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Ferroelectricity usually fades away as materials are thinned down below a critical value. We reveal that
the unique ionic-potential anharmonicity can induce spontaneous in-plane electrical polarization and
ferroelectricity in monolayer group-IV monochalcogenides MX (M ¼ Ge, Sn; X ¼ S, Se). An effective
Hamiltonian has been successfully extracted from the parametrized energy space, making it possible to
study the ferroelectric phase transitions in a single-atom layer. The ferroelectricity in these materials is
found to be robust and the corresponding Curie temperatures are higher than room temperature, making
them promising for realizing ultrathin ferroelectric devices of broad interest. We further provide the phase
diagram and predict other potentially two-dimensional ferroelectric materials.
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Ferroelectrics, particularly the thin-film form that is most
commonly needed for modern devices, is plagued by a
fundamental challenge: the depolarization field—an inter-
nal electric field that competes with and often destroys
ferroelectricity [1–3]. As a result, the critical thickness in
proper ferroelectric materials, such as perovskite ones, is
limited between 12 and 24 Å [4–6]. New mechanisms such
as hyperferroelectrics are proposed to keep the polarization
even in a single layer of ABC hexagonal semiconductors
[7], but these materials have yet to be synthesized. Layered
van der Waals (vdW) materials may provide another way to
overcome this challenge. For example, two-dimensional
(2D) MoS2 was predicted to be a potentially ferroelectric
material [8]. However, its ferroelectric 1T structure is not
thermally stable compared to the observed 2H phase.
Bulk SnSe, a high-performance thermoelectric material

[9], exhibits giant anharmonic and anisotropic phonons
[10–13], which are usually the signs of spontaneous
symmetry breaking. In particular, monolayer structures
of this MX (M ¼ Ge, Sn; X ¼ S, Se) family are predicted
to own giant piezoelectricity [14,15] and, particularly, their
electrical polarization displays a nonlinear response to
applied strain [14]. All these clues motivate us to inves-
tigate if these materials are spontaneously polarized and
ferroelectric. From the point of view of fabrication, ultra-
thin trilayers of these materials have been successfully
fabricated [16], making the study of monolayers of imme-
diate interest. Last, but not least, the relation between phase
transitions and dimensionality has been a century-long
topic [17,18]. Beyond intensive studies on bulk ferroelec-
tric phase transitions [1,19–21], ferroelectric phase tran-
sitions in 2D materials and their critical phenomena are
obviously of fundamental importance.
In this work, we show thatMX (M ¼ Ge, Sn; X ¼ S, Se)

monolayers are a new family of 2D ferroelectric vdW

materials. Using first-principles calculations [22–28], we
identify two degenerate structures exhibiting spontaneous
in-plane polarization. Moreover, we build an effective
Hamiltonian to investigate the phase transition via
Monte Carlo (MC) simulations [22]. The calculated
Curie temperatures (TC) are above room temperature,
making these materials promising for experiments and
ultrathin ferroelectric devices. We further demonstrate that
this 2D ferroelectric phase transition obeys the fourth-order
Landau theory but with different critical exponents from
those of the typical second-order phase transition [29].
Finally, we obtain the phase diagram of monolayer SnSe,
showing that minor strain can dramatically tune TC. By
computing covalency and cophonicity metrics, we show the
correlation between the ionic-covalent bonds with sponta-
neous polarization and Curie temperatures, which may give
hope to the search for new 2D ferroelectric materials.
Bulk MX (M ¼ Ge, Sn; X ¼ S, Se) adopts a layered

orthorhombic structure (space group Pnma) at room
temperature, which is derived from a three-dimensional
distortion of the NaCl structure (space group Cmcm) [9].
Their monolayer structures keep this symmetry [22,30], as
shown in Fig. 1(a). From the side view, we define the angles
θ1 and θ2 measured along the x (armchair) direction shown
in Fig. 1(b), which describes the geometric distortion.
When θ1 ¼ θ2 ¼ 0, the structure converts back to the
nonpolar Cmcm (phase A) with the inversion symmetry,
which is actually the structure of the crystalline insulator
materials, SnTe and PbTe, etc. [22,31].
For monolayer MXs, there are two stable structures

which are related by a spatial inversion, characterized
by having both θ1 and θ2 positive or both negative.
These structures, labeled by phases B and B0, are shown
in Fig. 1(b). Taking monolayer SnSe as an example, the
free-energy contour obtained using first-principles
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calculations is presented in Fig. 1(c), which confirms these
stable structures (B and B0) are connected through a saddle
point (A). This anharmonic double-well potential strongly
hints the existence of ferroelectricity.
Importantly, both B and B0 structures are noncentrosym-

