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ABSTRACT
In this paper, we consider the consensus problem where a set of
nodes cooperate to minimize a global cost. In particular, we con-
sider an online setting and propose an online algorithm based on the
alternating direction method of multipliers. Besides, we take into
account the asynchronous operation of the nodes. In this context,
we prove that the algorithm attains sublinear regret on the objective.
Finally, we assess numerically the performance of the algorithm in a
distributed sparse regression problem.

Index Terms— Distributed consensus, ADMM, online learning.

1. INTRODUCTION

In recent years, we are experiencing the advent of the big data era.
Big data refers to the collection, storage and processing of large vol-
umes of data. These massive amounts of data may be either collected
centrally or distributedly by a set of nodes (e.g., wireless sensor net-
works). Another important feature in big data is the velocity at which
data is processed and interpreted. In this regard, the research com-
munity distinguishes between batch and online methods. The former
refers to those methods that process large chunks of data in an offline
fashion and that usually exhibit a high computational complexity. In
contrast, the latter refers to lighter methods that do the processing at
the same time the data is collected. This paper focuses on distributed
and online learning methods where a set of nodes cooperate to learn
information of the collected data in an online fashion.

Distributed optimization and learning theory have recently at-
tracted lots of attention. In the batch setting, distributed optimization
theory has been applied to fields such as wireless communications,
signal processing, machine learning and smart grid (see e.g, [1] for
a comprehensive survey on distributed optimization). The common
ground of these works is a system composed of a set of nodes that
cooperate in order to achieve a global goal. In this context, the al-
ternating direction method of multipliers (ADMM) have became a
popular technique due to its superior performance with respect to
traditional primal-dual decomposition methods [2]. Distributed al-
gorithms based on the ADMM have been proposed in [3, 4, 5]. To
remark the recent works in [6, 7], where the authors propose a dis-
tributed asynchronous ADMM algorithm for (convex and non con-
vex) consensus problems. Interestingly, the algorithm is shown to
converge to the set of stationary solutions. On the other, online learn-
ing and convex optimization theory has experienced substantial ad-
vances (see [8] and references therein). In this regard, Wang and
Barnejee introduced in [9] the online version of ADMM. This work
analyzes the ADMM from an online perspective and shows that it
attains a sublinear regret.

In this paper, we consider the distributed consensus problem
where a set of nodes want to reach consensus on their actions aided
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by a master node. The proposed algorithm is suitable for a number
of applications such as sparse distributed regression, distributed sup-
port vector machine and distributed estimation. Differently from [6],
we focus on the online scenario and thus study the regret of the algo-
rithm. Unlike [9], we further consider asynchronous nodes. Namely,
nodes may be active or idle for some periods without reporting up-
dates to the master node. This allows us to account for a number
of realistic situations: communication errors, collisions in the MAC
channel and nodes powered by energy harvesting. Under some mild
assumptions, we prove that the algorithm attains a sublinear regret
on the objective. Finally, we particularize the algorithm for the prob-
lem of sparse distributed regression with asynchronous nodes.

2. SYSTEM MODEL

Consider a communication network composed of N nodes in-
dexed by set N and one master node that coordinates the net-
work. Each node has associated a time-varying convex cost function
fi,t : Rm → R, with subscripts i and t standing for the node and
time slot indices, respectively. The action played by node i is de-
noted by vector xi of length m. In addition, xi ∈ X where X is a
compact set. In this paper, we consider the consensus problem over
a time horizon T , where nodes cooperate through the master node
to reach consensus on their actions {xi} while minimizing the total
cost. Mathematically speaking, the problem is posed as follows:

min
{xi∈X},z

T∑
t=1

(
N∑
i=1

fi,t(xi) + h(z)

)
(1a)

s.t. xi = z ∀i (1b)

with z ∈ Rm standing for the consensus variable and h(z) standing
for a convex function (e.g., regularization function such as `1 norm).
It is worth noting that the formulation in (1) is quite general and al-
lows us to pose a number of interesting problems such as distributed
support vector machine and distributed regression (see [2] for further
details).

