (2-1)

- CO follows rotation of other components of the galaxy, (stellar body, dust lane, HI disk)
- Major axis aligned N/S
 - change in the central regions

The circumnuclear disk of CO

- Clumpy circumnuclear disk
- ▶ Resolved molecular clouds Size ≤150 pc
 - ▶ Velocity width ≤ 80 km/s

- Disk dominated by rotation
 - ▶ Major axis ⊥ outer gas

Beam: 0.28"x0.28" (82 pc)

The circumnuclear disk of CO

Position velocity diagram along the major axis of the disk

- Smooth gradient in velocity
 - Disk in regular rotation

- Redshifted absorption against the radio source
 - In-flowing gas

Cold gas clouds falling onto the radio AGN

- Redshift w.r.t systemic velocity: + 350 km/s -> gas falling towards AGN
- FWHM = 54 km/s >> 4 km/s (dispersion molecular clouds)
 - Several clouds are falling onto the radio source
 - Possibly, the clouds are shredded while falling.

Molecular clouds accreting onto the SMBH

- ▶ HI kinematics differ from the H₂ and CO
 - In the centre, there must be multiple clouds of gas with different physical conditions
 - Phase of the gas, kinematics, temperature and density

The warm H_2 and the cold CO

Warm H₂ detected only at r<1 kpc

The warm H₂ and the cold CO

- Centre: N_{H2} / N_{CO} ~ 110
- Disk: N_{H2} / N_{CO} ~ 16
 - CO does not trace all the molecular hydrogen in the centre.

- **CO ionised before warm H2.**
- The AGN is changing the conditions of the ISM

Molecular clouds accreting onto the SMBH

- CO absorption co-located with warm H₂ in emission with same deviating kinematics
 - Molecular clouds in the innermost 75 pc accrete onto the SMBH
 - Models of chaotic cold accretion (e.g. Gaspari et al. 2017) well match all indications of cold molecular clouds falling onto the SMBH we found.

Summary

- HI [Maccagni et al., 2014]
 - Mergers/secular events did not trigger this radio AGN
 - ▶ In the centre, a population of clouds of HI has strong radial motions
- H₂ [Maccagni et al., 2016]
 - Circumnuclear disk of H2, regularly rotating (r < 650 pc)
 - r < 75 pc: gas deviates from regular rotation with redshifted velocities, may be falling onto the SMBH
- ▶ CO (2-1) [Maccagni et al., submitted]
 - Redshifted (+350 km/s) absorption (FWHM ~ 54 km/s)
 - Several clouds of cold gas are falling towards the AGN
 - Clouds close to the SMBH: 75 pc.
 - Molecular gas fuels the AGN through chaotic cold accretion
 - ▶ r<75 pc: CO does not trace same H2 than at larger radii.
 - Radio AGN is changing the physical conditions of the gas.
- Future prospects
 - CO (3-2), ALMA cycle 5 observations [P.I. Maccagni]
 - physical conditions of ring (pressure, density, ionisation)
- PKSB 1718-649 is not alone!
 - Centaurus A [Espada et al 2017], NGC 5044 [David et al. 2017], (for example) have warped circumnuclear disks of molecular gas.
 - Within the disk, small clouds have strong radial motions, and could fuel the AGN.

Ancillary Observations

- Optical [Filippenko et al. 1985]
 - LINER, weak narrow lines
 - line ratios show different densities / temperatures in the circumnuclear ISM
- X-Rays [Siemiginowska et al. 2016]:
 - Compton thick medium ≤ 6 " (1.8 kpc)
 - X-Ray variability [Beuchert et al. in prep]
- Cosmic Rays [Migliori et al. 2016]
 - generate from IC in circumnuclear ISM

Radio Variability [Tingay et al. 2015]

- clouds of gas in the central regions
- link Radio/X-Ray variability under investigation [Moss et al. in prep]