metric polar, and they can be transformed into another by a
spatial inversion. Therefore, if there is a polarization (P) in
the B phase, that of the B0 phase must be the inverse (−P).
Our Berry-phase calculation based on density functional
theory (DFT) confirms this symmetry analysis: these two
stable structures (B and B0) have significant spontaneous
polarization with opposite polarizing directions. The spon-
taneous polarization at zero temperature (Ps) are listed in
Table I. If we estimate the thickness of each layer to be
0.5 nm [9], their average bulk values of the polarization are
around 0.3–1.0 C=m2, which are similar to those of

traditional ferroelectric materials such as BaTiO3 and
Lead zirconate titanate (PZT) [21,32,33].
Soft optical modes correspond to displacive instabilities

and have been assigned to be the driving mechanism for
spontaneous symmetry breaking in bulk ferroelectrics [34].
As temperature decreases below TC, the frequency of the
soft mode will evolve to be imaginary, driving the high-
symmetry structure to a symmetry-broken phase. We have
observed the similar phenomenon. For example, in mono-
layer SnSe, we plot the phonon dispersions for both the
nonpolar phase A and polar phase B [Figs. 2(a) and 2(b)].
Clearly there is an imaginary, soft optical mode (λ)
presenting, and it is corresponding to the symmetry break-
ing below TC.
Beyond the calculation of ferroelectricity at zero temper-

ature, a more fundamental question is the corresponding
ferroelectric phase transition, which has been intensively
studied for decades in bulk materials [1,20,34–38]. This is
an open question for monolayer monochalcogenides
because of their 2D nature. Dimensionality is a key factor
deciding phase transitions. In particular, lower dimension-
ality usually enhances fluctuations, decreasing or even
diminishing phase transitions. Therefore, even with a finite
configurational potential barrier [Fig. 1(c)], it is unknown if
such a ferroelectric order can survive (robust) at finite
temperature in 2D materials. This is also crucial for
potential devices working at room temperature. In the
following, we build a quantitative approach to study the
2D ferroelectric phase transition beyond zero-temperature
DFT calculations.

(a)

(c)

(b)

FIG. 1. (a) Top view of the structure of monolayer group-IV
monochalcogenides. The black line rectangle is the first Brillouin
zone, a is the lattice constant along the armchair direction (x), and
b is that along the zigzag direction (y). (b) The schematic side
views of the two distorted degenerate polar structures (B and B0)
and the high symmetry nonpolar phase (A). (c) The free-energy
contour plot of monolayer SnSe according to the tilting angles (θ1
and θ2). The phases A, B, and B0 are marked.

TABLE I. The ground-state free energy (potential barrier) EG
(meV), the spontaneous polarization Ps (10−10 C=m) at zero
temperature, and fitted parameters in Eq. (1). A, B, and C are used
to describe the double-well potential. D is the constant represent-
ing the mean-field approximation interaction between the nearest
neighbors.

Material EG Ps A B C D

SnSe −3.758 1.51 −5.785 1.705 0.317 10.16
SnS −38.30 2.62 −19.127 1.053 0.275 8.49
GeSe −111.99 3.67 −15.869 −3.540 0.378 9.74
GeS −580.77 5.06 −37.822 −5.422 0.280 10.59

(a) (b)

(c) (d)

FIG. 2. (a) and (b) Phonon spectra of the structures A and B of
monolayer SnSe, respectively. (c) Double-well potential of
monolayer SnSe. Red points are the DFT-calculated total energy
and the blue line is from the model. (d) Double-well potential vs
polarization. EG is the ground-state energy (potential barrier) and
Ps is the spontaneous polarization.
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Although the aforementioned soft optical mode is the
driving mechanism for the ferroelectric phase transition, it
is not easy to describe these modes at finite temperature.
Moreover, techniques for treating higher-order anharmonic
phonons, which are crucial to induce phase transitions, are
limited. One approximation of investigating the imaginary
modes is to employ the so-called renormalization scheme
to calculate the effective harmonic frequencies at finite
temperature [11]. However, in that scheme, it is hard to
distinguish different dimensionalities, which is the essential
feature for 2D ferroelectric phase transition.
Alternatively, we describe our system by the Landau

theory. The polarization P is the order parameter. Then we
need to map the two-component (θ1, θ2) free-energy
surface [Fig. 1(c)] to a function of the order parameter
P. However, a brute-force 2D mapping will result in
formidable simulation. Fortunately, we observe that due
to the steep gradient of the energy surface along the
perpendicular direction to the dashed diagonal line in
Fig. 1(c), the structure prefers to stay as the so-called
angle-covariant phase (θ1 ¼ θ2), marked by the dashed
line in Fig. 1(c) (details in Secs. IV and V of the
Supplemental Material [22]). This makes it possible to
only consider a 1D subset of configurations and greatly
simplifies the parameter space.
In Fig. 2(c), we show the energy along this angle-

covariant line, θ1 ¼ θ2 ¼ θ, for monolayer SnSe. Its
double-well shape suggests the known form of the ϕ4

potential, which has been widely used to study bulk
ferroelectric materials [21,39]. By calculating the polari-
zation for each value of θ, we can connect the free energy E
to the polarization P.
The potential energy is expressed in the Landau-