2.1. Batch ADMM: Review
Solving (1) entails the knowledge of all cost functions {fi,t}Tt=1

from the onset. In this case, one can thus resort to a number of well-
known methods to solve (1), which are referred to as batch methods
by the research community. In this paper, we focus our attention on
the ADMM [2]. To introduce the batch version of ADMM, let us
first write the augmented Lagrangian of (1):

Lρ({xi}, z, {λi}) =
T∑
t=1

(
N∑
i=1

fi,t(xi) + h(z)

)
+
ρ

2

N∑
i=1

‖xi − z‖22

+

N∑
i=1

λTi (xi − z) (2)
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with {λi} standing for the dual variables associated to (1b) and ρ
being a positive constant. The batch ADMM alternates the following
primal and dual updates until convergence

{xi,k+1} = argmin
{xi∈X}

Lρ({xi}, zk, {λi,k}) (3)

zk+1 = argmin
z
Lρ({xi,k+1}, z, {λi,k}) (4)

λi,k+1 = λi,k + ρ(xi,k+1 − zk+1) for i = 1, . . . , N (5)

where k refers to the iteration index.
The batch ADMM is suitable for decentralized implementation

as discussed in the following. Nodes compute {xi} in parallel by ex-
ploiting the separable structure of the augmented Lagrangian. Then,
the master node, upon collecting the updated {xi} from the nodes,
computes and broadcasts the consensus variable zk+1 to the nodes.
The procedure is repeated until convergence.

2.2. Online operation
In online optimization problems, cost functions are not available
from the onset and nodes must play their actions in an online fash-
ion. To be more precise, at time t nature reveals cost function fi,t to
node i which uses1 it to compute the next action, i.e,. xi,t+1 ∈ Rm.
The performance of online algorithms is assessed by the so-called
regret that we define next.

Definition 1. Let {{xi,t+1}Ni=1, zt}Tt=1 denote a sequence of ac-
tions generated by an online algorithm in a time horizon T , and let
{x?i }, z? be the optimal batch solution of (1). Then, the regret of the
online algorithm is defined as

R =

T∑
t=1

(
N∑
i=1

fi,t(xi,t)− fi,t(x?i ) + h(zt)− h(z?)

)
(6)

In other words, the regret measures the loss incurred by the on-
line algorithm with respect to the optimal (batch) solution. Typically,
one is interested in online algorithms that attain a sublinear regret.

2.3. Asynchronous operation
Besides the online operation, wireless communication networks im-
pose additional constraints. To account for that, we consider an asyn-
chronous system where only a subset of nodes At ⊆ N is active
at time slot t and, thus, reporting their updates to the central coor-
dinator. Likewise, the master node only broadcasts updates of the
consensus variable to the set of active nodes At. This means that
idle sensors, indexed by set Act = N \ At, do not report their up-
dates to the master node, neither receive consensus updates from the
master node2. This simple model allows us to account for a variety
of situations: communication link outages, asynchronous operation
of nodes powered by energy harvesting, computation delays due to
heterogeneous nodes, and collisions when seizing the channel.

3. ASYNCHRONOUS ONLINE ADMM

Before presenting the algorithm, we introduce some assumptions
needed to derive the results presented in this paper.

Assumption 1.
(a) Functions {fi,t(x)} are convex with bounded subgradients,

that is, ‖∂fi,t(x)‖2 ≤ Lx for i ∈ N .

1It may also use all the past information, i.e, {fi,l}tl=1.
2Note that this is particularly interesting for energy harvesting sensors

that remain idle until sufficient energy has been harvested for transmission

(b) Function h(x) is a convex function. Besides, h(0) = 0 and
h(x) ≥ 0.

(c) Let ti be the last iteration before t where node i reported
its update to the master node. Hence, the maximum number
of iterations that a node is idle is upper bounded by τ , i.e.,
t− ti + 1 ≤ τ .

(d) Let {x?i } and z? be the optimal batch solution, i.e, satisfying
x?i = z? for i ∈ N , then ‖x?i ‖22 ≤ D for i ∈ N and ‖z?‖22 ≤
D. Besides, z0 = 0, and λi,0 = 0 and xi,0 = 0 for i ∈ N .

(e) fi,t(xi) − fi,t(x?i ) ≤ F for i ∈ N and a positive constant
F .

In Assumption 1, (a) allows non-differentiable functions with
bounded subgradients (e.g., `1 norm). Note that if domfi,t is com-
pact this is satisfied for a large family of convex functions (e.g., `2
norm). (b) allows us to have regularization functions such as `1
norm. (c) prevents the sensors from having too outdated information
and is needed to establish a sublinear regret bound. Assumptions
(d) and (e) are quite standard in online convex and learning theory
[9, 10]. Actually, Assumption (e) is satisfied for Lipschitz continu-
ous functions [10, Section 2].

Bearing all the above in mind, the proposed algorithm produces
the following updates at time slot t

• The set of active nodes , i.e., At, update their local variables
as follows

xi,t+1 = argmin
x∈X

t∑
l=ti+1

fl,i(x) + xTλi,t

+
ρ

2
‖x− zti‖

2
2

+
η

2
‖x− xi,t‖22 (7)

whereas for the set of idle nodes, i.e., Act , let xi,t+1 = xi,t.
Active nodes transmit {xi,t+1} to the master node.

• The master node updates its variable z as follows

zt+1 = argmin
z

h(z)− zT
∑
i∈At

λi,t

+
ρ

2

∑
i∈At

‖xi,t+1 − z‖22 (8)

and broadcasts it to the set of active nodes, i.e, At.

• All nodes update their dual variables

λi,t+1 =

{
λi,t + ρ(xi,t+1 − zt+1) for i ∈ At
λi,t for i ∈ Act

(9)

It is worth noting that, in contrast to the batch ADMM presented in
Section 2.1, nodes operate in an online fashion by playing an action
at each timeslot using past information only.

3.1. Regret Analysis

The following theorem establishes the sublinear regret of the asyn-
chronous online ADMM presented in the previous section.
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Fig. 1. Average regret vs time index for different values of the node
activity probability p and parameter η. System parameters: m =
100, N = 100, k = 5, θ = 0.1, ρ = 0.1, η = 2, σ2

w = 0.1

Theorem 1. The sequence of iterates {xi,t, zt} generated by (7)
and (8) have the following sublinear regret bound on the objective:

T−1∑
t=0

(∑
i∈N

(fi,t(xi,t)− fi,t(x?i )) + h(zt)− h(z?)

)

≤ Nτ2L2
x +ND

2

√
T +

NDρ+ 2NτF

2
(10)

where {x?i }, z? stand for the optimal batch solution of (1)

Proof. See Appendix A

4. RESULTS AND DISCUSSION

In this section, we apply the proposed algorithm to the decentralized
online regression problem. In this case, variables {xi}, z are as-
sumed to be sparse with only k elements different from zero. Nodes
take observations of the form:

yi,t = aTi,tx+ wi,t t = 1, . . . , T and i ∈ N (11)

with ai,t ∈ Rm standing for the measurement vector and {wi,t}
stand for i.i.d zero mean Gaussian noise variables with variance σ2

w.
Hence, the goal is to reach consensus on a sparse vector x given
the measurements in (11). To that end, we formulate the problem
as a LASSO problem where functions in (1) are particularized to
fi,t(x) = 1