Ginzburg expansion

E¼
X

i

A
2
ðP2

i Þþ
B
4
ðP4

i Þþ
C
6
ðP6

i Þþ
D
2

X

hi;ji
ðPi−PjÞ2; ð1Þ

which can be viewed as the Taylor series of local structural
distortions with a certain polarization defined at each cell
Pi. As shown in Fig. 2(d), the first three terms are
associated with the energy contribution from the local
modes up to the sixth order and they well describe the
anharmonic double-well potential. The last term captures
the coupling between the nearest local modes and includes
the 2D geometry that is crucial for differentiating this work
from previous bulk studies. Compared with the results of
mean-field theory within the nearest-neighbor approxima-
tion [Fig. 3(a)], the first-principles calculations of super-
cells show that the coupling is harmonic, confirming the
validity of keeping the second-order interactions in Eq. (1).
The values of the parameters A–D are listed in Table I.
Interestingly, the value for D, describing the average
dipole-dipole interaction, is almost the same across these
four materials. This is from the similar local structures of
these materials.

With this effective Hamiltonian and parameters, we can
employ the MC simulation to investigate the phase tran-
sition. In Fig. 3(b), take monolayer SnSe as an example, we
show there is an abrupt transition at TC ≈ 325 K. To obtain
the critical exponents and understand universal critical
phenomena, we employ a fitting procedure that assumes
a heuristic form for PðTÞ:

PðTÞ ¼
�
μðTC − TÞδ T < TC

0 T > TC;
ð2Þ

where TC is the Curie temperature, δ is the critical
exponent, and μ is a constant. These fitted results of
monolayer MX are summarized in Table II. The critical
exponents are around 0.25 and 0.35, which are significantly
below the ideal value (0.5) based on the 2D ferromagnetic
Ising model [29]. This is similar to the conclusion from
bulk ferroelectric perovskites [21]. In this sense, our study
is still not enough to identify the type of this phase
transition and it is an extremely interesting question for
future studies by further observing the hysteresis in heating
and cooling [40].
In Table II, the Curie temperature TC of monolayer GeS

and GeSe are rather large; this is consistent with their
higher configurational energy barriers (EG in Table I),
indicating that GeSe and GeS have strong ferroelectric
instability. On the other hand, the smaller TC of monolayer
SnSe and SnS show they have weak ferroelectric instability,
which can be easily tuned by external field or strain. This is

(a) (b)

FIG. 3. (a) The dipole-dipole interaction of monolayer SnSe by
using mean-field theory. The red points are the DFT-calculated
total energy of different Pi − hPji. The blue line is fitted by the
harmonic approximation. (b) Temperature dependence of polari-
zation obtained from MC simulations of monolayer SnSe.

TABLE II. The Curie temperature (TC) and critical exponents
in Eq. (2).

Material TC (K) μ δ

SnSe 326 0.34 0.25
SnS 1200 0.21 0.35
GeSe 2300 0.48 0.26
GeS 6400 0.75 0.22

PRL 117, 097601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 AUGUST 2016

097601-3



also consistent with our previous work showing a nonlinear
polarization response in strained SnSe and SnS [14].
It is important to point out that the Curie temperature TC

cannot be simply estimated by the configurational energy
barriers. For example, the barrier of the double-well
potential jEGj of SnSe (3.758 meV) is much smaller than
its kBTC (28.02 meV). This can be explained by the fourth-
order Landau theory, which has been used to understand the
ferroelectricity of perovskites [41]. In this scheme, the free
energy can be written as

F ¼ αðT − TCÞP2 þ βP4; ð3Þ

with α,β > 0. The equilibrium polarization is given by
dF=dP ¼ 0, resulting in the Curie temperature

TC ¼ 2β

α
Ps

2: ð4Þ

Excitingly, we fit the calculated spontaneous polarization
of monolayer SnSe and find TC ∼ P2

s , which perfectly
matches the Landau theory, similar to traditional perovskite
ferroelectric materials [21,42]. More precisely, the coef-
ficient 2β=α is about 11.09 meV=ð10−10 C=mÞ2, which is
very close to the interaction constant D of monolayer SnSe
listed in Table I. Therefore, a material with weak instability
may nevertheless display relatively high TC determined by
high values of dipole-dipole coupling D and the sponta-
neous polarization Ps. This may be particularly interesting
for suspended 2D ferroelectric materials because the
surrounding vacuum cannot efficiently screen the dipole-
dipole interaction, enhancing the coefficient in Eq. (4) and
further increasing the Curie temperature.
Phase diagrams are particularly important for completely