2
‖yi,t − aTi,tx‖22 for i ∈ N , and h(z) = θ‖z‖1, with θ

standing for a positive constant.
To assess the impact of the asynchronous operation of the nodes

we consider two different scenarios: i) nodes powered by energy
harvesting (EH) and ii) random scheduling of nodes. In the former
scenario, nodes can only provide an update to the master when there
is enough energy in its battery. For simplicity, we model the result-
ing node activity as an i.i.d on-off process at each node with activity
probability p. As for the latter, we assume that the master node se-
lects randomly one node per time slot to report its update. Finally,
as a benchmark we also consider the synchronous case, where all
sensors report (and receive) updates at each time slot.
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Fig. 2. Values of the k nonzero components of {xi} plus one of
the zero components. The central mark on each box represents the
median, the edges of the box represent the 25th and 75th percentiles.
The whiskers extend to the rest of points and outliers are represented
by red marker +. Stem plots represent the batch solution and the
actual signal generated in the simulations. System parameters: m =
100, N = 100, k = 5, θ = 0.1, ρ = 0.1, η = 2, σ2

w = 0.1,
T = 2000.

In Figure 1 we plot the evolution of the (normalized) dynamic
regret. The dynamic regret at time t is defined as follows:

R(t) =

t∑
l=1

(
N∑
i=1

fi,l(xi,l)− fi,l(x?i ) + h(zl)− h(z?)

)

+

T∑
r=t+1

(
N∑
i=1

fi,r(xi,t)− fi,r(x?i ) + h(zt)− h(z?)

)

with R(T ) being the classical definition of regret provided in Defi-
nition 1. Essentially, at time slot t the equation above provides the
regret obtained if nodes would select xi,t′ = xi,t and zt = zt′ for
t′ > t.

From Fig. 1, It is worth noting that all curves have the same
decreasing trend. Indeed, the results show that in all cases the al-
gorithm converges quickly to a stationary solution, since there are
no major regret deviations beyond 500 time slots. As expected, the
asynchronous operation of the nodes has an impact on the attained
regret. This is specially pronounced for the extreme asynchronous
case of random scheduling. This trend is illustrated in Figure 2
which depicts the deviations in the values of {xi} computed at the
nodes after T time slots. Clearly, in the case of synchronous nodes,
the values of the components of {xi} are well concentrated around
the median whereas larger deviations occurs for the asynchronous
scenarios.

In conclusions, in this paper we have proposed and analyzed
an asynchronous online optimization algorithm for consensus prob-
lems. The proposed method is based on the ADMM and is shown to
attain a sublinear regret with respect to its batch counterpart. The
algorithm has been applied to the decentralized online regression
problem with asynchronous nodes. Numerical results reveal that the
algorithm converges fast to a stationary solution. Additionally, nu-
merical results confirm that an asynchronous operation of the nodes
impacts on the attained regret of the algorithm. Future work encom-
passes the regret analysis of the consensus constraints.

A. PROOF OF THEOREM 1

To ease the notation, we first define gi,t(x) =
∑t
l=ti+1 fl,i(x).

Now, we introduce the following lemma



Lemma 1. Under Assumption 1, at time instant t we have the fol-
lowing inequality∑

i∈At

gi,t(xi,t)− gi,t(x?) + h(zt+1)− h(z?)

≤ 1

2ρ

∑
i∈At

(
‖λi,t‖22 − ‖λi,t+1‖22

)
+
ρ

2

∑
i∈At

(
‖z? − zti‖

2
2 − ‖z? − zt+1‖22

)
+
η

2

∑
i∈At

(
‖x?i − xi,t‖22 − ‖x?i − xi,t+1‖22

)
+ |At|

τ2L2
x

2η
(12)

Proof. The proof follows from standard convex arguments. Deriva-
tions are omitted due to space limitation.

From Lemma 1, we notice that taking the sum over the time hori-
zon T , the first three terms on the RHS become telescopic sums. The
next Lemma provides upper bounds for these terms and substitutes
the dependence of the LHS on zt+1 by zt.

Lemma 2. Under Assumption 1 the iterates generated by the asyn-
chronous online ADMM satisfy

T−1∑
t=0

(∑
i∈At

(gi,t(xi,t)− gi,t(x?)) + h(zt)− h(z?)

)

≤ τ2L2
x

2η

T−1∑
t=0

|At|+
ηND

2
+
NρD

2
(13)

Proof. See Appendix A.1.

Now, for each i /∈ AT−1, let t̃i be the last iteration where node
i was active, then we have that

T−1∑
t=0

∑
i∈At

(gi,t(xi,t)− gi,t(x?))

=

T−1∑
t=0

∑
i∈At

t∑
l=ti+1

(fi,l(xi,t)− fi,l(x?i ))

=

T−1∑
t=0

∑
i∈N

(fi,t(xi,t)− fi,t(x?i ))

−
∑

i/∈AT−1

T−1∑
l=t̃i+1

(fi,l(xi,t)− fi,l(x?i )) (14)

Noting that xi,l = xi,t for l = ti + 1, . . . , t and using Assumption
1 (e), that is fi,t(xi) − fi,t(x?i ) ≤ F , the last term in (14) can be
bounded as follows:∑

i/∈AT−1

T−1∑
l=t̃i+1

(fi,l(xi,t)− fi,l(x?i )) ≤ NτF (15)

where we have used |AcT−1| ≤ N and that T − t̃i − 1 ≤ τ . By
using (15) and (14) in (13) and noting that |At| ≤ N ∀t, we obtain:

T−1∑
t=0

(∑
i∈N

(fi,t(xi,t)− fi,t(x?i )) + h(zt)− h(z?)

)

≤ Nτ2L2
xT

2η
+
NηD

2
+
NρD

2
+NτF (16)

Finally, by letting η =
√
T concludes the proof.

A.1. Proof of Lemma 2

Consider the following telescopic sum

1

2ρ

T−1∑
t=0

∑
i∈At

(
‖λi,t‖22 − ‖λi,t+1‖22

)
=

1

2ρ

T−1∑
t=0

∑
i∈N

(
‖λi,t‖22 − ‖λi,t+1‖22

)
=

1

2ρ

∑
i∈N

(
‖λi,0‖22 − ‖λi,T ‖22

)
≤ 0 (17)

where, in the first step, we have used the fact that for i /∈ At
λi,t+1 = λi,t and, the last step follows from Assumption 1 (d) that
λi,0 = 0. Similarly, we have that

η

2

T−1∑
t=1

∑
i∈At

(
‖x?i − xi,t‖22 − ‖x?i − xi,t+1‖22

)
=
η

2

T−1∑
t=1

∑
i∈N

(
‖x?i − xi,t‖22 − ‖x?i − xi,t+1‖22

)
≤ η

2

∑
i∈N

‖x?i − xi,0‖22

≤ ηND

2
(18)

where again we have used xi,t+1 = xi,t for i /∈ At and the last step
follows from Assumption 1 (d). Additionally, for each i /∈ AT−1

define t̃i as the last iteration where node i was active, then we have
that

ρ

2

T−1∑
t=0

∑
i∈At

(
‖z? − zti‖

2
2 − ‖z? − zt+1‖22

)
=
ρ

2

∑
i∈AT−1

(
‖z? − z0‖22 − ‖z? − zT ‖22

)
+
ρ

2

∑
i/∈AT−1

(
‖z? − z0‖22 − ‖z? − zt̃i‖

2
2

)
(19)

Hence, from Assumption 1 (d) we have that

ρ

2

T−1∑
t=0

∑
i∈At

(
‖z? − zti‖

2
2 − ‖z? − zt+1‖22

)
≤ NρD

2
(20)

Now, from Assumption 1 (b) we know that h(0) = 0 and h(z) ≥ 0
for all z, then we have the following lower bound

T−1∑
t=0

∑
i∈At

h(zt+1) ≥ h(0)− h(zT ) +
T−1∑
t=0

∑
i∈At

h(zt+1)

=

T−1∑
t=0

∑
i∈At

h(zt) (21)

Finally, by substituting (17), (18) and (20) into the telescopic sum
over t of (12) and using (21) yields (13).
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