describing ferroelectricity in monolayers because the 2D
materials are easily affected by substrates [43,44],
fabrications, and temperature [45]. For monolayers, it is
hard to define the in-plane pressure. Equivalently, we
provide a phase diagram, in which we vary the two
orthogonal lattice constants (a and b) that can be related
to strain and calculate the corresponding Curie temperature;
see Sec. V of the Supplemental Material [22]. As an
example, the phase diagram of monolayer SnSe is pre-
sented in Fig. 4(b). Interestingly, the ferroelectric transition
temperature could be tuned in a wide range (a few hundred
Kelvins) by very small strain (within �1%) along the x
(armchair) direction. This widely tunable range, without
insulator-metal transition [45], suggests potential devia-
tions for experimental measurements and it is also prom-
ising for the engineering ferroelectricity.
Understanding the correlation between structure distor-

tions, spontaneous polarization, and the chemical bonding
nature is important for predicting new ferroelectric materi-
als. Here we investigate covalency and cophonicity metrics
(more details in Sec. VII of Supplemental Material [22])
proposed by Cammarata et al. [46,47], which are useful

tools for analyzing structural distortions and ferroelectric-
ity. We show the M-X bond covalency CM;X vs the MX
cophonicity CphðM–XÞ. in Fig. 4(c). Although the cova-
lencies have different monotonic behaviors with respect to
the cophonicity CphðM–XÞ, the cophonicity approaches a
perfect cophonocity [CphðM–XÞ ¼ 0] when the phase is
varied from the structure A to the more stable and polar
structure B. Thus cophonicity may be a useful quantity for
predicting stable ferroelectric structures. In Fig. 4(d), we
show the covalency CM;X according to the polarization and
the critical temperature. Interestingly, we find that the more
ionic material (smaller CM;X) has smaller Ps and lower TC.
This rule is consistent with the fact that the heavy
compound SnTe (ionic NaCl type structure) is not a
spontaneous polarization material. According to this rule,
we expect that the less covalentMX, such as the monolayer
SiS [48] and As1−xPx compound [49,50] may have higher
spontaneous polarization and Curie temperatures.
Finally, beyond monolayers, it is necessary to mention

few-layer monochalcogenides, given the fact that trilayer
SnSe have been fabricated [16]. Because of the restored
inversion symmetry, the polarization of even-number-layer

FIG. 4. (a) Curie temperature vs the spontaneous polarization.
The blue points and error bars are MC simulations and the red
line is the fitted result using the model function in Eq. (4).
(b) Phase diagram of monolayer SnSe under strain. (c)M-X bond
covalency CM;X vs cophonicity CphðM–XÞ with different covar-
iant angles. (d) Curie TC and spontaneous polarization Ps vsM-X
bond covalency CM;X. (e) Polarization at zero temperature vs the
layer number of MXs.
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MXs is always zero. In Fig. 4(d) we show the spontaneous
polarization of odd-number-layer MXs, in which the 2D
polarization (C=m) is renormalized to bulk values (C=m2).
Interestingly, although polarization of the odd-number
layers MXs decays with the increasing thickness, the Ps of
five layers SnSe is still around 0.08 C=m2ð¼ 8 μC=cm2Þ,
which is comparable to those of paraelectric barium titanate
[51] and BaTiO3 multiferroic nanostructures [52]. Thus, it
is possible to observe the ferroelectricity in currently
available few-layer monochalcogenides [16].
In conclusion, we predict that monolayer–odd-number-

layer group-IV monochalcogenides are ferroelectric mate-
rials with in-plane spontaneous polarization. The Curie
temperatures are significantly higher than their configura-
tional energy barriers between their degenerated ground-
state structures. These properties indicate that monolayer
MXs are robust ferroelectric materials, which could be
useful for devices. The revealed mechanism of the ferro-
electric phase transition, explained by the Landau theory,
takes us closer to understand the universal critical proper-
ties of 2D materials. Furthermore, the widely tunable Curie
temperature of these monolayers under small strain gives
more freedom for engineering ferroelectric devices. Finally,
based on our covalency analysis, new materials, such as SiS
[48] and As1−xPx, are predicted to be higher Ps and TC.
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No. DMR-1455346, NSF EFRI-2DARE-1542815, and the
International Center for Advanced Renewable Energy &
Sustainability (I-CARES). The computational resources
have been provided by the Stampede of Teragrid at
the Texas Advanced Computing Center (TACC)
through XSEDE.

Note added.—Recently, we became aware of theoretical
studies by Hanakata et al. [53] and Wu and Zeng [54],
which show ferroelasticity and ferroelectricity of these 2D
materials.
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